
This is a repository copy of New constructions of twistor lifts for harmonic maps.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/109447/

Version: Accepted Version

Article:

Svensson, M and Wood, JC (2014) New constructions of twistor lifts for harmonic maps. 
Manuscripta Mathematica, 144 (3-4). pp. 457-502. ISSN 0025-2611 

https://doi.org/10.1007/s00229-014-0659-9

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


NEW CONSTRUCTIONS OF TWISTOR LIFTS FOR HARMONIC MAPS

MARTIN SVENSSON AND JOHN C. WOOD

Abstract. We show that given a harmonic map ϕ from a Riemann surface into a classical
simply connected compact inner symmetric space, there is a J2-holomorphic twistor lift of ϕ

(or its negative) if and only if it is nilconformal. In the case of harmonic maps of finite uniton
number, we give algebraic formulae in terms of holomorphic data which describes their extended
solutions. In particular, this gives explicit formulae for the twistor lifts of all harmonic maps of
finite uniton number from a surface to the above symmetric spaces.

1. Introduction

Harmonic maps are smooth maps between Riemannian manifolds which extremize the ‘Dirich-
let’ energy integral (see, for example, [14]). Harmonic maps from surfaces into symmetric spaces
are of particular interest to both geometers, as they include minimal surfaces, and to theoretical
physicists, as they constitute the non-linear σ-model of particle physics. Twistor methods for
finding such harmonic maps have been around for a long time; a general theory was given by F. E.
Burstall and J. H. Rawnsley [7], see also [11]. The idea is to find a twistor fibration (for harmonic
maps) — this is a fibration Z → N from an almost complex manifold Z, called a twistor space,
to a Riemannian manifold N with the property that holomorphic maps from (Riemann) surfaces
to Z project to harmonic maps into N . For a symmetric space N , twistor spaces exist if N is
inner [7]; then they are generalized flag manifolds equipped with a certain non-integrable complex
structure J2. All harmonic maps from the 2-sphere arise this way, i.e., have a twistor lift to a
suitable flag manifold, see [7].

Burstall [5] showed that, given a harmonic map ϕ from a surface into a complex Grassmannian,
there is a twistor lift of ϕ or its orthogonal complement ϕ⊥ if and only if ϕ is nilconformal in the
sense that its derivative is nilpotent. We extend this result to other classical symmetric spaces as
follows.

Theorem 1.1. Let ϕ be a harmonic map from a surface into a classical compact simply connected
inner symmetric space. Then there is a twistor lift of ϕ or ϕ⊥ if and only if ϕ is nilconformal.

Any classical compact simply connected inner symmetric space is the product of irreducible

ones; these are (i) the oriented real Grassmannians G̃k(R
n) with k(n − k) even, (ii) the complex

and quaternionic Grassmannians, (iii) the space O(2m)
/
U(m) of orthogonal complex structures

on R
2m and (iv) the space Sp(m)

/
U(m) of ‘quaternionic’ complex structures on C

2m. In cases

(iii) and (iv), ϕ⊥ means the map −ϕ : p 7→ −ϕ(p).
Note that harmonic maps into oriented real Grassmannians with k(n−k) odd can be dealt with

by embedding them in higher-dimensional Grassmannians (see Remark 6.8), and that harmonic
maps into Grassmannians Gk(R

n) of unoriented real subspaces are covered by those into oriented
ones if a certain Steifel–Whitney class vanishes (Remark 6.15).

Nilconformal harmonic maps include all harmonic maps of finite uniton number (Example 4.2).
They also include strongly conformal harmonic maps, in particular the superconformal harmonic
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maps from the plane or a torus studied in [4, 3]; such maps from a torus are of finite type but not
of finite uniton number [26].

To establish our result, we introduce the idea of Aϕz -filtrations, first of all for harmonic maps
into complex Grassmannians, and show how these are related to twistor lifts, see Proposition 3.11.
In fact, we can find such filtrations incorporating any given uniton, giving us the existence of
twistor lifts associated to that uniton, see Theorem 5.8. Then we adapt our technique to the ‘real’
cases, showing in a constructive way how to build twistor lifts of harmonic maps from a surfaces to
real Grassmannian, or to the space O(2m)

/
U(m), see Propositions 6.14 and 6.21. Similar results

hold for maps into quaternionic projective space or to the space Sp(m)
/
U(m), see §7.1. Putting

these results together gives our theorem.
In the case that ϕ has an extended solution Φ (always true locally), we show how Aϕz -filtrations

are equivalent to certain other filtrations, called F -filtrations, of G. Segal’s Grassmannian model
[32] of Φ. We can then compute the twistor lift from the F -filtration and Φ. We identify the
F -filtration which gives Burstall’s twistor lift. When ϕ has finite uniton number, we may choose
Φ to be polynomial; in that case, we have a natural F -filtration which leads to a new twistor lift,
which we call the canonical twistor lift, see Theorem 4.8. Again, we can adapt these techniques
to find twistor lifts of harmonic maps into the other classical simply connected inner symmetric
space of type I, see Corollaries 6.10 and 6.19, and §7.1.

In the case of finite uniton number we can do these constructions explicitly, as follows. In
[20], simple formulae for the unitons of the factorization due to G. Segal were found, thus giving
explicit algebraic formulae for all harmonic maps of finite uniton number from a Riemann surface
into the unitary group and complex Grassmannians, not involving any integration. Such formulae
for K. Uhlenbeck’s factorization [34] — which is dual to that of Segal — appeared in [10]. In
[33], it was shown how these formulae are extreme cases of a general method of finding explicit
formulae for uniton factorizations, and the method was adapted to construct harmonic maps into
the orthogonal and symplectic groups, the real and quaternionic Grassmannians, and the spaces
SO(2m)

/
U(m) and Sp(m)

/
U(m), thus finding all harmonic maps into classical Lie groups and

their inner symmetric spaces explicitly in terms of algebraic data.
In the present paper, we use those formulae to obtain explicit algebraic formulae for the J2-

holomorphic twistor lifts of arbitrary harmonic maps of finite uniton number from a Riemann
surface to a complex Grassmannian in terms of the freely chosen holomorphic data which give
the unitons of the harmonic map. We then find the algebraic conditions on the holomorphic data
which give the twistor lifts of harmonic maps into real and quaternionic Grassmannians, and into
the spaces SO(2m)

/
U(m) and Sp(m)

/
U(m). In particular, this gives explicit formulae for all

harmonic maps from the two-sphere into the classical inner symmetric spaces and their twistor
lifts.

2. preliminaries

2.1. Harmonic maps into a Lie group. Throughout the paper, all manifolds, bundles, and
structures on them will be taken to be smooth, i.e., C∞. By ‘Riemann surface’ we shall mean
‘connected 1-dimensional complex manifold’; we do not assume compactness. Harmonic maps
from surfaces exhibit conformal invariance (see, for example, [37]) so that the concept or harmonic
map from a Riemann surface is well defined. In the case of maps from a Riemann surface M to a
Lie group G, we can formulate the harmonicity equations in the following way [34, 21].

For any smooth map ϕ :M → G, set Aϕ = 1
2ϕ

−1dϕ; thus Aϕ is a 1-form with values in the Lie
algebra g of G; note that it is half the pull-back of the Maurer–Cartan form of G.

Now, any compact Lie group can be embedded in the unitary group U(n), so we first consider
that group. The group U(n) acts on C

n in the standard way. Let Cn denote the trivial complex
bundle C

n =M ×C
n, then Dϕ = d+Aϕ defines a unitary connection on C

n. We decompose Aϕ

and Dϕ into types; for convenience we do this by taking a local complex coordinate z on an open
set U of M . Explicitly, on writing dϕ = ϕzdz + ϕz̄dz̄, A = Aϕz dz + Aϕz̄ dz̄, D

ϕ = Dϕ
z dz +Dϕ

z̄ dz̄,
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∂z = ∂/∂z and ∂z̄ = ∂/∂z̄, we have

(2.1) Aϕz =
1

2
ϕ−1ϕz , Aϕz̄ =

1

2
ϕ−1ϕz̄ , Dϕ

z = ∂z +Aϕz , Dϕ
z̄ = ∂z̄ +Aϕz̄ .

By the (Koszul–Malgrange) holomorphic structure [24] induced by ϕ we mean the unique holo-
morphic structure on C

n with ∂̄-operator given on each coordinate domain (U, z) by Dϕ
z̄ ; we denote

the resulting holomorphic vector bundle by (Cn, Dϕ
z̄ ). If ϕ is constant, then Dϕ

z̄ = ∂z̄ giving C
n the

standard (product) holomorphic structure. Uhlenbeck [34] showed that a smooth map ϕ :M → G
is harmonic if and only if, on each coordinate domain, Aϕz is a holomorphic endomorphism of the
holomorphic vector bundle (Cn, Dϕ

z̄ ). For later use, note that, if ϕ is replaced by gϕ for some
g ∈ U(n), then all the quantities in (2.1) are unchanged.

Let N = {0, 1, 2, . . .}. For any N ∈ N and k ∈ {0, 1, . . . , N}, let Gk(CN ) denote the Grassman-
nian of k-dimensional subspaces of CN ; it is convenient to write G∗(C

N ) for the disjoint union
∪k=0,1,...,NGk(C

N ). We shall often identify, without comment, a smooth map ϕ : M → Gk(C
N )

with the rank k subbundle of C
N = M × C

N whose fibre at p ∈ M is ϕ(p); we denote this
subbundle also by ϕ, not underlining this as in, for example, [9, 19, 20].

For a subspace V of Cn we denote by πV (resp. π⊥
V ) orthogonal projection from C

n to V (resp.
to its orthogonal complement V ⊥); we use the same notation for orthogonal projection from C

n

to a subbundle. Recall the Cartan embedding:

(2.2) ι : G∗(C
n) →֒ U(n), ι(V ) = πV − π⊥

V ;

this is totally geodesic, and isometric up to a constant factor. We shall identify V with its image
ι(V ); since ι(V ⊥) = −ι(V ), this identifies V ⊥ with −V .

2.2. Harmonic maps into complex Grassmannians. Harmonic maps into Grassmannians
were studied by Burstall and the second author in [9] where the following definitions were made.
Any subbundle ϕ of C

n inherits a metric by restriction, and a connection ∇ϕ by orthogonal
projection:

(∇ϕ)Z(v) = πϕ(∂Zv) (Z ∈ Γ(TM), v ∈ Γ(ϕ) );

here Γ(·) denotes the space of (smooth) sections of a vector bundle.
Let ϕ and ψ be two mutually orthogonal subbundles of Cn. Then, by the ∂′ and ∂′′-second

fundamental forms of ϕ in ϕ ⊕ ψ we mean the vector bundle morphisms A′
ϕ,ψ , A

′′
ϕ,ψ : ϕ → ψ

defined on each coordinate domain (U, z) by

(2.3) A′
ϕ,ψ(v) = πψ(∂zv) and A′′

ϕ,ψ(v) = πψ(∂z̄v) (v ∈ Γ(ϕ) ).

The second fundamental forms A′
ϕ = A′

ϕ,ϕ⊥ : ϕ → ϕ⊥ and A′′
ϕ = A′′

ϕ,ϕ⊥ : ϕ → ϕ⊥ are

particularly important as, on identifying ϕ :M → G∗(C
n) with its composition ι ◦ ϕ :M → U(n)

with the Cartan embedding, it is easily seen that the fundamental endomorphism Aϕz of (2.1) is
minus the direct sum of A′

ϕ and A′
ϕ⊥ , similarly the connection Dϕ of the last section is the direct

sum of ∇ϕ and ∇ϕ⊥ . It follows that a smooth map ϕ : M → G∗(C
n) is harmonic if and only if

A′
ϕ is holomorphic, i.e., A′

ϕ ◦∇′′
ϕ = ∇′′

ϕ⊥ ◦A′
ϕ , where we write ∇′′

ϕ = (∇ϕ)∂/∂z̄; this can be shown

without reference to U(n), see [9, Lemma 1.3].
Now, for any holomorphic (or antiholomorphic) endomorphism E, at points where it does not

have maximal rank, we shall ‘fill out zeros’ as in [9, Proposition 2.2] (cf. [33, §3.1]) to make its
image and kernel into subbundles ImE and kerE of Cn. In particular, we obtain subbundles
G′(ϕ) = ImA′

ϕ and G′′(ϕ) = ImA′′
ϕ called the ∂′- and ∂′′-Gauss transforms or Gauss bundles of

ϕ. Note that, if ϕ is harmonic, then so are its Gauss transforms. This can be seen by using
diagrams as in [9, Proposition 2.3], or by noting that it is a special case of adding a uniton, cf.
[37].

By iterating these constructions we obtain the ith ∂′-Gauss transform G(i)(ϕ) defined by
G(1)(ϕ) = G′(ϕ), G(i)(ϕ) = G′(G(i−1)(ϕ)), and the ith ∂′′-Gauss transform G(−i)(ϕ) defined
by G(−1)(ϕ) = G′′(ϕ), G(−i)(ϕ) = G′′(G(−i+1)(ϕ)); on setting G(0)(ϕ) = ϕ, we obtain a sequence
(G(i)(ϕ))i∈Z (where Z denotes the set of integers) of harmonic maps called [35] the harmonic
sequence of ϕ.



4 MARTIN SVENSSON AND JOHN C. WOOD

3. Twistor spaces and lifts

3.1. Twistor spaces of complex Grassmannians. Let N be a Riemannian manifold. By a
twistor fibration of N (for harmonic maps) is meant [7] an almost complex manifold (called a
twistor space) (Z, J) and a fibration π : Z → N such that, for every holomorphic map from a
Riemann surface ψ : M → Z, the composition ϕ = π ◦ ψ : M → N is harmonic. (To deal
with higher-dimensional domains, the definition is unchanged if we replace ‘Riemann surface’ by
‘cosymplectic manifold’, i.e., ‘almost Hermitian manifold with co-closed Kähler form’ [7, 31].)
Then ϕ is called the twistor projection of ψ, and ψ is called a twistor lift of ϕ. For an even-
dimensional Riemannian manifold N , the bundle Z → N of almost Hermitian structures equipped
with a suitable non-integrable almost complex structure J2 provides a twistor space, see [15] and
[7, Chapter 2]. If N is orientable, we may consider the subbundle Z+ → N of positive almost
Hermitian structures; however, Z and Z+ are usually too large to be useful and we look for
subbundles of them.

For symmetric spaces, a general theory of such twistor fibrations is given in [7]. We shall now
describe those twistor spaces for a complex Grassmannian; for the real and symplectic cases, see
§6ff. For any complex vector spaces or vector bundles E, F , Hom(E,F ) = HomC(E,F ) will denote
the vector space or bundle of (complex-)linear maps from E to F .

Let n, t, d0, d1, . . . , dt be positive integers with
∑t
i=0 di = n. Let F = Fd0,...,dt be the (complex)

flag manifold U(n)
/
U(d0)× · · · ×U(dt). The elements of F are (t+1)-tuples ψ = (ψ0, ψ1, . . . , ψt)

of mutually orthogonal subspaces with ψ0⊕· · ·⊕ψt = C
n; we call these subspaces the legs (of ψ).

There is a canonical embedding of F into the product Gd0(C
n)× · · · ×Gd0+···+dt−1

(Cn) given by

sending (ψ0, ψ1, . . . , ψt) to its associated flag (T0, . . . , Tt−1) where Ti =
∑i
j=0 ψj ; the restriction

to F of the Kähler structure on this product is an (integrable) complex structure which we denote
by J1. Then the (1, 0)-tangent space to F at (ψ0, ψ1, . . . , ψt) with respect to J1 is given by

(3.1) T J1(1,0)F =
∑

0≤i<j≤t

Hom(ψi, ψj).

Set k =
∑[t/2]
j=0 d2j and N = Gk(C

n). We define a mapping which gives the sum of the ‘even’ legs:

(3.2) πe : Fd0,...,dt → Gk(C
n), ψ = (ψ0, ψ1, . . . , ψt) 7→

[t/2]∑

j=0

ψ2j .

The projection πe is a Riemannian submersion with respect to the natural homogeneous metrics
on F and G∗(C

n) so that each tangent space decomposes into the orthogonal direct sum of the
vertical space, made up of the tangents to the fibres and the horizontal space, its orthogonal
complement. The (1, 0)-horizontal and vertical spaces with respect to J1 are given by

HJ1
(1,0) =

∑

i,j=0,...,t
i<j, j−i odd

Hom(ψi, ψj) , VJ1(1,0) =
∑

i,j=0,...,t
i<j, j−i even

Hom(ψi, ψj).

We define an almost complex structure J2 by changing the sign of J1 on the vertical space;
thus the (1, 0)-horizontal space is unchanged, but the (1, 0) vertical space is different (unless t = 1
when it is zero):

HJ2
(1,0) =

∑

i,j=0,...,t
i<j, j−i odd

Hom(ψi, ψj) , VJ2(1,0) =
∑

i,j=0,...,t
j<i, j−i even

Hom(ψi, ψj).

This almost complex structure is never integrable except in the trivial case t = 1, see [8].
Now let M be a Riemann surface, which we shall always assume connected, but not necessarily

compact, and let ψ = (ψ0, ψ1, . . . , ψt) : M → F be a smooth map; we shall call such a map a
moving flag. From the above description we immediately obtain the following [5].

Proposition 3.1. Let ψ = (ψ0, ψ1, . . . , ψt) :M → F be a smooth map. Then

(i) ψ is J1-holomorphic if and only if A′
ψi,ψj

= 0 whenever i− j is positive;
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(ii) ψ is J2-holomorphic if and only if

(3.3) A′
ψi,ψj

= 0 when i− j is positive and odd, or j − i is positive and even. �

Remark 3.2. (i) Using Proposition 3.1, it can be shown that πe : (F, J2) → G∗(C
n) is a twistor

fibration, i.e., if ψ :M → F is map from a Riemann surface which is holomorphic with respect to
J2, then the composition ϕ = πe ◦ ψ : M → G∗(C

n) is harmonic. This follows from the general
theory of [7]; see [8] for a direct proof.

(ii) Let y ∈ Gk(C
n). For each ψ in the fibre (πe)

−1(y), the differential (dπe)ψ of the twistor
projection at ψ restricts to an isometry of the horizontal space at ψ to TyGk(C

n). We can use
this to transfer the almost complex structure J1|H = J2|H on the horizontal space to an almost
Hermitian structure on TyGk(C

n). This defines an inclusion map i of F in the bundle Z → N of
almost Hermitian structures on Gk(C

n), see [29], showing how we may regard F as a subbundle
of that bundle.

If now, ψ : M → F is a J1 or J2-holomorphic map, for each p ∈ M , the differential of ϕ at p
intertwines the almost complex structure of M at p with the almost complex structure i ◦ψ(p) on
Tϕ(p)Gk(C

n); thus the map ϕ is ‘rendered holomorphic’.

3.2. J2-holomorphic lifts of nilconformal maps from Aϕz -filtrations. We develop a general
method for constructing J2-holomorphic lifts from certain filtrations, which will culminate in
Proposition 3.11. We first describe the filtrations we need; again, M will denote an arbitrary
(connected) Riemann surface.

Definition 3.3. Let ϕ :M → U(n) be a smooth map. Let (Zi) be a finite sequence of subbundles
of Cn which forms a filtration of Cn:

(3.4) C
n = Z0 ⊃ Z1 ⊃ · · · ⊃ Zt ⊃ Zt+1 = 0 .

We call (Zi) an A
ϕ
z -filtration (of length t) if, for each i = 0, 1, . . . , t,

(i) Zi is a holomorphic subbundle, i.e., Γ(Zi) is closed under Dϕ
z̄ ;

(ii) Aϕz maps Zi into the smaller subbundle Zi+1 .

Let ϕ :M → U(n) be a smooth map. Say that ϕ is nilconformal if Aϕz is nilpotent, i.e., (Aϕz )
r =

0 for some non-negative integer r. Then Aϕz -filtrations exist if and only if ϕ is nilconformal. Note
that ϕ is nilconformal if and only if gϕ is for any g ∈ U(n). Burstall [5] calls a smooth map
ϕ : M → G∗(C

n) into a Grassmannian nilconformal if (Aϕz )
r|ϕ = 0 for some r; since this implies

that (Aϕz )
r+1|ϕ⊥ = 0, nilconformality of ϕ in Burstall’s sense is equivalent to both nilconformality

of ϕ⊥ in his sense and nilconformality of ϕ in our sense.
Any nilconformal map is weakly conformal ; indeed, by nilpotency of Aϕz we have trace(Aϕz )

2 = 0,
which is easily seen to be the condition for weak conformality (cf. [5]). Also, any harmonic map
of finite uniton number is nilconformal, see Example 4.2 below.

For convenience, if E and F are subspaces of CN , or subbundles of CN (N ∈ N), and F ⊂ E,
we write E ⊖ F to mean F⊥ ∩ E.

Given a filtration (Zi) of C
n of length t, we define its legs ψi by

(3.5) ψi = Zi ⊖ Zi+1 , equivalently, Zi =
∑

j≥i

ψj (i = 0, 1, . . . , t+ 1) .

Then the (t+1)-tuple ψ = (ψ0, ψ1, . . . , ψt) is an orthogonal decomposition of Cn into subbundles.
If all subbundles are non-zero, ψ defines a smooth map from M to a flag manifold, i.e., ψ is a
moving flag as defined above; we continue to call it a moving flag even if some subbundles are zero.
We extend πe to the space of such moving flags so that we may continue to write πe ◦ψ =

∑
j ψ2j .

Now let ϕ : M → G∗(C
n) be a smooth map to a Grassmannian. Say that a filtration (3.4) is

alternating for ϕ if its legs ψi = Zi ⊖ Zi+1 satisfy

(3.6) ψi ⊂ (−1)iϕ for i = 0, 1, . . . , t.

This is equivalent to ϕ =
∑
j ψ2j , i.e., πe ◦ ψ = ϕ. We define alternating for ϕ⊥ similarly. By

‘alternating’ we shall mean ‘alternating for ϕ or ϕ⊥’.
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Lemma 3.4. Let ϕ : M → G∗(C
n) be a smooth map. Then equation (3.5) defines a one-to-one

correspondence between moving flags (ψ0, ψ1, . . .) which satisfy the J2-holomorphicity condition
(3.3) and Aϕz -filtrations (Zi) of C

n which are alternating for ϕ.

Proof. Set Ui =
∑
j≥i ψ2j ⊂ ϕ and Vi =

∑
j≥i ψ2j+1 ⊂ ϕ⊥, so that Z2i = Ui ⊕ Vi and Z2i+1 =

Ui+1 ⊕ Vi. It is easy to see that (3.3) is equivalent to

(3.7)

{
(i) Ui and Vi are holomorphic subbundles of ϕ and ϕ⊥, respectively, and
(ii) A′

ϕ(Ui) ⊂ Vi and A
′
ϕ⊥(Vi) ⊂ Ui+1 ;

here, condition (i) means that Γ(Ui) is closed under ∇′′
ϕ and Γ(Vi) is closed under ∇′′

ϕ⊥ . The

result follows by noting that conditions (3.7) (i) and (ii) are equivalent to conditions (i) and (ii)
of Definition 3.3, respectively. �

Call a filtration (3.4) strict if all the inclusions Zi+1 ⊂ Zi are strict; then we have the following
result, illustrated by the diagrams (3.8); the length of the filtration (Zi) is equal to 4 in the
left-hand diagram and 5 in the right-hand one. In the diagrams, the vertices in the left (resp.
right) columns represent the subbundles making up ϕ (resp. ϕ⊥). As in [9], the possible non-zero
(∂′-)second fundamental forms A′

ψi, ψj
are indicated by the arrows: more precisely, the absence

of an arrow from ψi to ψj indicates that A′
ψi, ψj

= 0. Note that the arrows indicating the only

possible non-zero second fundamental forms A′
ψi, ψj

are (i) vertically upwards when ψi and ψj are

both in ϕ, or both in ϕ⊥; (ii) downwards from left to right when ψi ⊂ ϕ, ψj ⊂ ϕ⊥, in which case
they are the components of A′

ϕ; (iii) downwards from right to left when ψi ⊂ ϕ⊥, ψj ⊂ ϕ, in which
case they are the components of A′

ϕ⊥ . From Lemma 3.4 we deduce the following.

Proposition 3.5. Let ϕ : M → G∗(C
n) be a smooth map. Then formulae (3.5) define a one-to-

one correspondence between (i) J2-holomorphic lifts (ψ0, ψ1, . . .) : M → F of ϕ to a complex flag
manifold (with all ψi non-zero) and (ii) strict Aϕz -filtrations (Zi) which are alternating for ϕ.

Further, F = Fd0,...,dt+1
where (Zi) has length t, and di = rankψi (i = 0, 1, . . . , t+ 1). �

(3.8)

ψ0

))

��

ψ1

uu

��

ψ2

))

OO

ψ3

uu

OO

ψ4

OO

FF
ψ0

))

��

��

ψ1

uu

��

ψ2

))

��

OO

ψ3

uu

OO

ψ4

))

OO

FF

ψ5

OO

XX

Remark 3.6. (i) The sets (i) and (ii) are empty unless ϕ is harmonic and nilconformal.
(ii) Let (Zi) be a strict Aϕz -sequence for a nilconformal harmonic map M → U(n). Then the

its legs ψi = Zi \ Zi+1 define a moving flag and ϕ̃ =
∑
j ψ2j : M → G∗(C

n) defines a map into a
Grassmannian. It would be interesting to study this map; however, examples show that it is not,
in general, harmonic.

In practice, many Aϕz -filtrations (Zi) are not alternating but satisfy the following weaker con-
dition. Let ϕ :M → G∗(C

n) be a smooth map. Say that the subbundle Zi of C
n splits (for ϕ) if

it is a direct sum:

(3.9) Zi = Ui ⊕ Vi where Ui ⊂ ϕ and Vi ⊂ ϕ⊥.

Say that the filtration (Zi) splits if each subbundle Zi splits, equivalently, each ψi = Zi ⊖ Zi+1

splits: ψi = ψi ∩ ϕ⊕ ψi ∩ ϕ⊥. It is convenient to write

(3.10) ψ̂2i = Ui ⊖ Ui+1 = ψi ∩ ϕ and ψ̂2i+1 = Vi ⊖ Vi+1 = ψi ∩ ϕ⊥;
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the resulting subbundles ψ̂i and possible second fundamental forms A′

ψ̂i, ψ̂j

are shown for filtrations

of lengths 1 and 2 in the diagrams (3.11). Note that some of the ψ̂i may be zero.

(3.11)

ψ̂0

  

ψ̂1

~~

ψ̂2

OO

ψ̂3

OO

ψ̂0

��

##

ψ̂1

{{

��

ψ̂2

OO

##

ψ̂3

OO

{{

ψ̂4

OO

EE

ψ̂5

OO

YY

We now give four ways to convert an Aϕz -filtration which splits into one which is alternating.

Lemma 3.7. Let ϕ : M → G∗(C
n) be a smooth map. Let (Zi) be an Aϕz -filtration which splits;

denote its length by t. Set ψi = Zi ⊖ Zi+1 and define Ui, Vi and ψ̂i by (3.9) and (3.10).

(i) Set Z̃2j = Uj ⊕ Vj and Z̃2j+1 = Uj+1 ⊕ Vj. Then (Z̃i) is an alternating Aϕz -filtration of
length 2t+ 1 with legs

(3.12) (ψ̃0, ψ̃1, . . . , ψ̃2t, ψ̃2t+1) = (ψ̂0, ψ̂1, . . . , ψ̂2t, ψ̂2t+1).

(ii) Reversing the roles of ϕ and ϕ⊥, set Z̃2j = Uj ⊕ Vj and Z̃2j+1 = Uj ⊕ Vj+1. Then (Z̃i) is
an alternating Aϕz -filtration of length 2t+ 1 with legs

(3.13) (ψ̃0, ψ̃1, . . . , ψ̃2t, ψ̃2t+1) = (ψ̂1, ψ̂0, . . . , ψ̂2t+1, ψ̂2t).

(iii) Set Z̃2j = U2j−1 ⊕ V2j where U−1 = ϕ , and Z̃2j+1 = U2j+1 ⊕ V2j . Then (Z̃i) is an
alternating Aϕz -filtration of length t+ 1. Its legs are given by

(3.14) (ψ̃0, ψ̃1, . . . , ψ̃t+1) =

{
(ψ̂0, ψ̂1 + ψ̂3, ψ̂2 + ψ̂4, ψ̂5 + ψ̂7, . . . , ψ̂2t−2 + ψ̂2t, ψ̂2t+1) (t even),

(ψ̂0, ψ̂1 + ψ̂3, ψ̂2 + ψ̂4, ψ̂5 + ψ̂7, . . . , ψ̂2t−1 + ψ̂2t+1, ψ̂2t) (t odd).

(iv) Reversing the roles of ϕ and ϕ⊥, set

Z̃2j = U2j ⊕ V2j−1 , and Z̃2j+1 = U2j ⊕ V2j+1 where V−1 = ϕ⊥.

Then (Z̃i) is an alternating Aϕz -filtration of length t+ 1. Its legs are given by

(3.15) (ψ̃0, ψ̃1, . . . , ψ̃t+1) =

{
(ψ̂1, ψ̂0 + ψ̂2, ψ̂3 + ψ̂5, ψ̂4 + ψ̂6, . . . ψ̂2t−1 + ψ̂2t+1, ψ̂2t) (t even),

(ψ̂1, ψ̂0 + ψ̂2, ψ̂3 + ψ̂5, ψ̂4 + ψ̂6, . . . ψ̂2t−2 + ψ̂2t, ψ̂2t+1) (t odd).

Further, each of the above four moving flags (3.12)–(3.15) satisfies the J2-holomorphicity con-
dition (3.3).

Proof. This follows from Lemma 3.4: that the four moving flags satisfy the hypotheses of that
lemma is easily checked. �

Parts (iii) and (iv) are illustrated for t = 4 by the left- and right-hand diagrams of (3.16),

respectively. For clarity, the second fundamental forms A′

ψ̂i,ψ̂j

between subbundles ψ̂i, ψ̂j which

are both in ϕ or both in ϕ⊥ are not shown, and only the arrows of least gradient between subbundles

ψ̂i, ψ̂j , with one in ϕ and the other in ϕ⊥, are shown.
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(3.16)

ψ̃0 = ψ̂0

((

ψ̂1

vv
ψ̂2

((

ψ̂3

vv

ψ̃1

ψ̂4

((

ψ̃2

ψ̂5

vv
ψ̂6

((

ψ̂7

vv

ψ̃3

ψ̂8

ψ̃4

ψ̂9 = ψ̃5

ψ̂0

((

ψ̂1 = ψ̃0

vv
ψ̂2

((

ψ̃1

ψ̂3

vv
ψ̂4

((

ψ̂5

vv

ψ̃2

ψ̂6

((

ψ̃3

ψ̂7

vv

ψ̃5 = ψ̂8 ψ̂9

ψ̃4

By Proposition 3.5, the four moving flags (3.12)–(3.15) define J2-holomorphic lifts of ϕ or ϕ⊥

if all legs are non-zero. We now give a process for removing legs which are zero. Recall that, for
a moving flag ψ = (ψ0, ψ1, . . .), its twistor projection is given by πe ◦ ψ =

∑
j ψ2j . The following

is easily checked.

Lemma 3.8. Let ψ = (ψ0, ψ1, . . . , ψt) be a moving flag with some legs equal to zero. Each of the

following three operations gives a moving flag ψ̃ = (ψ̃0, ψ̃1, . . . , ψ̃s) with s < t, fewer zero legs, and

πe ◦ ψ̃ = ±πe ◦ ψ; further, if ψ satisfies the J2-holomorphicity condition (3.3), then so does ψ̃.

Operation 1. If the first leg ψ0 is zero, remove it and renumber: ψ̃j = ψj+1, thus reducing the
number of legs by one.

Operation 2. If the last leg ψt is zero, remove it, thus reducing the number of legs by one.
Operation 3. If any other leg ψi is zero, remove it and combine the legs on each side, giving a

new lift with two fewer legs:

ψ̃j = ψj (j < i− 1) , ψ̃j = ψi−1 + ψi+1 (j = i− 1) , ψ̃j = ψj+2 (j > i− 1) .

Note that, after Operation 1, πe ◦ ψ̃ = −πe ◦ ψ; after Operations 2 or 3, πe ◦ ψ̃ = πe ◦ ψ. �

By iterating these operations, we obtain the following result.

Proposition 3.9. Let ψ = (ψ0, ψ1, . . . , ψt) be a moving flag which satisfies (3.3). Set ϕ = πe ◦ψ.
Then we can remove and combine legs by the operations in Lemma 3.8 to obtain a moving flag

ψ̃ = (ψ̃0, ψ̃1, . . . , ψ̃s) with s ≤ t and no ψ̃i equal to zero, which satisfies (3.3), and has πe ◦ ψ̃ = ±ϕ;
thus ψ̃ :M → F is a J2-holomorphic lift of ±ϕ. �

Even when the legs are non-zero, we can sometimes obtain lifts with fewer legs by a fourth
operation as follows; for this, recall the definition (2.3) of the ∂′-second fundamental forms A′

ψi,ψj
.

Again, the proof is by direct checking.

Lemma 3.10. Let ψ = (ψ0, ψ1, . . . , ψt) be a moving flag which satisfies (3.3), and set ϕ = πe ◦ψ.
Operation 4. If A′

ψi,ψi+1
is zero, replace . . . , ψi−1, ψi, ψi+1, ψi+2, . . . by . . . , ψi−1 + ψi+1, ψi +

ψi+2, . . ..

This gives a new moving flag ψ̃ = (ψ̃0, ψ̃1, . . . , ψ̃s) with s ≤ t and πe ◦ ψ̃ = ϕ and satisfying
(3.3). (Here, we set ψi equal to zero if i is outside the range 0 ≤ i ≤ t.) �

Note that Operation 4 reduces the number of legs by two unless i = 0 or i + 1 = t, in which
case it reduces the number of legs by one. By iterating this process, we can find a J2-holomorphic
map (ψ0, ψ1, . . . , ψt) :M → F satisfying

(3.17) A′
ψi,ψi+1

6= 0 (i = 0, 1, . . . , t− 1).

On putting the above results together, we obtain the main result of this section.
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Proposition 3.11. Let ϕ : M → G∗(C
n) be a smooth map. Let (Zi) be an Aϕz -filtration which

splits for ϕ. Set ψi = Zi⊖Zi+1 and write ψi = ψ̂2i⊕ ψ̂2i+1 where ψ̂2i ⊂ ϕ and ψ̂2i+1 ⊂ ϕ⊥. Then
there is a J2-holomorphic twistor lift ψ = (ψ0, ψ1, . . . , ψt) :M → F of ϕ or ϕ⊥ to a flag manifold

F = Fd0,...,dt satisfying (3.17) with every leg ψi the sum of some of the ψ̂j.

Proof. As in Lemma 3.7(i) the moving flag (ψ̂i) satisfies the J2-holomorphicity condition. By
carrying out Operations 1–4 as above, this can be modified to give a J2-holomorphic lift with the
stated properties. �

Now, for any nilconformal harmonic map, we can find Aϕz -filtrations which split for ϕ, see the
next examples; thus we obtain the following result, which also follows from the work of Burstall
[5, Section 3].

Corollary 3.12. A smooth map ϕ : M → G∗(C
n) from a surface to a complex Grassmannian

has a J2-holomorphic twistor lift ψ : M → F into a flag manifold if and only if it is harmonic
and nilconformal.

Using our methods, we can give a more detailed result, see Theorem 5.8.
We now explain how Burstall’s construction fits into our theory. Recall that, when ϕ : M →

U(n) is a harmonic map, Aϕz is a holomorphic endomorphism of (Cn, Dϕ
z̄ ).

Example 3.13. Let ϕ : M → U(n) be a nilconformal harmonic map so that (Aϕz )
t+1 = 0 for

some t ∈ N. Set Z0 = C
n and Zi = Im(Aϕz |Zi−1). Then we obtain an Aϕz -filtration: Zi = Im(Aϕz )

i,
which we call the filtration by Aϕz -images; note that Zt+1 = 0 which implies that all inclusions
Zi+1 ⊂ Zi are strict. If ϕ is Grassmannian, this clearly splits, so we may apply part (iii) of Lemma

3.7 to obtain an alternating Aϕz -filtration (Z̃i) with legs (3.14). Alternatively, we may apply part

(iv) to obtain an alternating Aϕz -filtration (Z̃i) with legs (3.15).
By strictness of the filtration, all the legs in (3.14) and (3.15) are non-zero, with the possible

exception of the first ones. However, since Z1 6= Z0, either (a) A′
ϕ⊥ is not surjective and ψ̂0 is

non-zero, in which case (3.14) gives a J2-holomorphic lift of ϕ, or (b) A′
ϕ is not surjective and

ψ̂1 is non-zero, in which case (3.15) gives a J2-holomorphic lift of ϕ⊥; for some ϕ, both (a) and

(b) hold and we get both lifts. In case (a) we get Z̃i = Ũi + Ṽi with Ũi = Im(Aϕz )
2i−1|ϕ⊥ =

Im
(
(A′

ϕ⊥ ◦ A′
ϕ)
i−1 ◦ A′

ϕ⊥

)
and Ṽi = Im(Aϕz )

2i|ϕ⊥ = Im(A′
ϕ ◦ A′

ϕ⊥)
i for i = 1, 2, . . .. The formulae

for case (b) are obtained by interchanging ϕ and ϕ⊥. This interprets a construction of Burstall
[5, Section 3]; see also Example 4.10.

Example 3.14. Dually (cf. Example 6.3), set Ẑi = ker(Aϕz )
t+1−i so that Ẑt+1 = 0. From

(Aϕz )
t+1 = 0, we see that the filtration (Zi) of the last example and the filtration (Ẑi) just defined

satisfy Zi ⊂ Ẑi; however, these two filtrations are different, in general.

Note that Aϕz |ϕ ≡ A′
ϕ is zero if and only if ϕ is antiholomorphic, equivalently, ϕ⊥ is holomorphic.

The first non-trivial case of a nilconformal map ϕ is when (Aϕz )
2|ϕ ≡ A′

ϕ⊥ ◦A′
ϕ is zero; we consider

such maps now.

Example 3.15. A harmonic map ϕ :M → G∗(C
n) is called strongly conformal if A′

ϕ⊥ ◦A′
ϕ = 0,

equivalently, G′(ϕ) and G′′(ϕ) are orthogonal; such maps are clearly nilconformal. If ϕ is a
strongly conformal harmonic map which is neither holomorphic nor antiholomorphic, then G′(ϕ)
and G′′(ϕ) are non-zero orthogonal subbundles of ϕ⊥, and we have twistor lifts as follows:

(i) In Example 3.13, case (b) gives the J2-holomorphic lift ψ =
(
G′(ϕ)⊥ ∩ ϕ⊥, ϕ,G′(ϕ)

)
of ϕ⊥.

(ii) Similarly, we have a J2-holomorphic lift of ϕ⊥ given by ψ =
(
G′′(ϕ), ϕ,G′′(ϕ)⊥∩ϕ⊥). This

lift is dual to (i) in the sense that it is obtained from the lift in (i) by replacing the complex
structure on the domain by its conjugate (cf. Example 6.3).

(iii) Examples (i) and (ii) are the extreme cases of the following. Let ϕ : M → G∗(C
n) be

a strongly conformal harmonic map which is neither holomorphic nor antiholomorphic. Suppose
that

(3.18) W is a holomorphic subbundle of ϕ⊥ satisfying ImA′
ϕ ⊂W ⊂ kerA′

ϕ⊥ .
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Set V = W⊥ ∩ ϕ⊥. Then (V, ϕ,W ) is a J2-holomorphic lift of ϕ⊥, and every J2-holomorphic
lift of ϕ⊥ with three legs is given this way. To see this, first note that the conditions (3.18) are
equivalent to

(3.19) V is an antiholomorphic subbundle of ϕ⊥ satisfying ImA′′
ϕ ⊂ V ⊂ kerA′′

ϕ⊥ .

Then note that these conditions are equivalent to saying that we have a diagram (3.20), where as
usual, the arrows indicate the possible non-zero (∂′-)second fundamental forms.

(3.20)

V
ttϕ

**
W

OO

Finally, from Proposition 3.1, we see that this diagram says precisely that ψ = (V, ϕ⊥,W ) is
J2-holomorphic.

(iv) On replacing ϕ by ϕ⊥, we obtain the following from part (iii). Let ϕ : M → G2(C
n) be

a harmonic map which is neither holomorphic nor antiholomorphic. Suppose that ϕ⊥ is strongly
conformal. Then ϕ has a unique J2-holomorphic lift ψ =

(
G′′(ϕ⊥), ϕ⊥, G′(ϕ⊥)

)
. See Corollary

7.4 for more information, and Example 5.11 for related examples.

Example 3.16. Consider the isometric minimal immersion of the torus C/〈2π/
√
3, 2πi〉 into CP 2

given by the harmonic map

(3.21) ϕ(z) =
[
ez−z, eζz−ζz, eζ

2z−ζ2z
]
,

where ζ = e2πi/3. For i = 0, 1, 2, set ϕi equal to the ith ∂′-Gauss transform G(i)(ϕ) (see §2.2).
Then

ϕi(z) =
[
ez−z, ζieζz−ζz, ζ2ieζ

2z−ζ2z
]
;

in particular, G(3)(ϕ) = ϕ showing that ϕ is superconformal. [4, 3].
It follows that ϕ is of finite type, see [4, Corollary 2.7]; such a map cannot be of finite uniton

number by a result of R. Pacheco [26]. For this ϕ, the Aϕz -filtrations (zi) of Examples 3.13, 3.14
and 3.15 all coincide and are given by Z0 = C

n, Z1 = ϕ ⊕ ϕ1, Z2 = ϕ1, Z3 = 0; the legs of this
filtration define the J2-holomorphic lift ψ = (ϕ2, ϕ, ϕ1) =

(
G′′(ϕ), ϕ,G′(ϕ)

)
of ϕ⊥.

4. Twistor lifts from extended solutions

4.1. Extended solutions. Let G be a Lie group with identity element e and Lie algebra g ∼=
TeG, and let g

C denote the complexified Lie algebra g ⊗ C. Let ΩG be the (based) loop group
ΩG = {γ : S1 → G smooth : γ(1) = e}. Recall [34, 6] that a smooth map Φ : M → ΩG is said
to be an extended solution if, on any coordinate domain (U, z), we have Φ−1Φz = (1− λ−1)A, for
some map A : U → g

C.
For any map Φ :M → ΩG and λ ∈ S1, we define Φλ :M → G by Φλ(p) = Φ(p)(λ) (p ∈M). If

Φ : M → ΩG is an extended solution, the map ϕ = Φ−1 : M → G is harmonic and ϕ−1ϕz = 2A;
on comparing with (2.1) we see that A = Aϕz .

Conversely, given a harmonic map ϕ : M → G, an extended solution Φ : M → ΩG is said to
be associated to ϕ if Φ−1Φz = (1 − λ−1)Aϕz , equivalently, ϕ = gΦ−1 for some g ∈ G. Extended
solutions associated to any given harmonic map always exist locally; they exist globally if the
domain M is simply connected, for example, if M = S2. Further, any two extended solutions Φ,

Φ̃ associated to the same harmonic map differ by a loop on their common domain D ⊂ M , i.e.,

Φ̃ = γΦ for some γ ∈ ΩG; in particular, they are equal if they agree at some point of D.
Let H = H(n) denote the Hilbert space L2(S1,Cn). By expanding into Fourier series, we have

H = linear closure of span{λiej : i ∈ Z, j = 1, . . . , n},
where {e1, . . . , en} is the standard basis for Cn. Thus, elements of H are of the form v =

∑
i λ

ivi
where each vi ∈ C

n; we define projections Pi : H → C
n by Pi(v) = vi (i ∈ Z). If w =

∑
i λ

iwi
is another element of H, its L2 inner product with v is given by 〈v, w〉 = ∑

i viwi. The natural
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action of U(n) on C
n induces an action of ΩU(n) on H which is isometric with respect to this L2

inner product. We consider the closed subspace

H+ = linear closure of span{λiej : i ∈ N, j = 1, . . . , n},

with orthogonal complement in H given by

H⊥
+ = linear closure of span{λ−iej : i = 1, 2, . . . , j = 1, . . . , n}.

The action of ΩU(n) on H induces an action of ΩU(n) on subspaces of H; denote by Gr = Gr(n)

the orbit of H+ under that action. It is known from [27] that Gr consists of all the closed subspaces
W ⊂ H which enjoy the following properties:

(i) W is closed under multiplication by λ, i.e., λW ⊂W ;
(ii) the orthogonal projection W → H+ is Fredholm;
(iii) the orthogonal projection W → H⊥

+ is Hilbert–Schmidt;

(iv) the images of the orthogonal projections W → H⊥
+ and W⊥ → H+ consist of smooth

functions.

Furthermore, we have a bijective map

(4.1) ΩU(n) ∋ Φ 7→W = ΦH+ ∈ Gr ;

we callW the Grassmannian model of Φ. The map (4.1) restricts to a bijection from the algebraic
loop group ΩalgU(n) consisting of those γ ∈ ΩU(n) given by finite Laurent series: γ =

∑r
i=s λ

kTk ,
where r ≥ s are integers and the Tk are n× n complex matrices, to the set of λ-closed subspaces
W of H satisfying λrH+ ⊂W ⊂ λsH+ , for some integers r ≥ s.

For r ∈ N, let ΩrU(n) denote the set of polynomials Φ =
∑r
k=0 λ

kTk in ΩalgU(n) of degree at
most r. Then (4.1) further restricts to a bijection from ΩrU(n) to the subset Grr ⊂ Gr of those
λ-closed subspaces W of H satisfying

(4.2) λrH+ ⊂W ⊂ H+ .

Now let Φ : M → ΩU(n) be a smooth map and set W = ΦH+ : M → Gr. We call W an
extended solution if (i) W is holomorphic, i.e. ∂z̄(Γ(W )) ⊂ Γ(W ), and (ii) Γ(W ) is closed under
the operator F = λ∂z, i.e., F

(
Γ(W )

)
⊂ Γ(W ). Then [32], Φ is an extended solution if and only if

W is an extended solution.
A harmonic map ϕ : M → U(n) is said to be of finite uniton number if it has a polynomial

associated extended solution, then the minimum degree of such a polynomial Φ is called the
(minimal) uniton number of ϕ ; note that we are not insisting that ϕ = Φ−1 in this definition.
All harmonic maps from S2 to U(n) are of finite uniton number [34]. Uhlenbeck further showed
that, if ϕ :M → U(n) has finite uniton number r, then r ≤ n− 1 and ϕ has a unique polynomial
associated extended solution Φ =

∑r
k=0 λ

kTk of degree r with ImT0 full, i.e., not lying in any
proper subspace. As in [23, 20, 33], we call this the type one extended solution; however, this
concept does not seem to be useful for the real cases in §6ff.

4.2. Finding J2-holomorphic lifts from extended solutions. When we have an extended
solution Φ for our harmonic map ϕ :M → U(n), we can get Aϕz -filtrations, and thus twistor lifts,
from suitable filtrations of the Grassmannian model of Φ, as we now explain.

Definition 4.1. Let W = ΦH+ be an extended solution. Let (Yi) be a sequence of λ-closed
subbundles of Cn with

(4.3) W = Y0 ⊃ Y1 ⊃ · · · ⊃ Yt ⊃ Yt+1 = λW.

Call (Yi) an F -filtration (of W of length t) if, for each i,

(i) Yi is holomorphic, i.e., Γ(Yi) is closed under ∂z̄, and
(ii) F = λ∂z maps sections of Yi into sections of the smaller subbundle Yi+1 .

These conditions imply that each Yi is an extended solution.
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Now let W = ΦH+ be an extended solution and ϕ = Φ−1 : M → U(n) the corresponding
harmonic map. Consider the bundle morphism P0 ◦ Φ−1 : W → C

n where P0 : H → C
n denotes

projection onto the zeroth Fourier coefficient, as in §4.1. If follows from the extended solution
equations (see [33, Proposition 3.9]) that the mapping P0 ◦ Φ−1 intertwines the operators (i) ∂z̄
with Dϕ

z̄ and (ii) F with −Aϕz , i.e., we have the commutative diagrams (4.4), where the vertical
arrows are surjective maps with kernel Γ(λW ).

(4.4)

Γ(W )
∂z̄ //

P0◦Φ
−1

��

Γ(W )

P0◦Φ
−1

��

Γ(Cn)
Dϕ

z̄

// Γ(Cn)

Γ(W )
F //

P0◦Φ
−1

��

Γ(W )

P0◦Φ
−1

��

Γ(Cn)
−Aϕ

z

// Γ(Cn)

Now, given a filtration (4.3), we associate to it a filtration (Zi) of C
n by setting

(4.5) Zi = P0 ◦ Φ−1Yi (i = 0, 1, . . . , t+ 1).

Property (i) above says that the bundle morphism P0◦Φ−1 : (W,∂z̄) → (Cn, Dϕ
z̄ ) is holomorphic;

this enables us to fill out zeros to make each Zi a subbundle. Thus we have the commutative
diagram (4.6).

(4.6)

W = Y0

P0◦Φ
−1

��

⊃ Y1

P0◦Φ
−1

��

⊃ . . . ⊃ Yt

P0◦Φ
−1

��

⊃ Yt+1 = λW

P0◦Φ
−1

��

C
n = Z0 ⊃ Z1 ⊃ . . . ⊃ Zt ⊃ Zt+1 = 0

Here, each vertical map is a restriction of P0 ◦Φ−1 :W → C
n and is a surjective bundle morphism

with kernel λW ; further, each Yi is the inverse image of Zi under P0 ◦ Φ−1.
From Property (ii) above, we see that (Yi) is an F -filtration if and only if (Zi) is an Aϕz -

filtration. Thus, for an extended solution W = ΦH+ and corresponding harmonic map ϕ = Φ−1,
there is a one-to-one correspondence between F -filtrations of W and Aϕz -filtrations of C

n; in
particular, F -filtrations of W exist if and only if ϕ is nilconformal.

We now give an important example of a F -filtration which will give us a canonical twistor lift
for a harmonic map of finite uniton number. In the sequel, let r ∈ N.

Example 4.2. Let Φ be an extended solution. Suppose that this is polynomial of degree r so
that W = ΦH+ satisfies (4.2). Set

(4.7) Yi =W ∩ λiH+ + λW (i = 0, 1, . . . , r + 1);

since λr+1H+ ⊂ λW , we see that (Yi) is an F -filtration of length r; we shall call it the canonical
F -filtration for Φ. Setting ϕ = Φ−1 , we call the associated Aϕz -filtration (Zi) obtained from
(Yi) by (4.5) the canonical Aϕz -filtration for Φ. See Theorem 4.8 for the resulting twistor lift; we
calculate this in terms of unitons in Example 5.5.

This example shows that if ϕ : M → U(n) is a harmonic map of finite uniton number r, then
it is nilconformal with (Aϕz )

r+1 = 0.
To apply the above work to maps into a Grassmannian we now identify the appropriate class

of extended solutions. Let ν : H → H be the involution λ 7→ −λ. Then, as in [34, §8] and [32, §3],
W = ΦH+ is closed under ν if and only if Φ is ν-invariant in the sense that

(4.8) ΦλΦ−1 = Φ−λ (λ ∈ S1) ;

this condition implies that the map ϕ = Φ−1 satisfies ϕ2 = I, which means that it has image in a
complex Grassmannian G∗(C

n). Conversely, we have the following result.

Lemma 4.3. (i) Let ϕ :M → G∗(C
n) be a harmonic map from a Riemann surface which has an

associated extended solution. Then it has a ν-invariant extended solution Ψ with Ψ−1 = ϕ.
(ii) Suppose that ϕ : M → G∗(C

n) is a harmonic map of uniton number r. Then it has a
ν-invariant polynomial extended solution Ψ of degree r or r + 1 with Ψ−1 = ϕ.
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Proof. (i) Let Φ be an associated extended solution of ϕ. Fix a base point z0 ∈M . By replacing Φ
by Φ(z0)

−1Φ, we may assume that Φλ(z0) = I for all λ. Pick a homomorphism γ : S1 → U(n) with
γ(−1) = ϕ(z0), for example γ(λ) = πϕ(z0) + λπ⊥

ϕ(z0)
, and define Ψ = γΦ. Then Ψ is an extended

solution associated to ϕ, and since Ψ−1(z0) = ϕ(z0), we have Ψ−1 = ϕ everywhere. Now Ψ−λΨ
−1

−1

is also an extended solution associated to ϕ and Ψ−λ(z0)Ψ
−1

−1 (z0) = γ(−λ)γ(−1) = γ(λ) = Ψλ(z0)
for all λ, which implies that Ψ is ν-invariant.

(ii) Let Φ be the type one associated extended solution of ϕ (see §4.1), so that ϕ = QΦ−1

for some Q ∈ U(n). Uhlenbeck shows [34, §15] (see also [20, Lemma 4.6]) that ϕ maps into a
Grassmannian if and only if Q ∈ G∗(C

n) and Φλ = QΦ−λΦ
−1
−1 Q. Write Q = πA − π⊥

A where A
is a subspace of Cn; note that if A = C

n (resp. A = 0) then Q = I (resp. Q = −I). We see
that Ψ = (πA + λπ⊥

A)Φ is a ν-invariant polynomial extended solution, of degree r or r + 1, with
Ψ−1 = ϕ, as required. �

We remark that the uniton number of a harmonic map ϕ : M → Gk(C
n) of finite uniton

number is at most min(2k, 2n−2k, n−1) [12]; in fact [33, Corollary 5.7], we can find a polynomial
extended solution Φ of degree at most min(2k, 2n− 2k, n− 1) with Φ−1 = ±ϕ. For some sharper
estimates depending on the rank of A, see [19].

Next, we consider the effect on the filtrations of ν-invariance. First note that, if W is closed
under ν, then W =W+ ⊕W− where W± are the ±1-eigenspaces of ν.

Lemma 4.4. Let Φ be a ν-invariant extended solution and set W = ΦH+ . Let Y be a subbundle
of W which contains λW . Then Y is closed under ν if and only if Z = P0 ◦Φ−1Y splits, i.e., is
the direct sum of subbundles Z+ and Z− with Z± ∈ ±ϕ. In that case, Z± = P0 ◦ Φ−1Y± .

Proof. The ν-invariance condition (4.8) implies that Φ−1 ◦ P0 ◦Φ−1 = P0 ◦Φ−1 ◦ ν, i.e., P0 ◦Φ−1

intertwines ν with the involution Φ−1 = πϕ − πϕ⊥ on C
n, which establishes the lemma. �

Thus, in (4.6), each Zi splits if and only if each Yi is closed under ν.

Remark 4.5. For an alternative point of view, given a filtration (4.3), set Ŷi = π(Yi) (i =
0, 1, . . . , t+ 1), where π : W → W/λW denotes the natural projection. Since Yi contains λW , we

have Yi = π−1(Ŷi). The operator F descends to W/λW and becomes tensorial; we call a filtration

W/λW = Ŷ0 ⊃ Ŷ1 ⊃ · · · ⊃ Ỹt ⊃ Ŷt+1 = 0

an F -filtration (of W/λW ) if F maps Ŷi into Ŷi+1 . Then Yi is an F -filtration if and only if Ŷi is,
and the isomorphism Φ−1 :W/λW → C

n gives a one-to-one correspondence between F -filtrations

of W/λW and Aϕz -filtrations of C
n. Since Φ−1 ◦π = P0 ◦Φ−1, we have Zi = P0 ◦Φ−1Yi = Φ−1Ŷi .

Lastly, ν descends to W/λW , and invariance of Yi under ν is equivalent to invariance of Ŷi under
ν. Hence, it would be natural to work in W/λW ; however, for convenience, we continue to work
in W .

For a harmonic map into a Grassmannian, we can choose an extended solution Φ which is
ν-invariant; we now show that the canonical filtration for such a Φ is alternating; see Example 5.5
for more information.

Proposition 4.6. Let Φ be a ν-invariant polynomial extended solution of degree r. Set W = ΦH+

and ϕ = Φ−1 : M → G∗(C
n). Let (Zi) be the canonical Aϕz -filtration of Example 4.2, and set

ψi = Zi ⊖ Zi+1 (i = 0, 1, . . . , r). Then ψi ⊂ (−1)iϕ so that ϕ =
∑
j ψ2j .

Proof. Let x ∈ ψi = Zi⊖Zi+1. Then x = P0 ◦Φ−1(y) for some y ∈W ∩λiH+ . Write y = y++y−
where y± ∈W± . Then x = x+ + x− where x± = P0 ◦ Φ−1(y±) ∈ ±ϕ.

If i is even, y− ∈ Yi+1; indeed, write y− = y1 + y2 where y1 = Piy− , then applying ν gives
−y− = y1 + νy2, so that y1 = 0. Hence, x− ∈ Zi+1. Now x is orthogonal to Zi+1 ; it follows that
0 = 〈x+ + x−, x−〉 = 〈x−, x−〉 so that x− = 0 and x = x+ ∈ ϕ. Similarly if i is odd, x+ = 0 and
x = x− ∈ −ϕ = ϕ⊥. �
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Remark 4.7. As in [33, §3.4], write Ai = Ŷi ⊖ Ŷi+1; the isometry Φ : W/λW → C
n maps Ai

onto ψi. Proposition 4.6 is equivalent to saying that, for each i, Ai is in the (−1)i-eigenspace of
ν :W/λW →W/λW .

By Lemma 3.4, the moving flag ψ = (ψ0, ψ1, . . . , ψr) defined in Proposition 4.6 satisfies the
J2-holomorphicity condition (3.3). To make ψ a twistor lift into a flag manifold, we need to
ensure that each leg ψi is non-zero. As in [33, §3.4], say that a polynomial extended solution Φ
is normalized if each Ai is non-zero, equivalently, each ψi is non-zero. It is shown there that, if Φ

is not normalized, there is a polynomial loop γ such that Φ̃ = γ−1Φ is a normalized polynomial
extended solution of lesser degree; further, if Φ is ν-invariant, then we can choose the loop to

be ν-invariant, so that Φ̃ is ν-invariant and Φ̃−1 = ±Φ−1 . Recalling the definition of the flag
manifold Fd0,d1,...,dr from §3.1, we have the following result.

Theorem 4.8. Let Φ be a normalized ν-invariant polynomial extended solution; denote its degree
by r and set ϕ = Φ−1. Let the ψi be the legs of the canonical filtration as in Proposition 4.6 and
set di = rankψi. Then ψ = (ψ0, ψ1, . . . , ψr) :M → Fd0,d1,...,dr is a J2-holomorphic lift of ϕ.

We call ψ the canonical (twistor) lift of ϕ defined by Φ, see Example 5.5 for a calculation of ψ
in terms of unitons. Note that the canonical lift of ϕ depends on the choice of extended solution
Φ, however we have the following consequence.

Corollary 4.9. Let ϕ : M → Gk(C
n) be a harmonic map of finite uniton number r. Then there

is a J2-holomorphic twistor lift ψ : M → F of ϕ or ϕ⊥ into some flag manifold F = Fd0,d1,...,dt
with t ≤ min(r + 1, 2k, 2n− 2k, n− 1).

Proof. By Lemma 4.3, there is a ν-invariant polynomial extended solution Φ of degree r or r + 1
with Φ−1 = ϕ. If Φ is not normalized, then by [33, Corollary 5.7], we can replace it by a normalized
ν-invariant polynomial extended solution Ψ with Ψ−1 = ±ϕ of lesser degree, and that degree is
at most min(2k, 2n− 2k, n− 1). This gives a twistor lift as in Theorem 4.8. �

Lastly, we shall find the F -sequence which leads to Burstall’s twistor lift — note that this
requires only that ϕ be nilconformal and not necessarily of finite uniton number.

Example 4.10. Let ϕ : M → U(n) be nilconformal so that (Aϕz )
t+1 = 0 for some t ∈ N. Let Φ

be an associated extended solution of ϕ defined on an open subset of M . As shown in Lemma 4.3,
we can take this to be ν-invariant with Φ−1 = ϕ. As usual, set W = ΦH+ . Set Y0 = W and, for
i = 1, 2, . . ., set Yi = F (Yi−1) + λW (where we fill out zeros at points where the rank drops) so
that Yi = F i(W ) + λW ; it follows that Yt+1 = λW . The associated Aϕz -filtration defined by (4.5)
is the filtration Zi = Im(Aϕz )

i of Example 3.13 which, for a harmonic map into a Grassmannian,
leads to Burstall’s twistor lifts as explained in that example. Now, any two associated extended

solutions Φ and Φ̃ differ by a loop on their common domain: Φ̃ = γΦ for some γ ∈ ΩU(n). Since
multiplication by a loop commutes with F , these give the same filtration (Zi) on their common
domain, so our construction is well defined on the whole of M .

When ϕ has finite uniton number, the twistor lifts arising from this construction are, in general,
not the same as the canonical lift discussed above. See also Example 5.6.

5. Twistor lifts from unitons

5.1. Unitons. Let ϕ :M → U(n) be a harmonic map. Then a subbundle α of Cn is said to be a
uniton for ϕ if it is (i) holomorphic with respect to the Koszul–Malgrange holomorphic structure
induced by ϕ, i.e., Dϕ

z̄ (σ) ∈ Γ(α) for all σ ∈ Γ(α); and (ii) closed under the endomorphism Aϕz ,
i.e., Aϕz (σ) ∈ α for all σ ∈ α. Uhlenbeck showed [34] that, if a subbundle α ⊂ C

n is a uniton
for a harmonic map ϕ, then (i) ϕ̃ = ϕ(πα − π⊥

α ) is harmonic, (ii) α⊥ is a uniton for ϕ̃, and (iii)
ϕ = −ϕ̃(π⊥

α − πα).

Example 5.1. Any holomorphic subbundle of (Cn, Dϕ
z̄ ) contained in kerAϕz is a uniton for ϕ;

we call such a uniton basic. Any holomorphic subbundle of (Cn, Dϕ
z̄ ) containing ImAϕz is also a

uniton, we call such a uniton antibasic. Note that, if α is basic (resp. antibasic) for ϕ, then α⊥ is
antibasic (resp. basic) for ϕ̃ = ϕ(πα − π⊥

α ).
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Now suppose that Φ is an extended solution associated to ϕ and α is a subbundle of Cn, then

Uhlenbeck showed that α is a uniton for ϕ if and only if Φ̃ = Φ(πα+λπ
⊥
α ) is an extended solution

(associated to ϕ̃ = ϕ(πα − π⊥
α ) ); therefore, we shall also say that α is a uniton for Φ .

As before, let r ∈ N. Let Φ be a polynomial extended solution of degree at most r; set
W = ΦH+ . By a partial uniton factorization of Φ we mean a product

(5.1) Φ = Φ0(πα1
+ λπ⊥

α1
) · · · (παr

+ λπ⊥
αr
)

where (i) Φ0 is an extended solution, and (ii) writing

(5.2) Φi = Φ0(πα1 + λπ⊥
α1
) · · · (παi

+ λπ⊥
αi
) (i = 1, 2, . . . , r),

each Φi is an extended solution, and αi is a uniton for Φi−1 equivalently α⊥
i is a uniton for Φi.

Note that each ϕi = (Φi)−1 is harmonic and condition (ii) can be phrased as follows: αi is a
uniton for ϕi−1, equivalently, α

⊥
i is a uniton for ϕi.

Work of Segal [32] implies that setting Wi = ΦiH+ defines an equivalence between partial
uniton factorizations (5.1) and filtrations

(5.3) W =Wr ⊂Wr−1 ⊂ · · · ⊂W0 ⊂ H+

by extended solutions satisfying

(5.4) λWi−1 ⊂Wi ⊂Wi−1 (i = 1, 2, . . . , r).

If Φ0 = I, equivalently, W0 = H+, then (5.1) is a uniton factorization in the sense of Uhlenbeck
[34]. The argument in [33, §2] extends immediately to partial factorizations to show that the
unitons in (5.1) are given by αi = P0Φ

−1
i−1Wi .

5.2. J2-holomorphic lifts from unitons. Again, let Φ be a polynomial extended solution of
degree at most r and set W = ΦH+ . Let ϕ = Φ−1 be the corresponding harmonic map. Given a
(partial) uniton factorization (5.1), let Wi = ΦiH+ be the associated filtration and set

(5.5) Yi = λiWr−i + λW (i = 0, 1, . . . , r) , Yr+1 = λW.

Then we have a filtration (4.3) of length r. We ask under what conditions it forms an F -filtration.

Proposition 5.2. Let Φ be a polynomial extended solution of degree at most r and (5.1) a partial
uniton factorization.

(i) Suppose that

(5.6) F
(
Γ(Wi)

)
⊂ Γ(λWi−1) (i = 1, 2, . . . , r);

then the filtration (5.5) is an F -filtration.
(ii) The condition (5.6) holds if and only if, for each i ∈ {1, 2, . . . , r}, αi is a basic uniton for

Φi−1 , equivalently, α
⊥
i is an antibasic uniton for Φi.

(iii) Let α1, . . . , αr be the unitons in (5.1). The composition π⊥
αr

◦ · · · ◦π⊥
αr−i+1

is a holomorphic

endomorphism from (Cn, D
ϕr−i

z̄ ) to (Cn, Dϕ
z̄ ), and the Aϕz -filtration (Zi) associated to (Yi) via

(4.5) is given by

(5.7) Zi = Im(π⊥
αr

◦ · · · ◦ π⊥
αr−i+1

) , equivalently, Z⊥
i = ker(π⊥

αr−i+1
◦ · · · ◦ π⊥

αr
)

(i = 1, 2, . . . , r). In particular, Z⊥
1 = αr and Z⊥

2 = αr + α⊥
r ∩ αr−1 .

Proof. (i) From (5.6), we deduce that, for i ∈ {0, 1, . . . , r − 1},

F
(
Γ(Yi)

)
= F

(
Γ(λiWr−i + λW )

)
⊂ Γ(λi+1Wr−i−1 + λW ) = Γ(Yi+1).

Further, F
(
Γ(Yr)

)
⊂ Γ(λr+1H+) ⊂ Γ(λW ).

(ii) This follows from the correspondence of the operators F and −Aϕz , explained in §4.1, more
precisely it is [33, Lemma 3.11] applied to ϕ = ϕi .
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(iii) Using (5.5) and noting that P0 ◦ Φ−1(λW ) = 0 and filling out zeros, we have

Zi = P0 ◦ Φ−1(Yi) = P0(παr
+ λ−1π⊥

αr
) · · · (παr−i+1

+ λ−1πα⊥

r−i+1
)Φ−1

r−i(λ
iWr−i)

= P0λ
i(παr

+ λ−1π⊥
αr
) · · · (παr−i+1 + λ−1π⊥

αr−i+1
)H+

= π⊥
αr

◦ · · · ◦ π⊥
αr−i+1

(Cn).

This gives the first formula of (5.7); taking the adjoint gives the second one. �

Corollary 5.3. Let W = ΦH+ be a polynomial extended solution of degree r and let (5.1) be a
partial uniton factorization of Φ with corresponding filtration (5.3) which satisfies (5.6). As usual,
define Yi by (5.5), set Zi = P0 ◦ Φ−1Yi and write ψi = Zi ⊖ Zi+1 (i = 0, 1, . . . , r).

(i) The Zi are given in terms of the unitons in (5.1) by (5.7); in particular, ψ0 = αr and
ψ1 = α⊥

r ∩ αr−1 .
(ii) Suppose that Φ is ν-invariant and that (Zi) is a strict alternating filtration. Set di =

rankψi . Then ψ = (ψ0, ψ1, . . . , ψr) : M → Fd0,d1,...,dr is a J2-holomorphic twistor lift of
ϕ = Φ−1 :M → G∗(C

n) .

If (5.6) does not hold, then we cannot expect the filtration (5.5) to be an F -filtration, as shown
by the following example.

Example 5.4. Let Φ be a polynomial extended solution of degree r and set W = ΦH+ . Set
Wi =W+λiH+ . Then (Wi) defines a filtration (5.3) satisfying (5.4), and so a uniton factorization
(5.1); we call this the Segal factorization of Φ (or W ), as it appears in [32]. Defining Φi by (5.2),
we have Wi = ΦiH+ . Each αi appearing in (5.1) is a uniton for Φi−1; we call the αi the Segal
unitons of Φ.

The resulting filtration (5.5) is not, in general, an F -filtration; indeed, the Segal unitons are
not basic in general, in fact, each αi is antibasic for Φi−1 .

However, there are lots of uniton factorizations with basic unitons to which we can apply
Proposition 5.2(i) to give F -filtrations. We start with the factorization which gives the canonical
twistor lift; then we identify the one which leads to Burstall’s twistor lift.

Example 5.5. Let Φ be a polynomial extended solution of degree at most r and set W = ΦH+ .
Set Wi = λr−iW ∩ H+. Again, (Wi) defines a filtration (5.3) satisfying (5.4), and so a uniton
factorization (5.1); we call this the Uhlenbeck factorization of Φ (or W ), as it appears in [34].
Again, defining Φi by (5.2), we have Wi = ΦiH+ and each αi appearing in (5.1) is a uniton for
Φi−1; we call the αi the Uhlenbeck unitons of Φ.

This time, the filtration (Wi) clearly satisfies (5.6), equivalently, each Uhlenbeck uniton αi is
basic for Φi−1. It is quickly checked that the F -filtration (Yi) associated to (Wi) by (5.5) is the
canonical F -filtration (4.7) which leads to the canonical twistor lift of Theorem 4.8.

Example 5.6. Let Φ be a polynomial extended solution of degree r, and set W = ΦH+ . For
any i ∈ N, let W(i) denote the ith osculating space spanned by derivatives of local holomorphic
sections of W up to order i. Setting Wi =W(r−i) defines a partial uniton factorization:

(5.8) W =W(0) ⊂W(1) ⊂ · · · ⊂W(r) ⊂ H+

which satisfies (5.6). The proof in [33, Example 4.7] extends immediately to show that the unitons
αi in (5.1) are given by α⊥

i = ImAϕi
z ; by definition, α⊥

i is antibasic for ϕi so αi is basic for ϕi−1.
Defining Yi by (5.5) gives the F -filtration Yi = F (Yi−1) + λW = F i(W ) + λW of Example 4.10;
note that this formula automatically gives Yr+1 = λW since F r+1(W ) ⊂ λr+1H+ ⊂ λW . The

associated filtration (Zi) defined by (4.5) is the filtration Zi = Im(Aϕz )
i of Example 3.13 which

leads to Burstall’s twistor lift.
Suppose now that there is a t ∈ N such that (P0W )(t) = C

n, equivalently, W(t) = H+; such t
exists if and only if P0W is full. Then λtH+ = λtW(t) ⊂ W so that r ≤ t and (5.8) extends to a
uniton factorization:

W =W(0) ⊂W(1) ⊂ · · · ⊂W(r) ⊂ · · · ⊂W(t) = H+;
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this is the factorization by Az-images of [36]. Note, however, that the extra terms W(i) (i > r) do

not lengthen the associated F -filtration since, when i > r, we have λiW(i) ⊂ λW so that Zi = 0.

Let ϕ : M → U(n) be a harmonic map. Let (Zi) be an Aϕz -filtration of length t. Then each
subbundle Zi is a uniton for ϕ; further Z1 is antibasic, and Zt is basic. We have the following
converse. In the proof, for any map f : Cn → C

n and integer i > 0 we set f0 = identity map and
write f i for the composition f i = f ◦ · · · ◦ f (with i factors); further, for any subset V of Cn, we
write f−i(V ) = (f i)−1(V ) = {x ∈ C

n : f i(x) ∈ V }.
Proposition 5.7. Let ϕ :M → U(n) be a nilconformal harmonic map, and let α be a uniton for
ϕ. Then we can find a strict Aϕz -filtration (Zi) with Zk = α for some k.

Proof. Choose k ∈ N such that (Aϕz )
−k(α) = C

n; since Aϕz̄ is the adjoint of −Aϕz , this is equivalent
to (Aϕz̄ )

k(α⊥) = 0 . Then set Zi = (Aϕz )
i−k(α); equivalently, Z⊥

i = (Aϕz̄ )
k−i(α⊥). �

Note the duality in these formulae, cf. Example 6.3. Note further that, if α is antibasic, we
can take k = 1 so that Z1 = α; if α is basic, we have Zk = α and Zk+1 = 0. In the extreme case
α = C

n, the formula gives the filtration Zi = Im(Aϕz )
i of Example 3.13, and when α = 0 , it gives

the dual filtration Zi = ker(Aϕz )
k+1−i of Example 3.14.

If ϕ has image in a Grassmannian and α is a uniton for ϕ, then, as before, we say that α splits
(for ϕ) if α = α ∩ ϕ⊕ α ∩ ϕ⊥. We deduce the following from Proposition 5.7.

Theorem 5.8. Let ϕ : M → G∗(C
n) be a nilconformal harmonic map from a surface to a

complex Grassmannian, and let α be a uniton for ϕ which splits. Then there is a moving flag
ψ = (ψ0, ψ1, . . . , ψt) with the uniton given by a sum

∑t
j=j0

ψj of legs ψi, and a J2-holomorphic

twistor lift ψ̃ = (ψ̃0, ψ̃1, . . . , ψ̃s) of ±ϕ with each ψ̃ the sum of some of the legs ψi.

Proof. Proposition 5.7 gives an Aϕz -filtration (Zi) with one of the Zi equal to α. Since α splits, it
is clear that (Zi) splits. By Proposition 3.11, we obtain a twistor lift ψ as described. �

5.3. S1-invariant maps and superhorizontal lifts. We now consider an important special
case of the above constructions when the twistor lifts are holomorphic with respect to both the
non-integrable almost complex structure J2 and the integrable complex structure J1 of §3.1.

Let Φ be a polynomial extended solution; denote its degree by r. Then Φ is called S1-invariant
if ΦλΦµ = Φλµ. This clearly implies that Φ is ν-invariant so that ϕ = Φ−1 is a harmonic map
into a Grassmannian. Uhlenbeck showed [34, §10] that Φ is S1-invariant if and only its Uhlenbeck
unitons γ1, . . . , γr (Example 5.5) are nested : γi ⊃ γi+1. In that case, the formula (5.7) reduces
to Zi = γ⊥r+1−i . Equally well, it follows from [33, Proposition 3.14] that Φ is S1-invariant if and
only if its Segal unitons β1, . . . , βr (Example 5.4) are nested:

(5.9) 0 = β0 ⊂ β1 ⊂ · · · ⊂ βr ⊂ βr+1 = C
n,

in which case βi = γr+1−i ; it follows that Φ and W = ΦH+ are given by

(5.10) Φ =

r∑

i=0

λiπψi
and W =

r−1∑

i=0

λiβi+1 + λrH+,

giving a harmonic map ϕ = Φ−1 =
∑[r/2]
k=0 ψ2k where ψi = βi+1 ⊖ βi.

A nested sequence (5.9) of subbundles of Cn is called superhorizontal (cf. [6]) if (i) each sub-
bundle is holomorphic and (ii) ∂z maps sections of βi into βi+1. Then (see, for example, [33,
Proposition 3.14]), if Φ is S1-invariant, the sequence (βi) of its Segal unitons is superhorizontal.

As usual, set di = rankψi; the di are all non-zero if and only if Φ is normalized, in which
case the canonical J2-holomorphic lift ψ = (ψ0, ψ1, . . . , ψr) : M → Fd0,...,dr of ϕ = Φ−1 defined
by Φ is given by ψi = Zi ⊖ Zi+1 = βi+1 ⊖ βi. Superhorizontality of the sequence (βi) can be
interpreted as saying that the derivative of ψ lies in the superhorizontal distribution, by which we
mean the subbundle of the (1, 0)-horizontal bundle given by

∑r−1
i=0 Hom(ψi, ψi+1), in which case

ψ is horizontal and both J1- and J2-holomorphic. Thus, let Φ be a normalized extended solution.
Then the canonical lift of ϕ = Φ−1 defined by Φ is superhorizontal if and only if Φ is S1-invariant.
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Remark 5.9. (i) When r = 1, superhorizontality is automatic; when r = 2, superhorizontality is
equivalent to horizontality.

(ii) Given a harmonic map ϕ : M → G∗(C
n), there is a superhorizontal holomorphic lift of

ϕ or ϕ⊥ if and only if there is an S1-invariant polynomial extended solution Φ with Φ−1 = ±ϕ.
Indeed, given such a lift, Φ is given by (5.10); conversely, after normalizing Φ, the canonical lift is
superhorizontal as explained above.

(iii) A harmonic map ϕ : M → G∗(C
n) which has a superhorizontal holomorphic lift is called

isotropic in [18] where it is characterized geometrically, see also [13].

Example 5.10. A superhorizontal sequence of length one is just a single holomorphic subbundle
β1 ⊂ C

n. The corresponding extended solution (5.10) is given by Φ = πβ1 + λπ⊥
β1

and W =

β1 + λH+. Set d0 = rankβ1. Then the resulting harmonic map ϕ = Φ−1 : M → Gd0(C
n)

is holomorphic and −Φ−1 = ϕ⊥ : M → Gn−d0(C
n) is antiholomorphic; all holomorphic and

antiholomorphic maps M → G∗(C
n) are obtained in this way. The canonical lift of ϕ defined by

Φ is ψ = (ψ0, ψ1) = (β1, β
⊥
1 ) : M → Fd0,n−d0 . The projection πe : Fd0,n−d0 → Gd0(C

n) is given
by (ψ0, ψ1) 7→ ψ0 and is bijective.

For the next examples, as before, for any i ∈ N and holomorphic map f : M → G∗(C
n),

equivalently, holomorphic subbundle of Cn, we denote by f(i) the ith osculating space spanned by
derivatives of local holomorphic sections of f up to order i.

Example 5.11. (i) A superhorizontal sequence of length 2 is a nested pair β1 ⊂ β2 of holomorphic
subbundles of Cn with ∂z

(
Γ(β1)

)
⊂ Γ(β2); such a pair is called a ∂′-pair in [17]. Equivalently,

(β1, β
⊥
2 ) is a mixed pair in the sense of [9] (generalized to subbundles of arbitrary rank), i.e.,

β1 is a holomorphic subbundle of Cn, β⊥
2 is an antiholomorphic one, and ∂z

(
Γ(β1)

)
has values

perpendicular to β⊥
2 . The corresponding extended solutions Φ and W = ΦH+ of (5.10) are given

by

(5.11) Φ = πβ1
+ λπϕ + λ2π⊥

β2
and W = β1 + λβ2 + λ2H+ .

The resulting harmonic map ϕ = Φ−1 is given by ϕ = β1 ⊕ β⊥
2 ; it is also called a mixed pair. Its

orthogonal complement is the harmonic map ϕ⊥ = β2 ⊖ β1; this is strongly isotropic [17, (1.6)]
in the sense that the Gauss transforms (see §2.2) G(i)(ϕ⊥) and G(j)(ϕ⊥) are orthogonal for all
integers i 6= j. All strongly isotropic harmonic maps M → G∗(C

n) are obtained from a ∂′-pair
β1 ⊂ β2 in this way [17, §4]; indeed, we may take β1 =

∑
i<0G

(i)(ϕ⊥) and β⊥
2 =

∑
i>0G

(i)(ϕ⊥).
The canonical lift of ϕ defined by the extended solution (5.11) is given by ψ = (ψ0, ψ1, ψ2) =
(β1, ϕ

⊥, β⊥
2 ) :M → Fd0,d1,d2 where di = rankψi. This is, of course, superhorizontal.

Note that a strongly isotropic map is certainly strongly conformal, and the lift ψ just defined
is of the type described in Example 3.15(iii). For a map ϕ : M → CPn−1 = G1(C

n), the notion
of strong isotropy reduces to the notion of (complex) isotropy as used in [16].

(ii) Let f : M → CPn−1 be a full holomorphic map and let i ∈ {1, 2, . . . , n − 1}. Setting
β1 = f(i−1) and β2 = f(i) gives a ∂

′-pair β1 ⊂ β2, and so a full isotropic harmonic map ϕ⊥ :M →
CPn−1 given by ϕ⊥ = G(i)(f). All isotropic harmonic maps M → CPn−1 are given this way
and so all harmonic maps from S2 to CPn−1, see [16]; holomorphic and antiholomorphic maps
are given by the extreme cases i = 1 and i = n − 1, respectively. Excluding those cases, as in
part (i), the canonical lift of ϕ defined by the extended solution (5.11) is ψ = (β1, ϕ

⊥, β⊥
2 ); this

is a superhorizontal holomorphic lift of ϕ. Note that ϕ⊥ is strongly conformal, but ϕ is not. In
fact ϕ⊥ : M → CPn−1 can have no twistor lift ψ to a flag manifold; indeed, such a twistor lift
ψ = (ψ0, ψ1, ψ2, . . .) would have to have at least three legs, but then ϕ⊥ = π ◦ ψ would contain
ψ0 ⊕ ψ2, which has rank at least two.

(iii) Let f : M → CPn−1 be a full holomorphic map and let i ∈ {2, 3, . . . n − 3}. Setting
β1 = f(i−2) and β2 = f(i) gives a ∂′-pair β1 ⊂ β2 and so a strongly isotropic harmonic map

ϕ⊥ = G(i−1)(f) ⊕ G(i)(f); such a harmonic map is called a Frenet pair [9]. The canonical lift of
ϕ defined by (5.10) is again ψ = (β1, ϕ

⊥, β⊥
2 ).

In contrast to part (ii), ϕ is strongly conformal, and Example 3.15(iv) provides the unique
J2-holomorphic lift of ϕ⊥ with three legs: ψ =

(
G′′(ϕ), ϕ,G′(ϕ)

)
=

(
G(i)(f), ϕ,G(i−1)(f)

)
.
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6. Twistor lifts of maps into real Grassmannians and O(2m)/U(m)

6.1. Twistor spaces. We now consider the symmetric spaces of the orthogonal group O(n) and
its identity component, the special orthogonal group SO(n). We think of O(n) as the totally
geodesic submanifold {g ∈ U(n) : g = g} of U(n). For each k, the real Grassmannian Gk(R

n) =
O(n)

/
O(k)×O(n−k) is a symmetric space; it may be thought of as the totally geodesic submanifold

{V ∈ Gk(C
n) : V = V } of Gk(C

n), and, via the Cartan embedding (2.2), as a totally geodesic
submanifold of the orthogonal group O(n), and so also of U(n). We now identify twistor spaces
for the real Grassmannian as subspaces of those for Gk(C

n).

Let n, d0, d1, . . . , ds be positive integers with ds + 2
∑s−1
i=0 di = n. Set di = d2s−i for i =

s+ 1, . . . , 2s so that
∑2s
i=0 di = n, and define a submanifold of the flag manifold Fd0,...,d2s of §3.1

by
FR

d0,...,ds =
{
ψ = (ψ0, ψ1, . . . , ψ2s) ∈ Fd0,...,d2s : ψi = ψ2s−i ∀i

}

(here, by ψ2s−i we mean the complex conjugate ψ2s−i). Note that the middle leg ψs is real, i.e.,

ψs = ψs . Further note that FR

d0,...,ds
is a complex submanifold of Fd0,...,d2s with respect to the

complex structures J1 and J2. Hence the twistor fibration (3.2) restricts to a twistor fibration
πR
e : FR

d0,...,ds
→ Gk(R

n) where, as before, k =
∑s
j=0 d2j and π

R
e (ψ) =

∑s
j=0 ψ2j .

On using ψi = ψ2s−i, these can be written in terms of just (ψ0, ψ1, . . . , ψs) as follows.

(6.1)

{
k = 2

∑s/2−1
k=0 d2k + ds , πR

e (ψ) =
∑s/2−1
k=0 (ψ2k ⊕ ψ2k)⊕ ψs (s even);

k = 2
∑(s−1)/2
j=0 d2j , πR

e (ψ) =
∑(s−1)/2
j=0 (ψ2j ⊕ ψ2j) (s odd).

Note that if s is even, n − k is even and if s is odd, k is even; further, from (6.1), we have
s ≤ min(k − 1, n− k).

As a homogeneous space, FR

d0,...,ds
= O(n)/H where H = U(d0)× · · · ×U(ds−1)×O(ds). Write

H = H1 ×H2 where H1 =
{∏s/2−1

j=0 U(d2j)
}
× O(ds) if s is even and Π

(s−1)/2
j=0 U(d2j) if s is odd.

Then the projection πR
e is the homogeneous projection O(n)/H → O(n)

/
O(k)×O(n− k) induced

by the inclusion of H = H1 ×H2 in O(k) × O(n − k) given by the canonical inclusions of H1 in
O(k) and H2 in O(n− k).

We can also write FR

d0,...,ds
= SO(n)/H̃ where H̃ = U(d0)×· · ·×U(ds−1)×SO(ds). The Grass-

mannian Gk(R
n) is double-covered by the Grassmannian G̃k(R

n) of oriented k-dimensional sub-

spaces of Rn and the projection πR
e lifts to a projection π̃R

e : FR

d0,...,ds
= SO(n)/H̃ → SO(n)

/
SO(k)×

SO(n−k) = G̃k(R
n), providing a twistor space for G̃k(R

n). We have a double covering G̃k(R
n) →

Gk(R
n) which forgets orientation; composing that with the inclusion map Gk(R

n) →֒ Gk(C
n)

gives a canonical totally geodesic isometric immersion of G̃k(R
n) into Gk(C

n).

Example 6.1. For any m ∈ {1, 2, . . . , }, the mapping (V, Y, V ) 7→ V identifies the space FR
m,1 =

O(2m + 1)
/
U(m) × O(1) ∼= SO(2m + 1)/U(m) with the space of isotropic subspaces of C2m+1

of dimension m; the bundle πR
e : FR

m,1 → RP 2m with πe(V, Y, V ) = Y can be identified with the

bundle Z → RP 2m of almost Hermitian structures (cf. Remark 3.2(ii)), and it lifts to a fibre
bundle π̃R

e : FR
m,1 → S2m which is the bundle Z+ → S2m of positive almost Hermitian structures

on S2m. In particular, the double covering Sp(2) → SO(5) maps U(1) × Sp(1) to U(2), showing
that FR

2,1
∼= Sp(2)/U(1) × Sp(1) ∼= CP 3, hence the fibration FR

2,1 → S4 is the classical twistor

fibration CP 3 → S4.

The orthogonal group has another symmetric space, O(2m)
/
U(m), the space of orthogonal

complex structures ; this has identity component, SO(2m)
/
U(m), the space of positive orthogonal

complex structures. By mapping a complex structure to its (−i)-eigenspace, O(2m)
/
U(m) may

be identified with the totally geodesic submanifold {V ∈ Gm(C2m) : V = V
⊥}. This in turn may

be identified via the Cartan embedding, with a totally geodesic submanifold of iO(n) where iO(n)
denotes the totally geodesic submanifold {ig : g ∈ O(n)} = {g ∈ U(n) : g = −g} of U(n).

We obtain twistor spaces for O(2m)
/
U(m) as restrictions of those for Gm(C2m) as follows.

Let m, d0, d1, . . . , ds be positive integers with m = d0 + · · · + ds and set di = d2s+1−i for i =
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s+ 1, . . . , 2s+ 1. Let ZR

d0,...,ds
be the submanifold of Fd0,...,d2s+1 given by

ZR

d0,...,ds =
{
ψ = (ψ0, ψ1, . . . , ψ2s+1) ∈ Fd0,...,d2s+1

: ψi = ψ2s+1−i ∀i
}
.

This is a complex submanifold with respect to the almost complex structures J1 and J2 of
Fd0,...,d2s+1

, so the projection (3.2) restricts to a twistor fibration πR
e : ZR

d0,...,ds
→ O(2m)/U(m).

As a homogeneous space, ZR

d0,...,ds
= O(2m)

/
U(d0) × · · · × U(ds), and π

R
e is the homogeneous

projection O(2m)
/
U(d0) × · · · × U(ds) → O(2m)/U(m) given by the canonical inclusion of the

product U(d0) × · · · × U(ds) in U(m). This restricts to a twistor fibration π̃R
e : SO(2m)

/
U(d0) ×

· · · ×U(ds) → SO(2m)/U(m).

6.2. Some involutions. We describe some involutions on our various types of filtrations; real
cases will then appear as their fixed points. For a map ϕ : M → U(n), ϕ will denote its complex
conjugate; thus ϕ = ϕ (resp. ϕ = −ϕ) if and only if ϕ is real, i.e., has image in O(n) (resp. ϕ has
image in iO(n), equivalently iϕ is real).

Lemma 6.2. Let ϕ :M → U(n) be a nilconformal harmonic map.
(i) Let (Zi) be an Aϕz -filtration of length t; denote its legs by ψi = Zi ⊖ Zi+1. Set

(6.2) Z̃i = Z
⊥

t+1−i (i = 0, 1, . . . , t+ 1).

Then (Z̃i) is an Aϕz -filtration of the same length with legs ψ̃i = Z̃i ⊖ Z̃i+1 given by ψ̃i = ψt−i .

Further, if ϕ :M → G∗(C
n) and (Zi) is split (resp. alternating) for ϕ, then so is (Z̃i).

(ii) If ϕ or iϕ is real, then (Zi) 7→ (Z̃i) defines an involution on the set of Aϕz -filtrations.

Proof. Since the adjoint of Aϕz is −Aϕz̄ , the condition Aϕz (Zi) ⊂ Zi+1 is equivalent to Aϕz̄ (Z
⊥
i+1) ⊂

Z⊥
i , and this is equivalent to Aϕz (Z̃t−i) ⊂ Z̃t+1−i . Similarly Dϕ

z̄

(
Γ(Zi)

)
⊂ Γ(Zi) is equivalent to

Dϕ
z̄

(
Γ(Z̃t+1−i)

)
⊂ Γ(Z̃t+1−i) ; the rest is clear. �

Example 6.3. (i) If Zi = Im(Aϕz )
i as in Example 3.13, then Z̃i = ker(Aϕz )

t+1−i. Replacing ϕ by
ϕ gives Example 3.14. A similar process gives Example 3.15(ii) from Example 3.15(i).

(ii) An equivalent conclusion to part (i) of the lemma is that Ẑi = Z⊥
t+1−i defines an A

ϕ
z -filtration

with respect to the conjugate complex structure on M .

We have a corresponding involution of F -filtrations as follows. For a map Φ :M → ΩU(n), set

W = ΦH+ and ϕ = Φ−1 . For a fixed integer r, write W I = λr−1W
⊥
, then W I = Φ̃H+ where

Φ̃ = λrΦ (cf. [33, Remark 2.7]). If W is an extended solution, it is easily checked that W I is also

an extended solution. Writing ϕ̃ = Φ̃−1, we have ϕ̃ = (−1)rϕ.

Definition 6.4. Let r ∈ Z. We call W or Φ real of degree r if W I =W , equivalently Φ = λrΦ.

If r = 2s is even, this says that λ−sΦ has values in ΩO(n), and implies that ϕ is real, i.e., has
values in O(n). When r is odd, it implies that iϕ is real, see §6.4 for the application of that case.

Lemma 6.5. Let Φ : M → ΩU(n) be a polynomial extended solution of degree r with Φ−1 = ϕ.
Set W = ΦH+ . Let (Yi) be an F -filtration of W ; denote its length by t. Set

(6.3) Ỹi = λrY
⊥

t+1−i (i = 0, 1, . . . , t+ 1).

Then

(i) (Ỹi) is an F -filtration of W I ;

(ii)
˜̃
Y i = Yi for all i;

(iii) set Zi = P0 ◦ Φ−1(Yi) and Z̃i = P0 ◦ Φ̃−1(Ỹi). Then Zi and Z̃i are related by (6.2);

(iv) if Φ is real of degree r, then (Yi) 7→ (Ỹi) defines an involution on the set of F -filtrations
of W .
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Proof. (i) The condition F (Γ(Yi)) ⊂ Γ(Yi+1) is clearly equivalent to F (Γ(Y
⊥

i+1)) ⊂ Γ(Y
⊥

i ). Also

Ỹ0 = λrY
⊥

t+1 = λr−1W
⊥
=W I and Ỹt+1 = λrY

⊥

0 = λrW
⊥
= λW I .

(ii) This is quickly checked.
(iii) Noting that Zi = P0 ◦ Φ−1Yi is equivalent to Φ−1Yi + λH+ = Zi + λH+, we have

Z̃i + λH+ = Φ̃−1Ỹi + λH+ = Φ
−1
Y

⊥

t+1−i + λH+ = Φ−1Yt+1−i
⊥
+ λH+ = Z

⊥

t+1−i + λH+ ,

giving the result.
(iv) Immediate from (i). �

Now let Φ be a polynomial extended solutions of degree at most r. Then the involutionW 7→W I

above gives another polynomial extended solution Φ̃ = λrΦ of degree at most r, see [33, Example
3.8]. We now see what this involution does to the canonical filtration.

Proposition 6.6. Let Φ a polynomial extended solution of degree at most r.

(i) Let (Yi) be the canonical F -filtration of W , and define (Ỹi) by (6.3) with t = r; then (Ỹi) is
the canonical F -filtration of W I .

(ii) If Φ is real of degree r, then (a) the canonical F -filtration (Yi) is real, i.e., fixed under the
involution (6.3); (b) the canonical Aϕz -filtration Zi = P0 ◦ Φ−1(Yi) is real, i.e., fixed under the
involution (6.2); (c) the legs ψi = Zi ⊖ Zi+1 satisfy ψi = ψr−i (i = 0, 1, . . . , r).

Proof. (i) We have Yi =W ∩ λiH+ + λW so that

Ỹi = λrY
⊥

r−i+1 = λr
{
(W

⊥
+ λi−rH+) ∩ (λ−1W

⊥
)
}

= (λW I + λiH+) ∩W I =W I ∩ λiH+ + λW I .

(ii) Immediate from (i). �

6.3. J2-holomorphic lifts for maps to real Grassmannians. To apply our work to harmonic
maps into real Grassmannians, we need the following existence result for extended solutions.

Proposition 6.7. Let Φ :M → ΩU(n) be a ν-invariant polynomial extended solution which is real
of some even degree r = 2s. Then (i) ϕ = (−1)sΦ−1 : M → Gk(R

n) is a harmonic map of finite
uniton number with n− k even; (ii) all such harmonic maps ϕ are given this way; in fact, we may
take Φ to be normalized of degree at most 2min(k − 1, n− k), if s even, and 2min(k, n− k − 1),
if s is odd.

Proof. (i) This is a consequence of the formula for ϕ in Proposition 4.6; the parity of n−k following
from the symmetry of the legs as in Proposition 6.6(ii).

(ii) By [33, Lemma 6.6], there is a ν-invariant extended solution Ψ : M → ΩO(n) of the form
Ψ =

∑s
ℓ=−s λ

ℓTℓ with T−ℓ = Tℓ , Ts 6= 0 and Ψ−1 = ϕ, Setting Φ = λsΨ gives a ν-invariant real
polynomial extended solution of degree 2s with Φ−1 = (−1)sϕ. That we may take Φ normalized
with the given bounds on the degree follows from [33, Proposition 6.23]. �

Remark 6.8. The statement (ii) is false without the factor (−1)s, see Example 6.11(ii) below.
Also, if n−k is odd, we may embed Gk(R

n) in Gk(R
n+1), then harmonic maps fromM to Gk(R

n)
are obtained as non-full harmonic maps into Gk(R

n+1).

Theorem 6.9. Let Φ : M → ΩU(n) be a ν-invariant polynomial extended solution which is
normalized and real of even degree r = 2s. Let ϕ = Φ−1 :M → Gk(R

n) be the resulting harmonic
map. Then ϕ has a J2-holomorphic lift ψ : M → FR

d0,d1,...,ds
for some (d0, d1, . . . , ds) satisfying

(6.1), namely the canonical twistor lift defined by Φ (see Theorem 4.8). �

On applying Proposition 6.7, we obtain the following corollary.

Corollary 6.10. Let ϕ : M → Gk(R
n) be a harmonic map of finite uniton number. Then either

ϕ or −ϕ (= ϕ⊥) has a J2-holomorphic twistor lift ψ : M → FR

d0,d1,...,ds
for some (d0, d1, . . . , ds)

satisfying (6.1), namely the canonical twistor lift defined by a normalized extended solution Φ of
±ϕ. �
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Example 6.11. (i) Recall from Example 5.11 that a ∂′-pair (i.e., superhorizontal sequence of
length 2) 0 ⊂ β1 ⊂ β2 ⊂ C

n gives rise to two harmonic maps: the mixed pair ϕ = β1 ⊕ β⊥
2 and

the strongly isotropic map ϕ⊥ = β2 ⊖ β1. The harmonic maps ϕ and ϕ⊥ are real, i.e., have image
in G∗(R

n), if and only if β⊥
2 = β1, in which case (β1, β

⊥
2 ) = (β1, β1), and the resulting harmonic

map ϕ = β1⊕β1, is called a real mixed pair [1] . In this case, the canonical lift of ϕ defined by the
extended solution (5.11) is the superhorizontal holomorphic map ψ = (β1, ϕ

⊥, β1) : M → FR

d0,d1
,

where d0 = rankβ1 and d1 = n− 2d0.
In the case that β1 has rank one, we have ϕ = β1 ⊕ β1 : M → G2(R

n). We may identify the
twistor space FR

1,n−2 of G2(R
n) with the quadric Qn−2 = {L = [L1, . . . , Ln] ∈ CPn−1 :

∑n
1 L

2
i =

0} via the map (ψ0, ψ1, ψ2) 7→ ψ0, then πR
e : Qn−2 → G2(R

n) is the double cover L 7→ L ⊕ L.
The canonical lift of ϕ is the superhorizontal holomorphic map β1 ∼= (β1, ϕ

⊥, β1) : M → Qn−2
∼=

FR
1,n−2 . See [1] for more information on harmonic maps from a surface to G2(R

n).

(ii) Let f : M → CPn−1 be a full holomorphic map which is totally isotropic [16] in the sense
that G(n−1)(f) = f . Then n − 1 is even, say 2m, and f(m−1) is a maximal isotropic subbundle

of Cn. Setting β1 = f(m−1) and β2 = f(m), we have β⊥
2 = β1, so we obtain a real mixed pair

ϕ = β1 ⊕ β1 : M → G2m(R2m+1) with ϕ⊥ : M → RP 2m a full harmonic map whose composition
with the canonical inclusion of RP 2m in CP 2m is isotropic. E. Calabi and S.-S. Chern showed
(see [16]) that all such isotropic harmonic maps from a surface to a real projective space RPn−1,
in particular, all harmonic maps from the 2-sphere, are given this way; all harmonic maps from
S2 to a sphere Sn−1 can be obtained as double covers of those maps. The canonical lift of
ϕ defined by (5.11) is the superhorizontal holomorphic map ψ = (β1, ϕ

⊥, β1) : M → FR
m,1 =

O(2m+ 1)
/
(U(m)×O(1)) = SO(2m+ 1)/U(m).

As before, ϕ⊥ has no twistor lift, as it would have to be the sum of at least two legs.
(iii) Example 5.11 part (iii) does not specialize to give real maps; indeed there are no real Frenet

pairs [1, Prop. 5.10].
(iv) Generalizing part (i), let 0 = β0 ⊂ β1 ⊂ · · · ⊂ βr ⊂ βr+1 = C

n be a nested sequence
of subbundles which is superhorizontal (see §5.3). Recall that such a sequence defines an S1-
invariant extended solution Φ which is polynomial of degree r, and a harmonic map ϕ = Φ−1

given by (5.10). Say that a nested sequence (βi) is real (of degree r) if β⊥
i = βr+1−i for all i; on

setting ψi = βi+1⊖βi (i = 0, 1, . . . , r), this is equivalent to ψi = ψr−i . A superhorizontal sequence
(βi) is real if and only if the corresponding extended solution (5.10) is real. Now suppose that
(βi) is real of even degree r = 2s. Then ϕ =

∑
j ψ2j is a map into G∗(R

n) and the canonical J2-

holomorphic twistor lift of ϕ :M → G∗(R
n) defined by Φ is ψ = (ψ0, ψ1, . . . , ψr) :M → FR

d0,...,dr
.

As in §5.3, it is superhorizontal.

We now see how to obtain twistor lifts for real nilconformal maps by a method which extends
that which gave the Burstall lift of Example 3.13. It is easy to check (in fact, it is a special case of
Lemma 6.2(ii)) that, if ϕ or iϕ is real and α is a uniton for ϕ, so is α⊥. Note that α is isotropic
if and only if α⊥ ⊂ α, and maximally isotropic exactly when α⊥ = α.

Proposition 6.12. Let ϕ :M → U(n) be a nilconformal harmonic map from a surface which has
image in O(n) or iO(n), and let α be an isotropic uniton for ϕ (possibly identically zero). Then

(i) there is a real strict Aϕz -filtration (Zi) with Zi = α for some i.
(ii) If ϕ maps into a real Grassmannian or into O(2m)

/
U(m), and α splits, then we can find

such a filtration (Zi) which splits.

Proof. (i) Let α = Z0 ⊃ Z1 ⊃ · · · ⊃ Zs ⊃ Zs+1 = 0 be a strict partial Aϕz -filtration, i.e., a strict

filtration satisfying (3.4); for example Zi = (Aϕz )
i(α). As in Lemma 6.2(i), Cn = Z

⊥

s+1 ⊃ Z
⊥

s ⊃
· · · ⊃ Z

⊥

1 ⊃ Z
⊥

0 = α⊥ is also a strict partial Aϕz -filtration. We can put them together to give a
filtration

(6.4) C
n = Z

⊥

s+1 ⊃ Z
⊥

s ⊃ · · · ⊃ Z
⊥

1 ⊃ Z
⊥

0 = α⊥ ⊃ α = Z0 ⊃ Z1 ⊃ · · · ⊃ Zs ⊃ Zs+1 = 0,

which is a real strict Aϕz -filtration except that Aϕz (α
⊥) may not lie in α, or α⊥ may equal α.
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So let t = t(α) ∈ {−1, 0, 1, . . .} be the least integer such that (Aϕz )
t+1(α⊥) ⊂ α; this exists by

nilconformality.
(a) If t = −1, i.e., α⊥ = α, remove α⊥ from (6.4) leaving a real strict Aϕz -filtration (Zi) of

length 2s+ 1 with middle subbundle equal to α.
(b) If t = 0, then Aϕz (α

⊥) ⊂ α and (6.4) is a real strict Aϕz -filtration of length 2s+ 2.
(c) Otherwise, we have t ≥ 1; set α1 = (Aϕz )

t(α⊥) + α. Then α1 is a uniton which contains
α. Further, α1 is isotropic, indeed, for the standard complex symmetric C-bilinear inner product
〈·, ·〉C on C

n, since Aϕz is symmetric,

〈α1, α1〉C = 〈(Aϕz )t(α⊥), (Aϕz )
t(α⊥)〉C = 〈α⊥, (Aϕz )

2t(α⊥)〉C ;

this is zero since 2t ≥ t+ 1.
Thus we obtain a filtration: α⊥ ⊃ α⊥

1 ⊃ α1 ⊃ α with Aϕz (α1) ⊂ α and Aϕz (α
⊥) ⊂ α⊥

1 . Further
(Aϕz )

t(α⊥
1 ) ⊂ (Aϕz )

t(α⊥) ⊂ α1, so that t(α1) ≤ t(α)− 1.
By repeating this construction at most t times we obtain a partial Aϕz -filtration:

α⊥ ⊃ α⊥
1 ⊃ α⊥

2 ⊃ · · · ⊃ α⊥
j ⊃ αj ⊃ · · · ⊃ α2 ⊃ α1 ⊃ α .

Gluing this into the middle of (6.4) gives a real Aϕz -filtration. If α⊥
j 6= αj , this is a real strict

Aϕz -filtration of even length. If α⊥
j = αj , remove α⊥

j , leaving a real strict Aϕz -filtration of odd
length.

(ii) This is clear from the construction. �

Example 6.13. (i) If α is a basic isotropic uniton, then it can be taken to be the last leg of the
filtration, so that α is the first.

(ii) If t ∈ {0, 1, . . .} is the least integer such that (Aϕz )
t+1 = 0. Then, for any (t+ 1)/2 ≤ s ≤ t,

Im(Aϕz )
s is an isotropic uniton, with the last one, Im(Aϕz )

t, basic.
(iii) If n = 2m+1 is odd and α is an isotropic uniton of rank m, then t(α) = 1, i.e., Aϕz (α

⊥) ⊂ α
and we have case (b) above, so that we obtain a strict Aϕz -filtration with α⊥ ⊃ α in the middle.
Indeed, if we had t(α) > 1, then Aϕz would factor to a non-zero map on the rank one bundle α⊥/α
which is not possible by nilconformality.

Our next result concerns the Grassmanian G̃k(R
n) of oriented k-dimensional subspaces of Rn

discussed in §6.1. Recall that we have a double covering G̃k(R
n) → Gk(R

n) which forgets the

orientation: we call a smooth map ϕ : M → G̃k(R
n) nilconformal if its composition with this

double covering is nilconformal.

Proposition 6.14. Let ϕ :M → G̃k(R
n) be a harmonic map from a surface with k or n−k even.

Then ϕ or ϕ⊥ has a J2-holomorphic lift ψ :M → FR

d0,d1,...,ds
, for some (d0, d1, . . . , ds) satisfying

(6.1), if and only if ϕ is nilconformal. �

Proof. Suppose that ϕ or ϕ⊥ has a J2-holomorphic lift as stated. Then ϕ is nilconformal by
Corollary 3.12.

Conversely, suppose that ϕ is nilconformal. By replacing ϕ by ϕ⊥, if necessary, we can assume
that n− k is even.

(a) We find a maximal isotropic holomorphic subbundle W of ϕ⊥ which is closed under (Aϕz )
2.

This is done by a modification of the argument in the proof of Proposition 6.12, as follows.
Let β be an isotropic holomorphic subbundle of ϕ⊥ which is closed under (Aϕz )

2. Note that this

implies that β
⊥

is also closed under (Aϕz )
2.

(i) We extend β to an isotropic holomorphic subbundle of ϕ⊥ which satisfies

(6.5) (Aϕz )
2(β

⊥∩ ϕ⊥) ⊂ β.

To do this, let u = u(β) be the least integer such that (Aϕz )
2u+2(β

⊥∩ ϕ⊥) ⊂ β; this exists by

nilconformality. If u < 1, β already satisfies (6.5). Otherwise u ≥ 1 and we set β1 = (Aϕz )
2u(β

⊥∩
ϕ⊥) + β. Then it is easy to check that β1 is is isotropic, closed under (Aϕz )

2 β1 and has u(β1) <
u(β). By repeating this construction at most u times starting with β = 0 we obtain an isotropic
holomorphic subbundle β of ϕ⊥ which satisfies (6.5).
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(ii) We extend this β to a maximal isotropic holomorphic subbundle W of ϕ⊥ as in [7,
Theorem 2.5] as follows. First note that the bundle ϕ⊥ →M is oriented since it is the pull-back of

the oriented tautological bundle L⊥ → G̃n−k(R
n). Then, starting with X = β, we can successively

extend X increasing its rank by one until we obtain an isotropic holomorphic subbundle X with

rankX
⊥ − rankX = 2. Then, by orientability of the bundle ϕ⊥ → M , there is precisely one

positive maximally isotropic subbundle W of ϕ⊥ containing X. Since β
⊥∩ϕ⊥ ⊃W ⊃ β, by (6.5)

we have (Aϕz )
2(W ) ⊂W , as desired.

(b) LetW be a maximal isotropic holomorphic subbundle of ϕ⊥ which is closed under (Aϕz )
2. Set

α =W +Aϕz (W ). Then α is an isotropic uniton. Note that α⊥ =W +A where A = Aϕz (W )
⊥ ∩ϕ

so that α⊥ ⊖ α ⊂ ϕ. From 〈Aϕz (A),W 〉C = 〈Aϕz (W ), A〉C = 0, we see that Aϕz (A) ⊂ W whence
Aϕz (α

⊥) ⊂ α. Let s be the least positive integer such that

(6.6) (Aϕz )
s(W ) = 0, equivalently, (Aϕz )

s(α) = 0.

Set Zi = (Aϕz )
i−s−1(α) (i = s + 1, s + 2, . . . , 2s + 1) and Zi = Z

⊥

2s+1−i (i = 0, 1, . . . , s).

Then (Zi) is an alternating real Aϕz -filtration of length 2s with Zs = α⊥, Zs+1 = α and Z2s =
(Aϕz )

s−1(W ) ∈ ϕ̃ where ϕ̃ = (−1)sϕ. Setting ψi = Zi⊖Zi+1 defines a moving flag (ψ0, ψ1, . . . , ψ2s)
which satisfies the J2-holomorphicity condition (3.3). Now all ψi are non-zero with the possible
exception of ψs = α⊥ ⊖ α. If this is zero, remove it and combine the legs ψs−1 and ψs+1 as
in Operation 3 of Lemma 3.8, thus reducing s by one. Thus we obtain a J2-holomorphic lift
ψ :M → FR

d0,...,ds
of ϕ̃ for some (d0, . . . , ds). �

Remark 6.15. (i) Unlike Corollary 6.10, this corollary applies to nilconformal harmonic maps
whether they have finite uniton number or not; however, it is not as explicit, as the proof, in
general involves the choice of a holomorphic subbundle which is maximal isotropic.

(ii) Let ϕ : M → Gk(R
n) be a harmonic map from a surface to a real Grassmannian Gk(R

n)
of unoriented subspaces, with k or n − k even. Then ϕ or ϕ⊥ has a J2-holomorphic lift ψ :
M → FR

d0,d1,...,ds
, for some (d0, d1, . . . , ds) satisfying (6.1), if and only if ϕ is nilconformal with

corresponding subbundle ϕ orientable, equivalently, the first Steifel–Whitney class w1(L) of the
tautological bundle L → Gk(R

n) satisfies ϕ∗w1(L) = 0. Indeed, under those conditions ϕ lifts to

a map into G̃k(R
n) and the theorem applies.

Example 6.16. (i) The condition (6.6) implies that

(6.7) Im(Aϕz )
s ∩ ϕ⊥ ⊂W ⊂ ker(Aϕz )

s ∩ ϕ⊥.

which in turn implies that (Aϕz )
2s(ϕ̃⊥) = 0. Conversely, if ϕ satisfies this last condition, then we

can choose W to satisfy (6.7): just do the construction of part (i) of the proof above starting with
β = Im(Aϕz )

s ∩ ϕ⊥.

(ii) Putting s = 1, we deduce the following. Let ϕ : M → G̃k(R
n) be a non-constant strongly

conformal harmonic map with n − k even. Then (i) there are maximal isotropic holomorphic
subbundles W of ϕ⊥ which satisfy (3.18); (ii) for such a W , we have a J2-holomorphic twistor
lift ψ = (W,ϕ,W ) :M → FR

m,k of ϕ⊥, where m = (n− k)/2, cf. Example 3.15(iii).

(iii) For n− k = 2, as in Example 3.15(iv), there is only one choice of W in (ii) and, reversing
the roles of ϕ and ϕ⊥, we obtain the following. Let ϕ : M → G2(R

n) a non-constant harmonic
map with ϕ⊥ strongly conformal. Then ϕ has a unique J2-holomorphic lift ψ = (W,ϕ⊥,W ) :
M → FR

1,n−2; see also Corollary 7.4.

6.4. J2-holomorphic lifts for maps to the space of orthogonal complex structures. The
analogues of the results of §6.3 are as follows; the first following from the results of §6.3 and
Corollary 6.23(iii) of [33].

Proposition 6.17. Let Φ : M → ΩU(n) be a ν-invariant polynomial extended solution which
is real of some odd degree r = 2s + 1. Then (i) n is even, i.e., n = 2m for some m ∈ N; (ii)
ϕ = Φ−1 :M → O(2m)/U(m) is a harmonic map of finite uniton number; (iii) all such harmonic
maps ϕ are given this way up to sign; in fact, we may take Φ to be normalized of degree at most
2m− 3. �
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Theorem 6.18. Let Φ : M → ΩU(2m) be a ν-invariant polynomial extended solution which is
normalized and real of odd degree r = 2s + 1. Let ϕ = Φ−1 : M → O(2m)/U(m) be the resulting
harmonic map. Then ϕ has a J2-holomorphic lift ψ : M → ZR

d0,...,ds
for some (d0, d1, . . . , ds)

with s ≤ 2m − 3 and
∑s
i=0 di = m, namely the canonical twistor lift defined by Φ (see Theorem

4.8). �

Corollary 6.19. Let ϕ : M → O(2m)
/
U(m) be a harmonic map of finite uniton number. Then

either ϕ or −ϕ has a J2-holomorphic twistor lift ψ :M → ZR

d0,d1,...,ds
for some (d0, d1, . . . , ds) with

s ≤ 2m− 3 and
∑s
i=0 di = m, namely the canonical twistor lift defined by a normalized extended

solution Φ with Φ−1 = ±ϕ. �

Example 6.20. As in Example 6.11, let 0 = β0 ⊂ β1 ⊂ · · · ⊂ βr ⊂ βr+1 = C
n be a real

superhorizontal sequence. Set ψi = βi+1 ⊖ βi. If r is odd, say r = 2s+1, then ϕ = Φ−1 =
∑
j ψ2j

is a map into O(2m)/U(m). The map ψ = (ψ0, ψ1, . . . , ψr) : M → ZR

d0,...,ds
is thus the canonical

twistor lift of ϕ defined by Φ; again, as in §5.3, it is superhorizontal.
The construction of real superhorizontal sequences is discussed in [33, §6.4].

As for maps into real Grassmannians, we can actually find lifts for harmonic maps which are
not of finite uniton number provided they are nilconformal, as follows.

Proposition 6.21. Let ϕ : M → O(2m)
/
U(m) be a harmonic map. Then ϕ or −ϕ has a

J2-holomorphic twistor lift ψ :M → ZR

d0,...,ds
for some s and di if and only if ϕ is nilconformal.

Proof. As before, if there is a twistor lift, then there is an Aϕz -filtration so that ϕ is nilconformal.
Conversely, as in Proposition 6.12 we can construct a real Aϕz -filtration which splits. Lemma

3.7(i) or (ii) then gives a moving flag which satisfies the J2-holomorphicity condition; reality of
the filtration implies that this flag is real. We can then apply Operations 1 and 2, and Operation
3 symmetrically (i.e., if a zero leg ψi is removed, so is its conjugate ψs−i), to remove zero legs
whilst preserving reality; once that is done, we are left with a twistor lift ψ as stated. �

7. Harmonic maps into quaternionic spaces

7.1. Twistor lifts of maps into quaternionic Grassmannians and Sp(m)/U(m). The results
of the previous section for the orthogonal group hold for the symplectic group Sp(m), with a few
modifications. We give here some definitions, and refer to [25] and [33, §6.8] for more results on
harmonic maps into Sp(m).

To define the relevant twistor spaces, let J be the conjugate linear endomorphism of C2m ∼= H
m

corresponding to left multiplication by the quaternion j. Let d0, d1, . . . , ds be positive integers
with ds+2

∑s−1
i=0 di = m, and set di = d2s−i for i = s+1, . . . , 2s. Define a submanifold F Jd0,...,ds ⊂

Fd0,...,d2s by

F Jd0,...,ds =
{
ψ = (ψ0, ψ1, . . . , ψ2s) ∈ Fd0,...,d2s : ψi = Jψ2s−i ∀i

}
.

Note that the middle leg ψs is quaternionic, i.e., Jψs = ψs.
Similarly, let d0, d1, . . . , ds be positive integers with d0 + · · · + ds = m, set di = d2s+1−i for

i = s, . . . , 2s+ 1, and define a submanifold ZJ
d0,...,ds

⊂ Fd0,...,d2s+1
by

ZJ
d0,...,ds =

{
ψ = (ψ0, ψ1, . . . , ψ2s+1) ∈ Fd0,...,d2s+1

: ψi = Jψ2s+1−i ∀i
}
.

As in the previous section, the projection (3.2) restricts to homogeneous projections πJe from
F Jd0,...,ds to the quaternionic Grassmannian Gk(H

m) = Sp(m)
/
Sp(k) × Sp(m − k) where k =∑s

i=0 d2i, and from ZJ
d0,...,ds

to the space Sp(m)/U(m) of quaternionic complex structures on

C
2m.
A map ϕ : M → U(2m) takes values in the subgroup Sp(m) if and only if Jϕ = ϕJ . Let r be

an integer; then an extended solution Φ is said to be symplectic (of degree r) if JΦJ−1 = λ−rΦ.
Set W = ΦH+; then Φ is symplectic (of degree r) if and only if JW⊥ = λ1−rW , in which case W
is also said to be symplectic (of degree r). On setting ϕ = Φ−1, it follows that ϕ (if r is even) or iϕ
(if r is odd) takes values in Sp(m). If Φ is ν-invariant, then ϕ takes values in an inner symmetric
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space of Sp(m), more specifically, a quaternionic Grassmannian (if r is even) or Sp(m)/U(m) (if
r is odd).

Given a polynomial, ν-invariant, symplectic extended solution Φ, we obtain from the canonical
filtration of W = ΦH+ a twistor lift ψ of ϕ = Φ−1 with values in either F Jd0,...,ds or ZJ

d0,...,ds
according as r = 2s or r = 2s+ 1. This is proved in the same way as was done for the orthogonal
group in the previous section.

We obtain similar theorems to those of Sections 6.3 and 6.4; we leave the reader to write these
down.

Example 7.1. A superhorizontal sequence 0 = β0 ⊂ β1 ⊂ · · · ⊂ βr ⊂ βr+1 = C
2m is said to

be symplectic if Jβ⊥
i = βr−i for all i. Writing, as before, ψi = βi+1 ⊖ βi and di = rankψi, then

ψ = (ψ0, ψ1, . . . , ψr) satisfies the superhorizontality condition (3.3); so if the di are all non-zero, ψ
is a superhorizontal holomorphic map with values in F Jd0,...,ds (if r = 2s) or ZJ

d0,...,ds
(if r = 2s+1).

Set Φ =
∑r
i=0 λ

iπψi
; equivalently, W = ΦH+ =

∑r−1
i=0 λ

iβi+λ
rH+ . Then Φ is an S1-invariant

extended solution, symplectic of degree r, and Φ−1 = πJe ◦ ψ. Conversely, any symplectic S1-
invariant extended solution is given this way.

Recall that a full holomorphic map h : M → CP 2m−1 is said to be totally J-isotropic if
G(2m−1)(h) = Jh [2]. Then setting βi = h(i−1) defines a superhorizontal symplectic sequence of

length 2m− 1; the superhorizontal holomorphic map ψ takes values in ZJ
1,...,1 (with m 1s) and is

a J2-holomorphic twistor lift of a harmonic map into Sp(m)/U(m).

Example 7.2. (i) Recall from Example 5.11 that a ∂′-pair (i.e., superhorizontal sequence of length
2) 0 ⊂ β1 ⊂ β2 ⊂ C

n gives rise to two harmonic maps: the mixed pair ϕ = β1 ⊕ β⊥
2 and the

strongly isotropic map ϕ⊥ = β2⊖β1. Suppose that n = 2m. Then the harmonic maps ϕ and ϕ⊥ are
quaternionic, i.e., have image in a quaternionic Grassmannian G∗(H

m), if and only if β⊥
2 = Jβ1,

in which case (β1, β
⊥
2 ) = (β1, Jβ1) is called a quaternionic mixed pair [2] and ϕ = β1 ⊕ Jβ1. In

this case, the canonical lift of ϕ defined by the extended solution (5.11) is the superhorizontal
holomorphic map ψ = (β1, ϕ

⊥, Jβ1) :M → FR

d0,d1
where d0 = rankβ1, d1 = 2m− 2d0.

(ii) In the case that β1 has rank one, we have ϕ = β1 ⊕ Jβ1 : M → HPm−1. We may identify
F J1,2m−2 with CP 2m−1 via the map (ψ0, ψ1, ψ2) 7→ ψ0. With this identification, πR

e : CP 2m−1 →
HPm−1 is the standard Riemannian fibration which maps L ∈ CP 2m−1 to L ⊕ JL ∈ HPm−1,
and the canonical lift of ϕ gives the superhorizontal holomorphic map β1 ∼= (β1, ϕ

⊥, Jβ1) : M →
CP 2m−1 ∼= F J1,2m−2.

(iii) Let h : M → CP 2m−1 be a full totally J-isotropic map. Then JG(m−1)(h) = G(m)(h),
and the harmonic map ϕ⊥ = G(m−1)(h)⊕G(m)(h) :M → HPm−1 is called a quaternionic Frenet
pair [2]. As in Example 5.11(iii), set β1 = h(m−2) and β2 = h(m). Then Jβ⊥

2 = β1 and the
canonical lift of ϕ defined by the extended solution (5.11) is the superhorizontal holomorphic map
(β1, ϕ

⊥, Jβ1) : M → F Jm−1,2. Since ϕ is strongly conformal, ϕ⊥ also has a (unique) twistor lift

as in Example 3.15(iv), namely the J2-holomorphic map G(m)(h) ∼=
(
G(m)(h), ϕ,G(m−1)(h)

)
=(

G′′(ϕ), ϕ,G′(ϕ)
)
:M → CP 2m−1 ∼= F J1,2m−2 .

In contrast to harmonic maps from the 2-sphere to real and complex projective spaces, harmonic
maps from the 2-sphere to quaternionic projective spaces are harder to describe: see [2] for a
method of reduction to Frenet and mixed pairs, and see [25, 33] for uniton factorizations; however,
there is one important class that we can completely describe, we turn to that class now.

7.2. Inclusive harmonic maps into quaternionic Kähler manifolds. Recall [30] that a
quaternionic Kähler manifold N4n is a real oriented 4n-dimensional Riemannian manifold whose
holonomy belongs to the subgroup Sp(n)Sp(1) of SO(4n). Such a manifold has a natural CP 1-
bundle Q → N whose fibre at a point q ∈ N consists of all the orthogonal complex structures
on TqN which are ‘compatible’ with the Sp(n)Sp(1) structure; we will call Q the twistor space of
N in the quaternionic sense. Any oriented Riemannian 4-manifold satisfies the above definition
with Q → N equal to the bundle Z+ → N of positive almost Hermitian structures, but, as this
dimension is exceptional, most authors insist that n ≥ 2 in the definition of ‘quaternionic Kähler’.

We call a subspace of TN quaternionic if it is closed under Q. A weakly conformal map
ϕ :M → N from a Riemann surface to a quaternionic Kähler manifold is called inclusive [31, 15]
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if, for each p ∈ M , dϕ(TpM) is contained in a 4-real-dimensional quaternionic subspace Sp of
Tϕ(p)N . This is equivalent to saying that, for each p ∈ M , there is a qp ∈ Qϕ(p) with respect to
which ϕ is holomorphic, i.e., its differential intertwines the complex structure on TpM with qp.

If dϕ(p) is non-zero, dϕ(∂/∂z) spans an isotropic subspace; Sp and qp are determined uniquely
by that. If ϕ is harmonic, then dϕ(∂/∂z) is holomorphic with respect to the Koszul–Malgrange
structure on ϕ−1T cN (see, for example, [7, Chapter 2]); as usual, we can fill out zeros to extend
the span of dϕ(∂/∂z), and so S and q, smoothly across the zeros of dϕ. Thus a (weakly conformal)
inclusive harmonic map has a twistor lift ψ :M → Q; Eells and Salamon [15] showed that this lift
is J2-holomorphic, establishing that there is a one-to-one correspondence between inclusive weakly
conformal harmonic maps ϕ : M → N and J2-holomorphic maps ψ : M → Q which project to ϕ.
We identify this correspondence for the three quaternionic Kähler manifolds, the Grassmannians

G̃4(R
n), G2(C

n) and quaternionic projective space HPm−1.

(i) First, we consider the real Grassmannian N = G̃4(R
n) = SO(n)

/
SO(4) × SO(n − 4) of

oriented 4-dimensional subspaces of Rn. Taking the orthogonal complement of a subspace identifies

this with G̃n−4(R
n); then, for each Y ∈ N , TYN can be identified with the space HomR(Y

⊥, Y )
of real linear maps. Set Q+

Y (resp. Q−
Y ) equal to the set of almost complex structures on TYN

given by postcomposition of an element of Hom(Y ⊥, Y ) with a positive (resp. negative) almost
Hermitian structure on Y . Then the bundle Q+ → N is the twistor space of N in the quaternionic
sense; to see Q− → N as a quaternionic Kähler structure, we must put the other orientation on
N or proceed as follows.

We may identify Q+
Y (resp. Q−

Y ) with the space of maximal positive (resp. negative) isotropic
subspaces of Y by associating to q ∈ Q its (0, 1)-space V ; thus the bundleQ+ → N can be identified

with πR
e : FR

2,n−4 → N . Let A : G̃n−4(R
n) → G̃n−4(R

n) be the map which sends each subspace to

the same subspace with the opposite orientation: thus for n = 5, A : G̃1(R
5) = S4 → S4 is the

antipodal map A(x) = −x; then Q− → N can be identified with the bundle A ◦ πR
e : FR

2,n−4 → N .

Let i : G̃n−4(R
n) → Gn−4(R

n) →֒ Gn−4(C
n) be the canonical immersion (see §6.1). We have

the following result.

Proposition 7.3. Let ϕ : M → G̃4(R
n) be a non-constant weakly conformal harmonic. Then

either ϕ or A ◦ ϕ is inclusive if and only if i ◦ ϕ⊥ is strongly conformal. In this case ϕ or A ◦ ϕ
has a J2-holomorphic lift ψ :M → Q± = FR

2,n−4.

Proof. By definition, i ◦ ϕ⊥ strongly conformal means that, at each point p ∈ M , the Gauss
transforms G′(i ◦ϕ⊥) and G′′(i ◦ϕ⊥) are orthogonal. Now, under the inclusion map i, dϕp(∂/∂z)
and dϕp(∂/∂z̄) map to A′

i◦ϕ⊥ and A′′
i◦ϕ⊥ , respectively, so that strong conformality of Φ is equivalent

to the image of dϕp(∂/∂z) being an isotropic subspace of ϕ(p) × C of dimension one or two. By
filling out zeros we obtain the isotropic image subbundle Imdϕ(∂/∂z) of rank one or two.

If Imdϕ(∂/∂z) is of rank one, then there are precisely two isotropic subbundles of ϕ(p)× C of
rank two containing it, giving two almost Hermitian structures q at each point, one positive and
one negative. The positive one gives a lift of ϕ into Q+; the negative one gives a lift into Q−,
equivalently, of A ◦ ϕ into Q+.

If Imdϕ(∂/∂z) is of rank two, then it defines a positive or negative almost Hermitian structure
at each point, giving a lift into either Q+ or Q−. �

(ii) We next consider the complex Grassmannian G2(C
n). On identifying C

n with R
2n, G2(C

n)
can be considered as the totally geodesic submanifold of G4(R

2n) given by {Y ∈ G4(R
2n) :

Y is complex}. We give G2(C
n) the conjugate of its canonical complex structure, i.e., that inher-

ited from Gn−2(C
n) by the identification G2(C

n) → Gn−2(C
n) given by Y 7→ Y ⊥. Then the com-

plexified tangent space to G2(C
n) at any Y can be identified with HomC(Y

⊥, Y )⊕HomC(Y, Y
⊥),

where the summands are the (1, 0)- and (0, 1)-tangent spaces for this complex structure on
G2(C

n). The manifold G2(C
n) has a quaternionic Kähler structure with quaternionic twistor

space πe : F1,n−2,1 → G2(C
n). The almost Hermitian structure qY on TYG2(C

n) corresponding to
(V, Y ⊥,W ) ∈ F1,n−2,1 is that determined by the subspace V of Y (or its orthogonal complement
W in Y ), explicitly, the (1, 0)-space of qY is HomC(Y

⊥, V )⊕ HomC(W,Y
⊥) (cf. [29, p. 125(iii)]).
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We have an embedding of F1,n−2,1 in FR
2,2n−4, covering the inclusion of G2(C

n) in G4(R
2n), given

by (V, Y ⊥,W ) 7→ (V +W,Y ⊥, V +W ).
Now, a map ϕ⊥ :M → Gn−2(C

n) is strongly conformal if and only if its composition with the
inclusion mappings Gn−2(C

n) →֒ G2n−4(R
2n) →֒ G2n−4(C

2n) is strongly conformal, so we obtain
the following: the first part is due to Rawnsley [9, §5C]; uniqueness comes from Example 3.15.

Corollary 7.4. Let ϕ :M → G2(C
n) be non-constant and weakly conformal. Then ϕ is inclusive

if and only if ϕ⊥ is strongly conformal. In that case ϕ has a unique J2-holomorphic lift ψ :M →
Q = F1,n−2,1 given by

ψ =
(
G′′(ϕ⊥), ϕ⊥, G′(ϕ⊥)

)
.

On including G2(C
n) in G4(R

2n) and F1,n−2,1 in FR
2,2n−4, this coincides with the lift given by

Proposition 7.3.

(iii) Lastly, we consider the quaternionic projective space HPm−1. On identifying Hm with C
2m,

the space HPm−1 can be though of as the totally geodesic submanifold of G2(C
2m) given by {Y ∈

G2(C
2m) : Y is quaternionic}. The quaternionic Kähler structure on G2(C

2m) has quaternionic
twistor space Q = πJe : F J1,2m−2 → HPm−1; as in Example 7.2(ii), this is the standard fibration

CP 2m−1 → HPm−1. We have an embedding of F J1,2m−2 in F1,2m−2,1, covering the inclusion of

HPm−1 in G2(C
2m), given by F J1,2m−2

∼= CP 2m−1 ∋ V 7→
(
V, (V + JV )⊥, JV

)
∈ F1,2m−2,1.

Using G′′(ϕ) = JG′(ϕ), we deduce the following from Corollary 7.4, cf. [9, Proposition 5.7].

Corollary 7.5. Let ϕ : M → HPm−1 be non-constant and weakly conformal. Then it is in-
clusive if and only if ϕ is reducible, i.e., its Gauss transform G′(ϕ) has rank one. In this
case, G′(ϕ⊥) also has rank one and ϕ has a unique J2-holomorphic lift into F J1,2m−2 given by

ψ = (G′(ϕ⊥), ϕ⊥, JG′(ϕ⊥)). On including F J1,2m−2 in F1,2m−2,1, this agrees with the lift given in
Corollary 7.4.

8. Explicit formulae for twistor lifts

8.1. Formulae from the Grassmannian model. Corollary 5.3 describes how twistor lifts which
are J2-holomorphic can be obtained from (partial) uniton factorizations with basic unitons. We
show how to find explicit formulae for these lifts.

First of all, we recall from [33] how to find explicit formulae for all polynomial extended solu-
tions, and thus for all harmonic maps of finite uniton number from a surface into U(n), in terms
of arbitrary holomorphic data.

We need the following construction of M. A. Guest [22]: Let r ∈ N and let X be an arbitrary
holomorphic subbundle of (Crn, ∂z̄). Set W equal to the following subbundle of H+:

(8.1) W = X + λX(1) + λ2X(2) + · · ·+ λr−1X(r−1) + λrH+ ,

where X(i) denotes the ith osculating space of X as in Example 5.6. Then W is an extended
solution satisfying (4.2), and all such W are given this way (we can take X = W ); we shall

say that X generates W . We shall describe subbundles of a trivial holomorphic bundle (CN , ∂z̄)
(N ∈ N) by giving meromorphic spanning sets for them, as in [33, §4.1]. As in that paper, by
the order o(L) of a meromorphic section L of H+ we mean the least integer i such that PiL 6= 0;

equivalently, L = λo(L)L̂ for some L̂ =
∑
ℓ≥0 λ

ℓL̂ℓ with L̂0 non-zero. Let {Lj} be a meromorphic

spanning set for X. Then a meromorphic spanning set for W mod λW is {λk(Lj)(k) : 0 ≤ k ≤ r}.
Now choose a uniton or partial uniton factorization (5.3) of W satisfying (5.6). Thus, writing

W = ΦH+, the extended solution Φ has (partial) uniton factorization (5.1) with unitons αi which
are basic for Φi−1. The corresponding F -filtration (Yi) is given by (5.5) and the Aϕz -filtration
corresponding to that is given by Zi = P0 ◦ Φ−1Yi. If {Hi

j} is a meromorphic spanning set for

Yi mod λW , then {P0 ◦ Φ−1Hi
j} is a meromorphic spanning set for Zi; then a basis for the legs

ψi = Zi ⊖ Zi+1 can be found from that set by the Gram–Schmidt process. If all the legs are
non-zero, this gives the J2-holomorphic twistor lift of ϕ = Φ−1 described in Corollary 5.3.

To calculate this explicitly, first, we need to find a meromorphic spanning set {Hi
j} for each

Yi from a meromorphic spanning set for W ; in the examples below, this is done by finding a
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meromorphic spanning set for W adapted to the filtration (Yi). Second, let S
r
s denote the sum of

all r-fold products of the form Πr · · ·Π1 where exactly s of the Πj are π
⊥
αj

and the other r− s are

παj
. Then given a meromorphic spanning set {Hi

j} for Yi mod λW , the meromorphic spanning

set {P0 ◦ Φ−1Hi
j} for Zi is given by P0 ◦ Φ−1Hi

j =
∑r
s=k S

r
sPs(H

i
j). We now see how this works

for our two main examples; other examples can be done similarly.

Example 8.1. We find explicit formulae for the canonical twistor lift of the harmonic map ϕ =
Φ−1 defined by a normalized extended solution W = ΦH+ . Let X generate W and let {Lj} be a
meromorphic spanning set for X. The filtration (Yi) which gives the canonical twistor lift is given
by (4.7), and a meromorphic spanning set for Yi mod λW is {λk(Lj)(k) : i ≤ o(Lj) + k ≤ r}.

Let α1, . . . , αr be the Uhlenbeck unitons of Φ, see Example 5.5; then a meromorphic spanning
set for the corresponding Aϕz -filtration Zi = P0 ◦ Φ−1Yi is given by

Zi = span
{ r∑

s=k

SrsPs−k(Lj)
(k) : i ≤ o(Lj) + k ≤ r

}
.

Applying the Gram–Schmidt process gives explicit formulae for the canonical twistor lift ψ of
ϕ = Φ−1 defined by Φ.

Example 8.2. Suppose that ϕ : M → G∗(C
n) is a nilconformal harmonic map. Let U ⊂ M

be a domain on which it admits an associated extended solution; we find explicit formulae for
Burstall’s twistor lift (Example 3.13) of ϕ on that domain. As in Lemma 4.3 we can find a ν-
invariant extended solution Φ with Φ−1 = ϕ. Set W = ΦH+ as usual. Let X generate W and let
{Lj} be a meromorphic spanning set for X. The relevant filtration (Yi) is described in Example

4.10; a meromorphic spanning set for Yi mod λYi is given by {λk(Lj)(k) : i ≤ k ≤ r}. Hence a
meromorphic spanning set for the corresponding Aϕz -filtration Zi = P0 ◦ Φ−1Yi is given by

Zi = span
{ r∑

s=k

SrsPs−k(Lj)
(k) : i ≤ k ≤ r

}
.

Applying the Gram–Schmidt process gives explicit formulae for the twistor lift ψ of ±ϕ defined
in Example 3.13.

Note that, (i) in both cases, the harmonic map ϕ is given (a) as the product of unitons by the
formulae in [33, §4.1], (b) as the sum

∑
ψ2j of the even-numbered legs of ψ; (ii) we can generate

all harmonic maps M → G∗(C
n) of finite uniton number, and the above twistor lifts of them,

by freely choosing meromorphic functions Lj : M → C
n and computing the lifts as above, giving

completely explicit formulae for all harmonic maps of finite uniton number from a surface to a
complex Grassmannian and their twistor lifts.

8.2. Examples.

Example 8.3. Let ϕ be a harmonic map from a Riemann surface to G2(C
4) of (minimal) uniton

number 3. We shall find a J2-holomorphic twistor lift of ±ϕ. By [33, Corollary 5.7], there is a
polynomial extended solution Φ of degree 3 with Φ−1 = ±ϕ. On replacing ϕ by its orthogonal
complement if necessary, we may assume that Φ−1 = ϕ. Set W = ΦH+ . This is closed under ν
and so has the form

(8.2) W = span{H0 + λ2H2}+ λδ2 + λ2δ3 + λ3H+

where H0, H2 :M → C
4 are meromorphic maps (equivalently, meromorphic sections of the trivial

bundle C
4), the δi are subbundles of C

4, and setting δ1 = span{H0}, we have (δ1)(1) ⊂ δ2
and(δ2)(1) ⊂ δ3.

Now, none of the δi is constant, otherwise, (πδi + λ−1πδi)Φ would be a polynomial extended
solution of degree 2 associated to ϕ, contradicting the definition of uniton number. It follows that
δ1 is full, δi = (H0)(i−1) and δi has rank i (i = 1, 2, 3).

All the filtrations of Examples 3.13, 3.14 and 3.15 have length 3 and agree; further, rankZi =
4 − i (i = 0, 1, 2, 3, 4), so that the legs ψi = Zi ⊖ Zi+1 are of rank one. With notation as in
those examples, since Z1 6= C

4, either U1 6= ϕ or V1 6= ϕ⊥; assume without loss of generality the
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former. Then we obtain the diagram (8.3), with Zi =
∑4
j=i+1 ψj , ϕ = ψ0 ⊕ψ2 and ϕ⊥ = ψ1 ⊕ψ3.

As before the arrows show the possible non-zero second fundamental forms A′
ψi, ψj

. The second

diagram is identical to the first, but is drawn to be in keeping with our earlier diagrams, with
‘across’ arrows going down.

(8.3)

ψ0

!!

// ψ1

}}

ψ2
//

OO

ψ3

OO
ψ0

''

��

ψ1

ww
ψ2

''

OO

ψ3

OO

As in Example 5.4, one factorization of Φ is provided by its Segal unitons, which we shall denote
by βi. According to [20, Example 4.9(i)], these are given by β1 = h, β2 = h(1) and

(8.4) β3 = span{H0 + π⊥
h(1)

H2} ⊕G(1)(h)⊕G(2)(h) = span{H0 + π⊥
h(2)

H2} ⊕G(1)(h)⊕G(2)(h).

where G(i)(h) denotes the ith ∂′-Gauss transform of h (see §2.2). Hence

(8.5) ϕ = span{H0 + π⊥
h(1)

H2} ⊕G(2)(h) = span{H0 + π⊥
h(2)

H2} ⊕G(2)(h).

Another factorization of Φ is provided by the Uhlenbeck unitons, see Example 5.5; we shall
denote these by γi. By the formulae in [33, Example 4.6], they are given by γ1 = h(2), γ2 = h(1),

and γ3 = span{H0 + π⊥
h(2)

H2}.
From Example 5.5, we have ψ0 = γ3 and ψ1 = γ⊥2 ∩ γ1 = G(1)(h). It follows from (8.5) that

ψ2 = G(2)(h). From (8.4), we have β3 = ψ0 ⊕ ψ1 ⊕ ψ2 so that ψ3 = β⊥
3 . Thus we obtain the

J2-holomorphic twistor lift ψ = (γ3 , G
(1)(h) , G(2)(h) , β⊥

3 ) :M → F1,1,1,1 of ϕ.

From the diagram we see that ϕ⊥ = ψ1 ⊕ ψ3 is the sum of the harmonic map ψ1 = G(1)(h)
and the antiholomorphic subbundle ψ3 of {ψ1 ⊕ G(1)(ψ1)}⊥ = ψ0 ⊕ ψ3, in accordance with J.
Ramanathan’s description [28].

We finish with two examples: the first one real and the second one symplectic.

Example 8.4. Let H0, H1, H2, H3 :M → C
n be meromorphic maps, set δ1 = span{H0, H2}, and

consider the ν-invariant extended solution W = ΦH+ given by

W = span{H0 + λ2H1, H2 + λ2H3}+ λδ2 + λ2δ3 + λ3H+ ,

where 0 ⊂ δ1 ⊂ δ2 ⊂ δ3 ⊂ C
n is a superhorizontal sequence. By the formulae in [33, Example 4.6],

we calculate the Uhlenbeck unitons as

(8.6) γ1 = δ3 , γ2 = δ2 , γ3 = span{H0 + π⊥
δ3H1, H2 + π⊥

δ3H3} ,
and the corresponding harmonic map ϕ = Φ−1 :M → G∗(C

n) is given by ϕ = γ3⊕(δ⊥2 ∩δ3). From
Proposition 5.2 we calculate the canonical lift (ψ0, ψ1, ψ2, ψ3) :M → F as follows: ψ0 = Z⊥

1 = γ3
and ψ1 = γ⊥3 ∩γ2 = δ⊥1 ∩δ2; since ϕ = ψ0⊕ψ2, this gives ψ2 = δ⊥2 ∩δ3. Finally, ψ3 = Z3 = π⊥

γ3(δ
⊥
3 ).

Now, as in [33, §6.6], we can choose the data Hi, δ2, δ3 such that W is real of degree 3.
Then, by Proposition 6.6 we have ψ0 = ψ3 and ψ1 = ψ2; thus n is even, say n = 2m, and
ϕ = ψ0⊕ψ2 = ψ0⊕ψ1 defines a harmonic map from M into O(2m)/U(m). The canonical twistor
lift of ϕ defined by Φ is the J2-holomorphic map (ψ0, ψ1, ψ1, ψ0) :M → O(2m)

/
U(2)×U(m− 2)

where ψ0 = γ3 and ψ1 = γ⊥3 ∩ δ2 with γ3 is given by (8.6).

Example 8.5. Let H0, H2, H3 :M → C
6 be meromorphic maps with span{H0} :M → CP 5 full,

and consider the ν-invariant extended solution W = ΦH+ given by

W = span{H0 + λ2H2}+ λ span
{
(H0)(1), H3

}
+ λ2 span

{
(H0)(2), (H3)(1)

}
+ λ3H+.

Set

δ1 = span{H0}, δ2 = (H0)(1) + span{H3}, δ3 = (H0)(2) + (H3)(1).
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A simple calculation shows that the Uhlenbeck unitons of W are given by γ1 = δ3, γ2 = δ2 and
γ3 = span{H0 + π⊥

δ3
H3}. The corresponding harmonic map ϕ = Φ−1 of minimal uniton number 3

is given by

ϕ = γ3 ⊕ (δ⊥2 ∩ δ3) :M → G3(C
6).

From Proposition 5.2, the legs of the canonical Aϕz -filtration defined by Φ are given by ψ0 = γ3,
ψ1 = δ2 ⊖ δ1, ψ2 = δ3 ⊖ δ2 and ψ3 = π⊥

γ3δ
⊥
3 . The canonical twistor lift of ϕ defined by Φ is the

J2-holomorphic map ψ = (ψ0, ψ1, ψ2, ψ3) :M → F1,2,2,1.
As in [33, Example 6.31] we see that W is symplectic of degree 3 if H0 is totally J-isotropic

and H3 is a section of (H0)(3). In this case, ϕ takes values in Sp(3)/U(3), and Jψ0 = ψ3,
Jψ1 = ψ2. Then the canonical twistor lift of ϕ : M → Sp(3)/U(3) defined by Φ is the J2-
holomorphic map ψ : M → ZJ1,2 = Sp(3)/U(1) × U(2) given explicitly by ψ = (ψ0, ψ1, Jψ1, Jψ0)

where ψ0 = span{H0 + π⊥
δ3
H3} and ψ1 = G′(δ1) + span{H3}.
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