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Rahul Summan, Gary Bolton, Stephen G. Pierce and Malcolm Macdonald

University of Strathclyde, Glasgow, UK

Abstract

A novel approach to the autonomous generation of trajectories for multiple
aerial vehicles is presented, whereby an artificial kinematic field provides au-
tonomous control in a distributed and highly scalable manner. The kinematic
field is generated relative to a central target and is modified when a vehicle is
in close proximity of another to avoid collisions. This control scheme is then
applied to the mock visual inspection of a nuclear intermediate level waste
storage drum. The inspection is completed using two commercially available
quadcopters, in a laboratory environment, with the acquired visual inspec-
tion data processed and photogrammetrically meshed to generate a three-
dimensional surface-meshed model of the drum. This paper contributes to
the field of multi-agent coverage path planning for structural inspection and
provides experimental validation of the control and inspection results.

Keywords: Automatic Optical Inspection, Photogrammetry, Swarm,
Unmanned Aerial Vehicles.

1. Introduction

This paper considers the challenge of using autonomous unmanned aerial
vehicles (UAVs) to visually inspect structural assets such as tanks, flair
stacks, chimnes, and wind turbines. Results are presented for a mock in-
spection of a nuclear intermediate level waste (ILW) storage drum chosen for
its convenient size, which enabled laboratory based research, and relevance to
industrial partners (National Nuclear Laboratory). Visual structural inspec-
tion, using UAVs, has seen interest in the literature through its application to
the inside and outside of buildings, for example [1, 2, 3], industrial facilities
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[4, 5, 6], landscapes/agriculture and archaeological sites [7, 8, 9]. The cur-
rent state-of-the-art for UAV motion control has not progressed far beyond
the use of waypoints in conjunction with position tracking, such as Global
Positioning System (GPS), to autonomously travel to desired points in a set
sequence. Such approaches require the calculation of many possible trajecto-
ries, followed by collision risk assessment and optimisation routines to reduce
the options before a final selection, as in [10, 11]. The authors instead propose
a computationally light and highly scalable, collision-free, control scheme for
multiple UAVs that could be implemented in a distributed manner.

This scheme is applied to automated structural inspection, where cover-
age is achieved by minimising the un-scanned areas. Techniques that aim to
achieve complete area coverage over a desired region are performing Coverage
Path Planning (CPP), which refers to any procedure used for determining
that a path passes over all points of an area or volume while avoiding obsta-
cles [12]. CPP algorithms can be classified as heuristic or complete depend-
ing on if they probably or definitely guarantee complete coverage of the free
space [12]. CPP for aerial vehicles has primarily received research attention
in areas such as surveillance [13], agriculture [14] and disaster/emergency
management [15]. When considering quantifiable structural inspection, the
authors are aware of little research on coverage path planning, especially
when considering aerial vehicles. This paper presents a simple but novel ap-
proach to automated CPP for multiple aerial vehicles for remote inspection.
This approach enables inspection with minimal manual intervention but also
features inherent scaling flexibility, which could enable a swarm of vehicles
to work in parallel to reduce the time required for inspection by following,
vehicle and target, collision free paths.

The approach, detailed in this paper, relies on an analytically defined
vector field (often referred to as a Lyapunov vector field) that is used to create
a guidance law. A popular way of defining such a field is through the gradient
of a scalar function, called an artificial potential function (APF). This was
first used in a control architecture by Khatib [16], before Spears et al. applied
this concept to the pattern formation problem in multi-agent systems [17, 18].
This control technique has the advantage of being analytically verifiable and
has been successfully demonstrated for real world applications [19, 20].

To enable the desired inspection trajectories the vector field has to be
defined without considering an associated potential function, for this reason
it shall be referred to here as an Artificial Kinematic Field (AKF). AKFs
have been the subject of UAV research for both single vehicle control and
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coordinated formations [21, 22, 23]. AKF convergence to a desired behaviour,
just like with APF, can be proved by means of Lyapunov stability theory.
In particular, the problem of circling a target has been considered with fixed
wing UAV in simulations and in an open field by Lawrence [21] and Frew
[22], where the circling of a moving target was also undertaken. The task in
this paper is to adapt these concepts to multiple aerial vehicles, where the
main challenge is in preventing vehicle collisions.

A popular way to perform collision avoidance in multi-agent systems is
through mutual repulsive potential, see for example [19, 23, 24, 25]. This way
each agent alters the kinematic field by producing a short-range repulsive
action on the other agents. This is an efficient but crude mechanism for
performing collision avoidance as the trajectories generated only consider
collision prevention and, hence, can be detrimental to the overall objective.
Therefore, a less disruptive approach will be presented that blends well with
the global kinematic field.

1.1. Three-Dimensional Model Construction

The inspection can be completed using the aforementioned control meth-
ods but the collected data needs to be processed before reviewing the struc-
tural state of the target. An intuitive method for displaying visual inspection
data is to map it into a three-dimensional (3D) space to allow a reviewer to
explore an object to check for faults and failures. Photogrammetry analysis
can enable the creation of a 3D model from the inspection images, providing
an estimation of the geometry as well as a reviewable environment.

State-of-the-art image based reconstruction systems derive markers or
features from the texture information present in the images and by triangu-
lating markers, creating point clouds corresponding to the geometry of the
scene. This method is attractive when dealing with remote environments
and has been previously investigated in the literature [26, 27, 28, 29]. In par-
ticular for robotic inspection [30] but also for archaeological work [31, 32],
where the reconstruction tools were the same as those adopted in this work.
The system detailed in this paper uses this reconstruction method to enable
a remote inspection that then provides data review in a similar manner to
an in-person inspection.
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2. Guidance and Control

To provide autonomous control for multiple vehicles, a kinematic field is
produced that is a function of the vehicle’s position with respect to a cen-
tral target. It provides a highly nonlinear guidance law which is mapped
to the control action through a linear controller. This arrangement gener-
ates smooth trajectories for the vehicles, which is desirable for many tasks
including autonomous visual inspection.

The control architecture is illustrated in Fig. 1. The desktop computer
is provided with the vehicle’s own position and the relative positions of the
other vehicles in the field by using a Vicon MX motion capture system [33],
which is discussed in more detail in Section 3. Based on this information,
the local kinematic field of each vehicle is computed to produce the desired
velocities in the horizontal plane of the external reference frame. These are
passed to a linear controller that provides the pitch and roll angles to the
on-board controller with desired yaw and vertical speeds also supplied. This
in turn commands the motors to execute the requested manoeuvre. The
control scheme is designed to be highly scalable if the vehicles have suffi-
cient on-board processing capabilities and position tracking. For the vehicles
used in the following work (Parrot AR.Drone 2.0) the on-board processing
is limited and hence the control is handled in a distributed manner but by a
central processor. The specifics of this scheme are detailed in the following
paragraphs.

Figure 1: Control architecture scheme for one vehicle (wireless data transfer indicated by
dotted line).
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2.1. Kinematic Field Definition

The kinematic field is defined in the horizontal plane, as the target is
assumed to have central symmetry characteristics, with the origin of the
global reference frame at the centre of the target. The fundamental structure
of the field is a modified version of the Hopf bifurcation function used in [23].
This function is described for an X-Y plane, where x and y are distances
from the centre of the field, as

vdx = c1(y + µx)−Rx
√

x2 + y2 (1)

vdy = c1(−x+ µy)−Ry
√

x2 + y2 (2)

where, R defines the radius of an ideal circular trajectory in the horizontal
plane enclosing a central target, c1 is a constant, vdx and vdy are desired ve-
locities in the x and y directions respectively and µ is a dimensionless scalar
parameter that, taken positive, guarantees the emergence of a limit cycle in
the field.

In particular, the choice of

µ =
R2

c1
(3)

guarantees a circular trajectory of radius R around the centre. This can be
verified by transforming eqs. (1) and (2) into polar coordinates and checking
that the radial velocity is always null at a distance R from the centre. It
can also be easily verified that, along the circular trajectory, the tangential
velocity is constant. The kinematic field is completed by a function that pro-
vides a more robust control system by strengthening the control action close
to the target to avoid collisions, while effectively leaving the characteristics
of the field produced with eqs. (1) and (2) unaltered. This function is a
radial field in the form 1/(1 +

√
x2 + y2), which increases the repulsion from

the centre while decreasing the attraction at large distances, thus making ap-
proaching manoeuvres smoother and preventing overshoots in the direction
of the target. The resulting field is described by

vdx =
c2

cU +
√

x2 + y2
[c1(y + µx)−Rx

√

x2 + y2] (4)

vdy =
c2

cU +
√

x2 + y2
[c1(−x+ µy)−Ry

√

x2 + y2] (5)
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where c2 is a constant used to scale the whole expression as appropriate to fit
its output within the control architecture and cU is a unitary constant with
dimensions [m]. The values for the constants used in this work were found
empirically and are tailored to the Parrot AR.Drone 2.0, but could remain
the same for implementations of this system with more vehicles. They are
c1 = 3× 105 m2, c2 = 1.5× 10−7 m−1s−1 and R = 1200 mm. In Fig. 2 a view
from above this field is represented with arrows and seven streamlines with
different starting points joining in the limit cycle. The constant c2 performs
a scaling function of the vectors in the field, but if negative then the vehicles
will be repelled from the desired radius. In the next section, the influence of
c1 shall be explored by showing its function in enabling collision avoidance.

2.2. Vehicle Collision Avoidance

The novel approach to vehicle collision avoidance, presented here, modi-
fies a vehicle’s kinematic field when it approaches another vehicle, reducing
the magnitude of the field’s rotating component. In order to be effective only
the trailing vehicle is inhibited. Identification of this vehicle is achieved by
considering the scalar product of the relative position vector with the desired
velocity vector. In reference to Fig. 3 a binary variable, h, is defined on the
basis of the scalar product with

Vdes1 · P2−1 ≥ 0 → h = 1 (6)

Vdes1 · P2−1 < 0 → h = 0 (7)

where P2−1 is the position vector of vehicle 2 with respect to vehicle 1 in
the global reference frame and Vdes1 is the desired velocity vector, as defined
by the kinematic field, for vehicle 1. This enables the kinematic field to
be modified asymmetrically, i.e. only the trailing vehicle, where h = 1, is
affected.

The desired velocity of vehicle 1, as calculated in eqs. (4) and (5), is fil-
tered to create the asymmetrically modified kinematic field. This is achieved
by replacing the constant c1 with the following function

c∗1 = H(|P2−1|)c1 (8)

where H(|P2−1|) is dimensionless and scales the rotational component of the
field as a function of P2−1; v

d∗

x and vd
∗

y are the desired x and y velocity vectors
for vehicle 1 within the modified field. This change does not affect the radial
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Figure 2: Image of three vehicle lab test
overlayed with kinematic field where ar-
row plots and streamlines highlight how a
vehicle would be affected (R = 1200mm).

Figure 3: Scheme for the avoidance ma-
noeuvre based on the direction of travel.

velocity at distance R from the target centre, which remains null, with the
calculation of µ in eq. (3) updated to

µ =
R2

c∗1
. (9)

This asymmetrically modified field only occurs when vehicles are within
close proximity. The H(|P2−1|) term that governs this proximity enables a
threshold distance between two vehicles to be defined, whereby passing this
point results in a switch of direction for the rotational component of the global
kinematic field affecting that drone, as depicted in Fig. 4. The modified
field, therefore, enables station keeping, relative to the leading vehicle, at
the defined distance from the target until the leading vehicle moves on. The
function used is in the form

H(|P2−1|) =
|P2−1| − ρ

||P2−1| − ρ| +
ρ− |P2−1|
|ρ− |P2−1||

e−
(|P2−1|−ρ)2

cs (10)

where ρ defines the threshold distance between vehicles and cs is an em-
pirically sought scaling factor that influences the gradient of the function
(cs = 15 × 104 m2). The value of cs may require adjustment, for example
to ensure collision avoidance while operating in a more turbulent environ-
ment where the vehicles may deviate from the kinematic field defined path.
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Fig. 4 details how the scaling of the kinematic field’s rotational component
affects the modified global field for one vehicle. This figure highlights that
H equals 0 at the threshold distance (ρ = 1000 mm), chosen as turbulence
dominates the vehicle’s motion when the inter-vehicle distance is less than
a metre. The rotational component of the kinematic field is shown in Fig.
4 to act in opposite directions either side of this threshold distance. Each
vehicle only considering the closest vehicle ahead of it when modifying its
kinematic field. In the case that one vehicle holds its position, all of the
following drones will form a queue along the circular trajectory as seen in
Fig. 5. Any final implementation of this system would require an override
to allow the system to carry on if the leading vehicle remains stationary due
to malfunction.

2.3. Altitude Control

A proportional controller is implemented to control the altitude of the
vehicles, which operates in conjunction with the quadcopter’s on-board, ul-
trasound dependant, altitude controller. The output of the proportional
controller is converted from the global to the body reference frame as shown
in Fig. 1. The requirements for altitude control were simple with the vehicle
decreasing its height by a set interval after target coverage was complete at
the current altitude, allowing a simple Z-axis waypoint to be used in conjunc-

Figure 4: Centre: H(|P2−1|) according to (10) where ρ = 1000 and cs = 15×104 m2. Side:
Instantaneous snapshots from above the modified kinematic field (centred on the target
with streamlines displaying flow in the field) at different values of H; rotating clockwise
(1), reduced rotational field strength as H → 0 (2), anti-clockwise with reduced (3) and
increased strength (4).
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tion with this controller to transition to different altitudes. To determine if
complete coverage has been achieved at any given altitude each vehicle has to
have knowledge of the vehicle ahead of it. In particular its starting position
at that coverage altitude, i.e. the point it has to reach before transitioning
to another altitude. In this way the control scheme remains easily scalable
with collision avoidance and coverage determination requiring each vehicle
to only observe the one ahead of it.

2.4. Attitude Control

For a typical quadcopter, pitch and roll angles are coupled with the for-
ward and lateral motion respectively. This design enables forward or side
force components to be produced by tilting the vehicle. When no forward
or side movements are commanded, the vehicle hovers and in this phase the
attitude is controlled in closed loop by the on-board controller only. This
is overridden by control commands when altering the yaw angle, which is
controlled in the same closed loop manner as the altitude. For the inspection
task, discussed in the following case study, the attitude controller keeps the
vehicle’s x-axis pointing in the direction of the target whilst the quadcopter
manoeuvres around it. As a consequence, the desired azimuth changes with
position. This is defined as

ψdes(i) = atan2(yi, xi)± π (11)

Figure 5: Testing collision avoidance with vehicle 3 queuing behind 2 and 2 queuing behind
the shell of vehicle 1, all of which are being tracked by the Vicon system.
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where xi and yi are the coordinates of the vehicle in the global reference
frame that is centred on the target and atan2(yi, xi) is similar to calculating
the arc tangent of yi/xi, except that the signs of both arguments are used
to determine the quadrant of the result in the range [−π,π]. To set the
desired vehicle angle towards the centre of the field ±π is applied to ensure
the result remains within the range [−π,π]. The error in the actual angle is
then mapped to an angular rate through a linear controller that selects the
shortest rotation direction to reach the desired angle.

2.5. Linear Control

The linear controller maps the desired velocity of each vehicle to com-
manded pitch and roll angles. The desired velocity vector is decomposed
along its forward and lateral components in the body reference frame and
these are scaled by a proportional controller. The result is then filtered to
output in the range [−1, 1], required for the AR.Drone on-board software, by
using the hyperbolic tangent function

γ∗ = tanh(γ) (12)

where γ is the vector of the controlled variables (including the roll angle ϕ,
pitch angle ϑ, vertical velocity vz and yaw rate ψ ) and γ∗ is the normalised
output.

A proportional controller is used to map from desired forward and lateral
velocities according to the kinematic field, vertical velocity and azimuth angle
to commanded pitch and roll angles, vertical velocity and yaw rate. The
controller is expressed by











ϑ
ϕ
vz
ψ











=











kϑvdes(x)
kϕvdes(y)

kz(Zdes − z)
kψ(ψdes − ψ)











(13)

where, vdes(x) and vdes(y) are the forward and lateral velocities in the body ref-
erence frame produced by the kinematic field, ψdes is the desired azimuth an-
gle that varies with time, ψ is the actual one, and kϑ, kϕ, kz, kψ are the gains
of the proportional controller. The values of the gains were sought empiri-
cally and specifically to achieve smooth dynamics with the Parrot AR.Drones
with kϑ = 0.7 sm−1, kϕ = 0.7 sm−1, kz = 1 s−1 and kψ = 1.5 used. The dif-
ference in the gains defined are a result of the quadcopter design with similar
control movements resulting in the same gains for kϑ and kϕ.
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3. Remote Inspection Case Study

A number of experiments were performed to validate the use of AKFs for
3D visual inspection using aerial vehicles:

1. Characterisation of the selected aerial vehicle’s flight performance.

2. Two-vehicle inspection of ILW storage drum; characterising flight per-
formance and capturing images for a 3D reconstruction of the drum.

3. A manual visual inspection of the drum, using the Parrot AR.Drone’s
camera, to ascertain the influence of flight motion on the 3D imaging
performance.

4. A manual visual inspection of the drum, using a 24.2MP digital single-
lens reflex (D-SLR) camera, to quantify the effect of the vehicle’s cam-
era quality on system performance.

3.1. Hardware

The Parrot AR.Drone 2.0 [34] was used in the experiment, a diagram of
which is shown in Fig. 6. The AR.Drone 2.0 is a four rotor helicopter, or quad-
copter, with a wingspan of 517 mm. It contains four brushless 28,500 RPM
motors with long blades of radius 98.5 mm.

The AR.Drone 2.0 includes an embedded 720p, 30 fps, camera with a
92◦ wide angled lens, which produces JPEG compressed images. It uses
a rolling shutter which will lead to some motion blur. A D-SLR camera,
equipped with a 24.2MP CMOS sensor [35] and 18–55 mm f/3.5–5.6G VR
[36] lens, was then used as the benchmark for experiment 4. It also employed
a fine JPEG, compression ratio 4:1, and was used in conjunction with a
tripod to obviate motion blur.

A six camera Vicon MX motion capture system [33] was used, as depicted
in Fig. 7, for positional tracking, providing coverage for a volume of approx-
imately 6×3 m. The Vicon system tracks 12 mm spherical reflectors, seven
of which can be seen on the top of the quadcopter in Fig. 6. Patterns of 3 or
more reflectors placed in a unique pattern for identification can be defined
as objects and tracked in 6 degrees of freedom at 100 Hz with an estimated
error of less than ±3 mm throughout the coverage volume [30].

The inspection sample was an intermediate level waste packaging and
encapsulation plant liquor drum, from the Sellafield nuclear reprocessing site,
that has a diameter of 800 mm and a height of 1200 mm. It was constructed
from 316 Stainless Steel.
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517 mm
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HD camera 1280x720

Figure 6: Parrot AR.Drone 2.0 with 7 re-
flective markers.

Figure 7: Vicon tracking system environ-
ment.

The experiment was designed to be laboratory based and hence is of a
smaller scale than the envisaged application. To inspect a large outdoor
structure, such as a chimney, the Parrot AR.Drones could be replaced by
commercial grade inspection drones such as the Falcon 8 from Ascending
Technologies [37] and the Vicon MX positioning system could be replaced by
GPS or for improved accuracy, differential GPS [38]. Pose uncertainty would
increase when comparing a GPS tracking system with that of Vicon, but the
control scheme can be adapted to compensate, with the collision avoidance
threshold distance increased as well as increasing the safety margin on the
set distance to target.

3.2. Inspection Setup

Given the size of the target and volume restrictions in the laboratory a
two quadcopter system was chosen for performing the inspection. The Parrot
AR.Drones are equipped with an ultrasound sensor for performing on-board
height stabilisation control. Only two frequencies are available for the ultra-
sound, therefore a three-vehicle system in close proximity, although tested
in the volume and capable of operating, is prone to disruptive ultrasonic
sensor interference. Using a greater number of vehicles to inspect a larger
target would significantly reduce inspection times. For this inspection, the
two-vehicles required just over 100 s, which is a reduction of around a third
in time taken compared with that required by a solitary vehicle. The inspec-
tion duration is also dependent on the initial position, before the vehicles
are subject to autonomous control, and how often the intelligent collision
avoidance is required. Even in a two drone scenario the variation in starting
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conditions and the limited flight volume for the two vehicles often results in
some, often minor, collision avoidance being required.

To complete the inspection, two vehicles takeoff and then enter autonomous
flight, rising above the top of the drum to the first coverage band at a height
of 1.5 m. As covered in Section 2.3, the CPP is achieved by using coverage
bands, whereby each vehicle registers the position of the vehicle ahead and
once all the vehicles have reached their registered position they transition to
another band to repeat the process. For this case each band was separated
by 30 cm with the vehicles landing after completing the final band at a height
of 30 cm above the floor. Each band took 10-15 seconds to complete with
five bands used for the drum inspection.

The visual inspection is carried out by the 720p HD camera, rigidly in-
corporated into the AR.Drone’s main structure, with in-flight video recorded
onto an on-board USB memory storage device. This device is then removed
and the footage processed after the flight.

3.3. Photogrammetry Analysis

The recorded video footage is processed to enable the creation of a 3D
model using photogrammetry analysis carried out by Autodesk’s 123D Catch
software [39]. First, frames were taken from the videos recorded by both of
the quadcopters (70 frames were taken for this reconstruction). These frames
were manually selected for their clarity at approximate, but consistent, time
intervals to ensure the selection of around 35 frames per vehicle and complete
drum coverage.

The distortion present in the selected frames, due to the lens on the
Parrot AR.Drone 2.0, has to be corrected before proceeding. A calibration
was carried out before the flight using the standard chessboard procedure
[40], which estimates the distortion parameters from a number of images of
a chessboard pattern taken from different angles at 1 m (nominal camera to
target distance) from the vehicle camera [41]. This calibration enables objects
that appear curved because of the lens distortion to be straightened to more
accurately represent their real shape. Fig. 8 (a) shows a vehicle-recorded
image and (b) is the post-processed output, where some of the image at the
borders of (a) has been lost in the distortion correction process.

To successfully create an estimation of the drum’s geometry using the
Parrot AR.Drones, preparation of the drum and the surrounding area was
required. This was necessary as the axisymmetric and monochromatic na-
ture of the target provided very few features, required for image matching,
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(a) (b)

Figure 8: (a) Image from inspection footage and (b) distortion corrected image with
artificial background markers.

when using AR.Drone’s camera and resulted in image placement errors. The
camera’s image resolution (720p HD camera) and lack of isolation from the
AR.Drone’s motion, creating blur. Fig. 8 (b) also demonstrates that high
contrast artificial markers, added in post-processing as in Fig. 8, were used
successfully in conjunction with markers placed in the environment before
the flight. However, attempts to place the drum in an entirely artificial en-
vironment, where the background is replaced with a single colour and high
contrast markers, inserted in place of notable background objects, resulted
in an unsuccessful model generation attempt.

A 3D surface-meshed model of the drum’s lid and side is created as a prod-
uct of the image matching and stitching with the recorded images mapped to
the 3D mesh point cloud. The final textured CAD model, seen in Fig. 9, was
achieved with manual input during the stitching process, where points could
be selected that appeared in at least three images. The manual inputs and
artificial markers had an influence on the final model by ensuring there were
no gaps in the model construction and to prevent image placement errors
that could produce significant but localised errors.

3.4. Model Error Analysis

The resultant mesh point cloud was exported to Geomagic Qualify [42]
for metrological analysis. Due to the inherent lack of scale information avail-
able with single camera photogrammetry technology, it was concluded that a
reliable scale approach and technique should be developed to ensure consis-
tent and adequate model generation. The authors has access to the nominal
CAD model, for the ILW storage drum, that allowed reference metrological
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Figure 9: Generated 3D model produced from two-vehicle flight footage.

comparisons to be made at points and features of the drum. Therefore the
point cloud model, generated from photogrammetry analysis and exported
by Autodesk 123D Catch, was manually scaled, across a minimum of 10
points, according to the CAD model nominal data at the flange of the waste
canister lid. This location was selected based on the density of coverage.
Areas affected by poor density of coverage are the lower bottom section of
the canister, due to the challenge of flying the vehicle at low altitudes close
to the ground plane, and the topside of the lid due to the AR.Drone’s camera
angle being dependent on the pitch angle, which was nominally held parallel
to the ground/horizontal plane.

The resultant scaled point cloud is then automatically aligned to the
reference CAD model, using a least squares fitting approach. A comparison
was then undertaken on every measured point within the cloud in reference
to the nominal CAD model.

4. Results

4.1. 3D Model Errors

A baseline model was created with a 24.2-megapixel D-SLR camera [35]
using similar shooting locations as achieved by the vehicles in flight. Ad-
ditionally to quantify the effect of flight motion, a model was created by
manually imaging the drum, from similar locations again, with an AR.Drone
camera held by hand to keep it steady. Table 1, depicts the errors from each
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of the three models where the Kolmogorov-Smirnov test determined that the
data did not conform to standard normal distribution and, hence, is repre-
sented using interquartile range. The interquartile range defines where 50%
of the samples reside with Q1 and Q3 marking the limits of this range. The
baseline model, created with the D-SLR camera, provides an estimate for
the errors resulting from the 3D model production software. This D-SLR
produced model has the smallest error, and hence interquartile range, fol-
lowed closely by the handheld AR.Drone camera. The interquartile range
then increases to 28.74 mm for the model from in-flight footage. More de-
tails are given for this two-vehicle flight model, in Table 2, where the points
beyond 60 mm deviation were discarded as outliers. In Fig. 10, a comparison
is shown of the deviation distribution for the model produced by the two-
vehicle flight and the handheld vehicle camera, which confirms the improved
accuracy achieved with the steady camera.

Table 1: Comparison of Generated Model Point Clouds (Handheld Vehicle Camera and
Two-Vehicle Flight

Two-Vehicle Flight Handheld D-SLR Camera

Interquartile
range [mm] 28.74 15.14 13.37

Q1 [mm] -14.94 -7.36 -8.07

Q3 [mm] 13.80 7.78 5.30

Table 2: Analysis of Model Point Cloud Generated from Two-Vehicle Flight Footage

Maximum Upper
Deviation [mm] 58.48

Maximum Lower
Deviation [mm] -59.95

No. of Data Points 5815 Outliers 75

4.2. Trajectory Errors

The focus of the AKF approach is to generate smooth trajectories au-
tomatically. This field then enables autonomous flight for multiple vehicles
simultaneously. However, the trajectory errors are still of interest providing
insight into the method’s accuracy and the performance of the quadcopters
in a restricted indoor environment.
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Figure 10: Deviation distribution for vehicle camera in-flight and held steady

For a drum inspection flight, where the vehicle is required to complete
five coverage bands starting at 1.5 m and finishing at 0.3 m, the standard
deviation of the error for each band is detailed in Table 3 where the errors
in height position clearly increase with decreasing flight altitude. A similar
trend can be seen in the radial error for one vehicle, but in the two-vehicle case
this trend is not obvious due to complex aerodynamic interactions resulting
in noisier data. The noise in the two-vehicle case is probably also responsible

Table 3: Standard Deviation of Positional Error from Multiple (1 & 2 Vehicle) Drum
Inspection Flights

Nominal Height [mm] 1500 1200 900 600 300

1 Vehicle: Mean of radial error
134 168 202 219 197

Standard Deviation [mm]

1 Vehicle: Mean of height error
20 65 65 65 89

Standard Deviation [mm]

2 Vehicles: Mean of radial error
205 167 201 160 206

Standard Deviation [mm]

2 Vehicles: Mean of height error
38 67 75 85 104

Standard Deviation [mm]
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for the reduced error in the 600 mm height case, when compared with one
vehicle.

The starting position is not controlled, therefore the deviation in this
may well have contributed to the large radial error in the two-vehicle case
at height 1500 mm. The plot in Fig. 11 supports this claim with the initial
positions seen to be offset from the radial path and the control method unable
to prevent overshoot when attempting to maintain a radial distance. It also
appears that the time to complete a coverage band decreases as the vehicles
descend to lower altitudes with this fast coverage associated with a larger
error elipsoid as depicted in Fig. 12.

4.3. Collision Avoidance

Due to the variable starting positions and turbulent flight environment,
the collision avoidance mechanism is required even for a two-vehicle flight.
In Fig. 13, the angular velocity of the trailing vehicle (determined from the
angular position recorded by Vicon) is compared with the collision avoidance
function H, see Fig. 4. It can be seen that there is a slight delay between
command and execution but it is also clear that the rotational component of
the vehicle’s velocity decreases and begins rotating in the opposite direction
in the places where the H falls below zero.

Figure 11: Representative flight data from
a two-vehicle inspection flight with the al-
titude transitions marked above the plot.

Figure 12: Mean error flight elipsoids at the
five coverage bands for one vehicle complet-
ing the drum inspection.
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Figure 13: Comparison of flight data with collision avoidance function.

5. Discussion

5.1. Case Study

In the model, created from flight footage, the photogrammetry system
performed worse in areas of sharp transition, at the lid edge and the four
circumferential indentations. The difficulty in interpreting these ridges is,
at least in part, due to the limited range of viewing angles achieved by the
quadcopters that are flown roughly parallel to the floor. This restriction
is a result of quadcopter dynamics with a manoeuvrable camera capable of
achieving better coverage and, hence, a more accurate model.

Another source of error, also present in the handheld case, is the lens
distortion, where errors will persist even after image correction. The most
accurate corrections to the footage will be carried out on objects that are
at the 1 m calibration distance, with slight distortions present elsewhere.
However, a comparison between the handheld vehicle and D-SLR cameras
highlights that the errors resulting from lens distortion and image resolution
are far less significant than the errors resulting from the camera motion blur.

Table 1 shows that the D-SLR camera has a larger Q1 value, in terms of
magnitude, but this is a result of the drum scaling process where the median
value of the data set is slightly offset from zero. Therefore, the accuracy
achieved with the D-SLR camera can be considered to be the upper limit of
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what is achievable with the photogrammetry software, selected target and
lighting conditions. The monochromatic and axisymmetric nature of the
ILW storage drum make it a non-ideal target for photogrammetry based
reconstruction. It is clear that with a more sophisticated vehicle the flight
errors could have been reduced, the image quality improved and as a result
the model errors reduced to be comparable with the D-SLR camera model
errors.

5.2. Control

More precise positional control is possible with waypoint based trajecto-
ries, but the control precision is sacrificed to enable distributed and scalable
control as discussed previously. That is not to say that the errors cannot be
reduced as the P controller, described in Section 2, can be substituted with a
PD to enhance the control performance, in particular the overshoot could be
reduced. Currently the vehicles fly at a relatively low speed, which allows the
desired pitch and roll to be commanded sufficiently on the basis of the AKF
defined velocity only (see Eq. 13) rather than its difference with respect to
the actual velocity. The introduction of a PD controller would instead con-
sider the error in velocity in the horizontal plane and its derivative. This
would introduce further refinements of the system that are beyond the scope
of this paper. The error along the vertical axis and the yaw angle could also
be controlled by a more straightforward PD controller.

5.3. Improvements & Automation

The authors manually added 2D-2D feature correspondence data to aid
the reconstruction process used in 123D Catch. This step was necessary due
to the low texture associated with the target which in turn was compounded
by the compression used by the on-board camera. A fully automated sys-
tem could be realised through modifications to the hardware and algorithms.
Such as using a camera that produces uncompressed images, with potentially
higher resolution, that would enable the feature extraction algorithms to bet-
ter detect correspondences. For reference, the suitability of feature matching
for plain surfaces found in stuctural inspection is considered in [30]. The
availability of an on-board Inertial Measurement Unit gives rise to the po-
tential for sensor fusion with the camera, as in [43], which would enhance
the reconstruction process. In addition, recent state-of-the-art dense recon-
struction methods, such as that reported in [44], make use of all pixels in the
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Figure 14: Flowchart of a feasible fully automated version of the system. Green requires
user input, red is autonomously executed and blue is a decision process.

images rather than a sparse set of points. Such approaches are more suited
for low texture environments.

Therefore, a fully automated system would be similar to that presented
in Fig. 14. It is envisioned that this system would carry on generating trajec-
tories until making the decision autonomously that coverage was complete,
with target coverage requirements being manually inputted before the flight.
The use of wireless data transfer and a higher resolution imager, with some
form of image stabilisation, would enable full automation of the model gen-
eration process. Finally, a combination of automated and manual inspection
of the final data would probably be necessary to complete the inspection.

6. Conclusion

A scalable and autonomous control scheme has been presented for CPP
applied to aerial inspection of a central target. The strengths of the proposed
technique are in its relatively simple control computation requirements, con-
tributing to its distributable and scalable capabilities that include vehicle
and target collision avoidance, whilst providing complete coverage with re-
duced inspection times. The scheme has been implemented for two vehicles,
where the collision avoidance was tested with the vehicles forming a queue
while maintaining their defined distance from the target. A two-vehicle sys-
tem performed an inspection on a nuclear ILW storage drum. The inspection
footage was processed, with the aid of high contrast artificial markers in the
background and actual markers attached to the drum, to successfully gen-
erate a 3D surface-meshed model. The results achieved highlight that this
autonomous trajectory generation approach is applicable for remote inspec-
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tion with system improvements primarily dependant on hardware and not
control limitations.
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