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Abstract

This note summarises some technical issues relevant to the use of the idea of excess 
return in empirical modelling.  We cover the case where the aim is to construct a 
measure of expected return on an asset and a model of the CAPM type is used.  We 
review some of the problems and show examples where the basic CAPM may be 
used to develop other results which relate the expected returns on assets both to  
the expected return on the market and other factors.  
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1.   INTRODUCTION

In this note we are concerned with the excess return on a risky asset, Ri - Rf say, 
where Ri is the return on asset i over a specified  investment horizon and Rf is the 
corresponding risk free rate.   The importance of this concept stems from the 
Capital Asset Pricing Model of Sharpe(1964) and others. The traditional CAPM is a 
theorem which relates the expected return on an asset only to the expected return 
on the market and to the risk free rate.  Excess return is widely used in a broader 
class of models which depart from the CAPM, either because their structure is 
different, or because they include other variables, or both.  The most common 
extensions of the CAPM are  the multi-factor models, henceforth MFM,  originally 
introduced by King(1966) and summarised elegantly by Jacobs & Levy(1988), the 
equilibrium factor models of Rosenberg et al(1973) and the arbitrage pricing 
theory(APT) of Ross(1976). These classes of model preserve the linear structure of 
the CAPM and the assumption of normality. However,  as Black(1993a) points out, 
they are different from the CAPM because they are really extensions of the market 
model. The key feature of them all is that they introduce additional variables to 
which the expected return on the asset is related.   More than thirty years after 
Sharpe's paper,  the CAPM is still one of the main motivating forces behind much 
recent work.  

The aim of this short paper is to summarise some technical issues relevant to the 
use of excess return in empirical modelling.  We look mainly at two general themes: 
the recent debate on the death of beta initiated by Fama & French(1992) and 
technical developments of the CAPM, for example the ARCH approach to time 
series analysis introduced by Engle(1982).  We cover the case where the aim is to 
construct a measure of expected return on an asset and a linear model of the CAPM 
type is used.  We also show examples where the basic CAPM may be used to develop 
other results which relate the expected returns on assets to the expected return on 
the market and other factors.  This note represents a personal view and we describe 
some technical issues which we have found important in our own work.  We make 
no claims to have covered the subject exhaustively.  

The structure of this paper is as follows. Section two comments on the CAPM 
theorem itself.  Section three is concerned with the recent debate on the death of 
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beta. Sections four and five look at different aspects of empirical work based on the 
CAPM.  Section six outlines an ARCH version of the CAPM and section seven 
concludes.

Except where stated otherwise in the text, we assume that returns follow a 
multivariate normal distribution and we employ the standard vector notation R ~ 
N(, V),  where R is the n-vector of realised returns,   is the corresponding n-vector 
of expected values and V is the variance-covariance(VC) matrix, which we assume 
to be of full rank.   The realised return on a portfolio is denoted by Rport and this is 
given by the inner product Rport  = wTR where w is an n-vector of portfolio weights.  
The corresponding realised return on the market portfolio is denoted by RM and this 
has variance   M

2 .    Where it is necessary to refer to the return on an individual 

asset, we call it Ri .  We use E[] , V[] and C[] to denote expectation, variance and 
covariance respectively. Other notation is that in common use. 

2.    THE CAPM THEOREM

The CAPM is a powerful model (a) because it relates the expected return on an 
asset only to the expected return on the market and the risk free rate and (b) 
because it results in a very simple linear equation.  In the usual notation, the 
CAPM is: 

E[Ri] =  Rf  +  i{ E[RM] - Rf }  =  i, say (1.)

This result,  first presented in Sharpe(1964) but also attributed to  Mossin(1966) 
and Lintner(1965), may be derived by assuming that investors espouse a quadratic 
utility function of the form: 

U(Rport) =  Rport -  (Rport - port)2;

where port is the expected value of Rport and   ( 0) represents risk aversion, and 
build a portfolio by finding the maximum of the expected utility function E[U(Rport)] 
subject only to specified restrictions on the vector of portfolio weights.  
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When returns follow a multivariate normal distribution, maximisation of 
E[U(Rport)], subject to convex constraints, gives the same result as maximising the 
expected value of the exponential utility function:

U(Rport) = 1 -  exp(-Rport)

This result,  which is its general form is due to Kallberg & Ziemba(1983), deals with 
the frequently heard criticism that the quadratic function of Rport above is not a 
proper utility function.   

In addition, the result at (1.) holds in more general conditions than those often 
implicitly assumed and so in some ways is more powerful.  As pointed out by 
Roll(1977), an equation of the form (1.) holds when RM represents the return on any 
portfolio which is Markowitz efficient.  It also holds if maximising the expected 
value of the utility function is replaced by either of the two more common criteria;

    max E[Rport]  such  that V[Rport]    1  

or  (2.)

min V[Rport]  such that E[Rport]   2  

where 1  and 1 are specified constants. In all of these circumstances, the linear 
relationship in (1.) holds regardless of the distribution of returns as long as the 
vector of mean returns m and the VC matrix V both exist.

However, there are theoretical limitations to the CAPM.  For example, it is widely 
believed that returns have fat tailed distributions. There are many ways of 
modelling these, but one simple approach would be to assume that returns come 
from a multivariate Student distribution,  see Johnson & Kotz(1972, page 132 et 
sec) for general background or Zhou(1993), who considers elliptically symmetric 
distributions for asset pricing.  However, there is a theoretical limitation to the use 
of the multivariate Student distribution,  because the expected value of the 
exponential utility function does not exist.  Obviously this is not a practical 
restriction since  either of the criteria at (2.) may be used,  but it is nonetheless a 



- 4 -

brief illustration of the need for care if one wishes to move from the standard 
assumptions of the CAPM.

When the return vector R is N(, V), the connection of the CAPM to its empirical 
form is a particularly strong one.   The return on the market may be written as RM  
= wTR for some vector of weights w.  If we use the conditional distribution of the 
vector of asset returns R given the market return RM,  a standard result in 
distribution theory (Anderson(1958, page29)) gives us:

E[Ri | RM ] =   i +   i{E[RM] - M } (3a.)

Substitution from (1.) then gives us the basis of empirical  work:

E[Ri | RM ] =  Rf +  i{RM - Rf} (3b.)

The joint VC matrix of the vector R and  RM is:

V[R, RM]    =  
V Vw

w V w VwT T









 (4a)

and so the VC matrix of R conditional on the value of market return RM is:

V[R | RM]    =   V -
1

w VwT
(Vw)(wTV) =  V -

1
2 M

(Vw)(wTV) (4b.)

This result shows that the empirical form of the CAPM which is commonly used is 
based on a subtle mathematical fallacy.  Standard texts (Elton & Gruber(1995) and 
Haugen(1993) to give just two examples)  suggest use of the regression equation;

Ri =  Rf +  i{RM - Rf} +  i

where the error terms i  are assumed to be independently normally distributed. 
This model leads to the overall VC matrix of the returns Ri being given by: 
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V[Ri] =    i M
2 2 +   i

2 ,  C[Ri, Rj] =    i j M
2

That is, the overall VC matrix of the return vector  R is given by the special 
structure:

V[R]  =  T M
2   +   (5.)

where  is the n-vector of betas and  is a diagonal matrix containing the stock 
specific variances  i

2 .  If we now use (4.) we find that the  conditional VC matrix of 

asset returns given the market return, V[R | RM ] say,  can be diagonal if and only 
if equation (5.) holds.  However, there is also a contradiction. This may also be 
shown by evaluating the variance of a portfolio with arbitrary weights w. According 
to (5.) this is:

wTVw =  (wT)2 M
2   +  wTw. (6.)

If w is the market portfolio and  (wT) = 1, then  wTVw =  M
2 if and only if  = 0.  

Equally, the requirement that the vector of covariance of each asset with RM should 
equal  M

2   when w is the market imposes the restriction: 

w = 0;  

which implies that the specific variances  i
2 must be zero for all assets with non-

zero weight. 

Two points emerge from this treatment.  First, although returns are still correlated 
after conditioning on the market return,  it is correct to estimate the betas using the 
familiar regression formula as long as the underlying distribution is multivariate 
normal.  Secondly, for purposes of portfolio construction it is, strictly speaking, 
necessary to use the full VC matrix and not the reduced form.  

If the market portfolio is well diversified in the sense that the number of assets is 
large and the weight of any asset is small then the practical consequences are 
slight.  However,  if  a particular market proxy is based on a small number of assets 
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and some have large weights, then the reduced form of the VC matrix may be less 
accurate.  This might arise in markets where the local index contains only a small 
number of names. Of course, it is recognised that errors in the estimates of 
variances and covariances are less important than errors in the estimates of  mean 
returns,  see Chopra & Ziemba(1993) for example,  and use of the reduced form VC 
matrix brings substantial benefits in computation.  We continue to use (5.) because 
of its simplicity.   However, the treatment above suggests that may is a case for 
using other reduced forms,  perhaps based on factor analysis of V. 

3.   THE DEATH OF BETA

We take the view that the CAPM is a theorem which relates expected values.  It is a 
statement only about the parameters of a multivariate probability distribution. 
Viewed in this way, beta is immortal.  Equation (1.) would  cease to have any 
interest  if  and only if all betas equalled zero. Beta may be zero for some assets but 
this cannot happen for them all, except when the variance-covariance matrix is 
singular.  Furthermore the CAPM is a cross-sectional theorem which pertains to 
expected values over the same time period. It is often inferred that the underlying 
parameters  and V are constant. but in reality the CAPM makes no explicit 
statement about them.  The real debate about the demise of beta is whether the 
expected value equation: 

E[Ri] =  Rf  +  i{ E[RM] - Rf }

has the ability to explain the variation in realised values of Ri and,  specifically,  to 
generate forecasts of future expected returns.

The cross-sectional nature of the CAPM has two implications. First, it means that 
the theorem can accommodate time varying  parameters. Secondly, forecasts based 
on estimates made at time t will be valid if the parameters at time t+1 are the 
same, or if we can specify a second model to link them.  The debate about the death 
of beta is really a debate about the model for the distribution of returns,   which 
should be  written as R  ~ N( t, Vt ), and that we do not know the underlying 
dynamics of  t, and/or Vt.  This has been recognised implicitly in the professional 
investment community for a long time. All quantitative analysts and managers are 
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familiar with the regular cycle  that involves updating the models. This is often 
done using simple methods such as a rolling window, but it  recognises explicitly 
both the need to incorporate new information and the fact the parameters   and V  
change over time.  

News of the death of beta, reported by Fama & French(1992),  reflects the fact that 
the expected value theorem does not always lead to empirical results that are useful 
or conform to prior expectations. In particular, the familiar cross sectional 
regression(CSR) model of asset returns on estimated betas (in the usual notation):

Ri =  bi  + i , V[i] =   i
2

often does not lead to a significant fitted regression.  In addition to Roll(1977), there 
have been several recent articles, most notably Roll & Ross(1994)  and Kandel & 
Stambaugh(1995),  which examine some of the deeper geometrical and statistical 
properties of the CAPM.  We note in particular Kandel & Stambaugh's key finding: 
if the market index is inefficient, even by an arbitrarily small amount, then the 
cross sectional regression of R on a vector of estimated betas can have an arbitrary 
fit. That is,  the R-squared can be anywhere between zero and one. 

However, lack of significance in the cross-sectional regression may not be 
surprising. If we consider the case where the bi and   i

2 are assumed known, the 

GLS estimator of   is g which is given by:

g = 
R b

b
i i ii

ii i

/

/




2

2 2




If the number of assets is large, say greater than 100,  the regression is effectively 
tested by the sum of squares due to fitting which is:

REGss =  
( / )

/

R b

b
i i ii

ii i




2 2

2 2




This quantity is distributed as a non-central Chi-squared variable with one degree 
of freedom and non-centrality parameter  given by:
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 =  2 bi ii
2 2/

Noting that the expected excess return on asset i satisfies: 

i  =  Rf +   i  

the significance of the regression therefore depends only on (a) the number of assets 
and (b) the average value of the squared Sharpe ratio  of each asset. that is:

=  ( ) / i f ii R 2 2   = n2 ,  say    

where 2   is the average of the square of the Sharpe ratio of each asset. 

As a simple numerical example, we used weekly returns on the securities that have 
been members of the FTSE100 during the period 1st January 1978 through 20th 
October 1995.  We took the risk free rate to be equivalent to 7% per annum and 
used the sample mean return and variance for each stock. The computed value of 
the non-centrality parameter is  ' = 0.274. This makes a negligible difference to the 
significance levels of the test statistic REGss, which has a central Chi-squared 
distribution under the null hypothesis H0:  = 0.  In other words,  the chances of 
getting a significant regression and rejecting the null hypothesis against a one or  
two sided alternative are low.  The same arguments apply if we use a small number 
of assets; the non-central Chi-squared distribution is replaced by the non-central F. 
In each case, the power of the test is low.

Black(1993b) comments on the downward bias in the estimator g.  If the bi and   i
2

used in the cross sectional regression are now treated as estimates based on T 
observations from time series regressions, then it may be shown that,  as T   
and subject to a number of regularity assumptions, the estimator g is biased 
downwards. Specifically:

E[g]   [1 -  M
2   /T2 ] 
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where 2  is as defined above and 

 M
2 =   




2

2
M

is the square of the Sharpe ratio of the market.  

There are many papers which employ the CAPM, or more accurately the market 
model, as a starting point for the development of models which are used for 
empirical purposes.  It is important to note that there may be theoretical dangers 
present when doing this. Briefly, acceptance of an empirical model may undermine 
the assumptions on which the CAPM is based. This may be  a matter of relatively 
small importance if the objective is to forecast future expected returns, but it may 
have implications for the method of portfolio  selection. For example,  Pettengill et 
al(1995) propose a model of the form:

Ri =  0 +  1 dbi  +  2 (1-d)bi  +  i  

where d   = 1 if RM - Rf  > 0 and  d = 0 otherwise.  According to them, this model 
gives significant results and so it is to be welcomed.   However, a consequence of the 
model is that returns do not follow an exact multivariate normal distribution even  
if the residuals {i} are normally distributed.  The implications of this for portfolio 
selection and for the CAPM are matters for further study. 

4.   A CAPM FOR FACTOR MODELS

Extensions of the CAPM are often intuitive.  For example, models of the general 
form:

Ri = i +  i(RM - Rf) +  j ijXj + i; 

where X = { Xj  } is a vector of independent variables or factors, are common.   These 
are essentially regression models and are empirical extensions of the CAPM. If we 
consider the joint probability distribution of the vector of returns R and the vector of 
factors X and assume that this is multivariate normal, then the regression model 
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arises formally by conditioning on X, ie by assuming that X is known.  It is easy to 
show that in these circumstances the CAPM becomes, in the usual notation for 
conditional expected returns:

E[Ri | X] = Rf  +  i
X { E[RM | X] - Rf } (7.)

where  i
X   is the beta computed using the  VC matrix of the returns  conditional  on 

the X's.  That is:

 i
X   =   C[Ri, RM | X]/V[RM | X] 

The conditional expected value of the market return RM given X is of the form;

E[RM | X] =  M  +  cTVXX
1 (X - X) (8.)

where the vector  c contains the unconditional covariance of each Xj  with the 
market return and VXX is the unconditional VC matrix of the X factors.   

If we therefore elect to condition on a set of factors X,  then there is a version of the 
CAPM which corresponds to (1.) and which is a more general expected value 
theorem.   In addition, the resulting regression equation of Ri on RM and X has a 
precisely defined structure, as given by (7.) and (8.).   The CAPM at (7.) and (8.) is 
similar in spirit to that described in Rosenberg at al(1973).  Their  paper, however, 
begins with a regression equation and does not employ the explicit properties of the 
multivariate normal distribution which link the conditional distribution of  R with a 
given vector of factors X. 

An implication of this result is that we discord with Roll & Ross(1994) who state:  
"no variable other than beta can explain any part of the true cross-section of 
expected returns". If we have no information apart from   and V, then Roll & Ross 
are correct. However, if we have a set of known factors X then equations (7.) and (8.) 
show two things.  First,  the betas will be different because they are based on a 
conditional VC matrix. Secondly, the cross-section of expected returns  depends on a 
second set of covariances, which we call c,  as well as the VC matrix of the factors 
themselves.   In formulating this version of the CAPM, we are following the dictum 
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of Dennis Lindley, (Lindley(1983)) who  implies that one should always be able to 
use information that is available about a system of interest.  

5.    FORECASTING EXPECTED RETURNS FROM BETAS

To be an effective tool for portfolio management, the CAPM must be used to 
generate forecasts of future expected returns. At minimum, this requires the 
estimation of beta and specific risk for a number of assets. The forecasts are then 
used to construct an optimised portfolio. The practical value of the CAPM for this 
purpose suffers from the necessity to use a proxy portfolio to represent the market. 
Above we summarise some of the various problems that are encountered when 
using the CAPM in practice.  In our own work,  we have been particularly concerned 
with its use for international diversification where, according to Solnik(1988),  
market portfolios seem to be far from efficient.   Typically, the out-of-sample 
performance of an optimised portfolio built using betas based on an international  
market proxy degenerates considerably and can often be dominated by a naive 
portfolio. To our knowledge Clark(1991, 1995) has developed the only market  index 
where out-of-sample performance is better than that of naive construction 
strategies.  

6.   AN ARCH VERSION OF  THE CAPM

The  empirical use of the CAPM has given rise to many derivative models. The 
multi-factor and arbitrage pricing theory models are but two. There is widespread 
use of statistical techniques such as Kalman filters (Harvey(1992)) or shrinkage 
methods(Jorion(1985). Since its introduction by Engle(1982) there has been 
extensive use and development of auto-regressive conditionally heteroscedastic or 
ARCH models.  It is possible to formulate ARCH and/or GARCH versions of the 
CAPM in different ways. Two approaches are described in Bollerslev et al(1988) and 
Ng(1991). More recently Giannopoulos(1995) proposed a bivariate GARCH 
approach for the single index model.  There is a short summary of some other 
methods in Kroner & Ng(1998).
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If we ignore the theoretical difficulties with the reduced form VC matrix described 
in section 2,  the following ARCH form of the CAPM offers an interesting  insight to 
systematic and specific risk.   The starting point is the vector model:

Rt =   +   t (9.)

where Rt is the vector of actual returns for the period ending at time t,   is the 
corresponding vector of expected values and  t is the vector of unobserved residual 
returns.  Conditional on information available up to and including time (t-1), we 
assume that the vector  t has a multivariate normal distribution with zero mean 
vector and variance covariance matrix ht, ie  t ~ N(0, ht), where the matrix ht

satisfies: 

ht = A0 + A1  t-1 t-1 T A1T (10.)

This is a simplified form of the so-called factor ARCH, or F-ARCH,  model described 
in Engle et al(1990).   When it exists, we can compute the unconditional VC matrix 
of Rt  in the usual way by taking expectations successively over t-1 , t-2 and so on.  
Thus we can write the unconditional VC matrix formally as:

V = E[ht] = A0 + 
j

 1
A1j A0 (A1j)T (11.)

where A1j denotes the product of A1 multiplied together j times.   We  specify that 
for some value 02:

A0 =    + T02

This means that if there is no ARCH effect and A1 = 0, we get the standard model 
with 02 = M2.  Secondly, equation (5.) imposes a structure on the matrix A1. If we 
equate equation (5.) to (11.) and re-arrange, we get:

j

 1
A1j A0 (A1j)T  =   T(M2 - 02) 
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Since A0 is,  by construction,  a matrix of rank n, this equation imposes the 
restriction that A1 must be a matrix of rank 1. Manipulation of the above equation 
shows that A1 satisfies:

A1 =  0T

for some vector  and that for the unconditional VC matrix to exist, it is necessary 
that:

|0 T | < 1 (11.)

Ignoring unnecessary constants, the log-likelihood function of the Rt,i  and Rt,M at 
time t, denoted by the conventional l,  is given by:

    l =      
 1

2

1

2

1

2
12

1 0
2

1
2ln ln( ) ln( ( ) )   ii

N T
t -

(12.)

                







1

2

1

2 1
1

2 2
2

0

2

1
2

( ) /
( )

( ( ) )
, ,

,R R
R

t ii
N

i i t M i

t M M

T
t

  


  
     

As (12.) shows, the basic ARCH model defined at (9.) and (10.) possesses the 
interesting property that the specific volatility of each asset always remains 
constant and that it is only the market volatility that changes.  In other words we 
can write the ARCH-CAPM market model as:

Ri,t =   i + iRt.M +  i,t, where  i,t ~  IN(0,  i
2   )

and where, conditional on information up to time (t-1)  the market return has the 
time varying distribution 

N( M,   0
2

1
21[ ( ) ] 

T
t ).   
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For the reasons above, strictly speaking this is a mathematical fiction, but it does 
give rise to a simple model which includes ARCH effects and which preserves the 
simple structure of the market model. 

This model is originally due to Ng et al(1992), in which the single factor in their F-
ARCH model is taken to be market return and a GARCH term is included in the 
variance covariance matrix. There is also a condition on the parameters of the 
model, as given by the converse of (11.), under which the unconditional variance of 
asset returns does not exist. 

7.   SUMMARY

The CAPM is very important because it is a theorem which relates expected returns 
on assets to the expected return on the market.  The  VC matrix of the empirical 
CAPM does not actually exist in the form usually quoted, but this is a technical 
problem which can usually be overlooked. The important point is that the model is 
cross sectional and so forecasting requires us to model the dynamics of the 
parameters.  The CAPM may be used as a basis to develop other expected value 
results,  which in turn lead  to  other models. 
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