
This is a repository copy of Low production cost virtual modelling and control laboratories
for chemical engineering students.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/109309/

Version: Accepted Version

Proceedings Paper:
Rossiter, J.A. orcid.org/0000-0002-1336-0633 (2016) Low production cost virtual modelling
and control laboratories for chemical engineering students. In: IFAC-PapersOnLine. 11th
IFAC Symposium on Advances in Control Education ACE 2016, 01-03 Jun 2016,
Bratislava, Slovakia. Elsevier , pp. 230-235.

https://doi.org/10.1016/j.ifacol.2016.07.182

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Low production cost virtual modelling and

control laboratories for chemical

engineering students

J. A. Rossiter
∗

∗ Department of Automatic Control and Systems Engineering,
University of Sheffield, Sheffield, S1 3JD, UK

(e-mail:j.a.rossiter@sheffield.ac.uk

Abstract: This paper gives a brief review of work on virtual and remote laboratories along with
a critique of their strengths and weaknesses. This is used as a motivation for a proposed method
for producing virtual laboratories which, while relatively crude in comparison with professional
alternatives, are much cheaper and faster to produce and thus can be created using the skill set
and time of normal academics. Some examples and the coding processes are demonstrated.

Keywords: Virtual laboratories, staff efficiency, student engagement, independent learning.

1. INTRODUCTION

For the sake of brevity, this paper will assume the high
value of laboratory activities within a chemical engineer-
ing education and move immediately to consideration of
how this might be delivered. It is well recognised that
the infrastructure costs (space, equipment and technical
support) combined with student timetabling challenges
(that is ensuring timing close to corresponding lectures)
are some of the reasons why, in practice, engineering un-
dergraduates have lower exposure to hardware than would
be desirable. As a consequence, Universities (e.g. Abdul-
wahed 2010, Qiao et al. 2012, Rossiter et al. 2011) have
sought to improve student access to authentic activities by
introducing pseudo laboratory activities whereby students
interact with a realistic simulator or even with real hard-
ware via a web interface. Moreover, a further advantage
of software/computer based activities is that they enable
students more freedom for independent learning activities.

1.1 Background on remote and virtual laboratories

The focus of this paper will be on so called virtual labora-
tories, that is laboratories which are based on simulations,
perhaps of high fidelity process models, rather than on
hardware. The focus on virtual laboratories as opposed to
say remote laboratories (RL) (Dormido et al 2012) is for
a few simple reasons:

• Remote laboratories are known to be costly and time
consuming to produce and maintain and moreover
require staff with significant expertise in many areas
such as database use and web scripting which are
outside their normal knowledge (Chen et al. 2010,
Vargas et al. 2011). Most departments do not have
the expertise or resource to support this activity
effectively.

• Remote laboratories have limited accessibility in
practice due to the queueing required by students
combined with the possibly slow time constants of

chemical processes. This mitigates against the in-
tended benefits of 24/7 accessibility for students, es-
pecially with large classes.

Nevertheless, the design of an accessible virtual laboratory
(VL) is fraught with equally many challenges and in par-
ticular the fact that web accessibility requires significant
software skills from the author, in addition of course to
understanding and implementing any pedagogical require-
ments. Some of the examples in the literature such as
(Cameron 2009, Goodwin et al 2011) are excellent virtual
environments on which to study chemical engineering, but
the creation of such artefacts is not achievable for most
academics indeed the authors of those environments as-
sumed that departments would pay a substantial annual
license fee for students to access their simulators. Even
what might be considered an accessible (essentially free)
web based system and well used software environment
(Easy Java Simulation (EJS)) is non trivial to code accept
for elementary scenarios (de la Torre 2013, Fabregas 2011,
Perez et al. 2011, Guzman 2006).

1.2 Paper motivation and ethos

It is well accepted that high quality virtual/remote labora-
tory activities are a significant enhancement to the student
learning environment. One obvious and perhaps less well
publicised use is for laboratory preparation and post ac-
tivities (e.g Abdulwahed 2010, Rossiter et al. 2014) which
reinforce key learning outcomes because the environment
is an effective emulator (Memoli 2011) of the real hardware
set up in the laboratory.

• Students can use RL/VL in order to anticipate the
activities and concepts they will encounter with the
hardware and thus to support preparation of key
computations, notes, algorithms and concepts they
enable them to make the most effective use of their
time on the equipment.

• After the hardware laboratory, students can use the
RL/VL to test any hypothesis not completed success-

fully, forgotten or recognised during the write up and
reflection phase.

Consequently, this paper takes the motivation for RL/VL
as a given and instead focuses on a different issue. Specif-
ically, this paper takes the following premise:

(1) Most academic staff do not have the time, support
or departmental infrastructure to develop robust web
accessible remote or virtual laboratories.

(2) Where funding is available and there is a tight synergy
with the course learning outcomes, departments may
choose to purchase licenses for commercial simulators
(indeed the authors department used the Goodwin
2010 resource for a few years).

(3) In practice, the bespoke nature of each departments
course/module design and learning outcomes mean
that the requirements for laboratory activities are
rarely met closely by off the shelf resources and thus
there is a need to do some in-house development.

Herein lies a major challenge. Academic staff may wish to
develop RL/VL activities to support student engagement
and independent learning, but they lack the expertise or
support required to produce a high quality and fully web
accessible resource. Consequently an alternative solution
is required.

The author believes in pragmatic solutions, that is, better
a simple solution that can be implemented tomorrow than
a perfect solution in 2-3 years (if ever). Moreover, simple
and cheap solutions often have the advantages of being
equally cheap and easy to modify should the departmental
requirements change whereas expensive resources are often
equally expensive and difficult to modify. The reality
of most student learning, lectures, tutorial classes and
indeed real industrial processes are that they are not
manicured environments. Rather lecturers often mumble,
make mistakes in lectures and correct themselves (or
not), write illegibly and so forth, and despite all this
students may still comment that the lecture course was
well presented, clear, enjoyable, etc. In summary, a VL/RL
does not need to be coded and presented to commercial
standards in order to be an effective learning tool.

1.3 Proposal for virtual laboratory development

In summary, this paper proposes a pragmatic approach to
virtual laboratory development, that is an approach with a
typical academic could achieve with relatively little coding
expertise and, more importantly, relatively little time. The
sacrifice of being able to produce learning resources quickly
is a reduction in accessibility, that is the resources may no
longer be web accessible. However, this need not be an
impediment in that the real requirement for accessibility
is that the students can access and use the resources 24/7,
that is, as and when they need too; being on the web is
rather secondary and could even be an impediment where
wireless or broadband is unreliable. The author favours
the use of MATLAB software for the development of VLs
for 3 major reasons.

(1) Within his University (and indeed many Universities)
there is a site license so students can guarantee access
to the software and indeed get a version for their own
laptops should they prefer.

(2) Students can easily be provided with the MATLAB
source code and thus as many students as you like
can use the VL simultaneously, asynchronously or
indeed however they wish. The only impediment to
accessibility is access to a suitable computer and
the assumption that the student has downloaded the
relevant files.

(3) MATLAB is easy to code and thus one can produce
an effective VL using the GUI environment in about
half a day with minimal expertise.

This paper will make 2 brief contributions: first it will
demonstrate some of the VL the author has produced
for chemical engineers to support learning of modelling
and control and second it will give an introduction to
the coding requirements in the hope that readers will be
reassured that this is indeed a skill they could easily and
quickly acquire.

2. EXAMPLES OF MATLAB BASED VIRTUAL
LABORATORIES

This section will illustrate 4 examples of virtual labora-
tories that have been produced for chemical engineering
students to help them relate their module in modelling
and control to real scenarios and also to reinforce key con-
cepts. Currently the author embeds the use of these into
a quiz assessment to ensure students make use of them,
but a long term plan when hardware becomes available
(a new teaching building is nearly complete), is to make
a closer link with a real laboratory using a tri-lab design
(Abdulwahed 2010).

2.1 Dynamics and GUI for a mixing tank

A simple mixing tank can be modelled by an equation of
the following form:

V

F

dCA

dt
+ CA = CA0 (1)

where V is the tank volume, F the flow rate through
the tank, CA the concentration coming out of the tank
and CA0 the concentration of the inflow. A typical set
of learning outcomes are for students to understand the
impact on behaviours of changes in any of the parameters
(V, F) and the input (input flow concentration).

The remainder of this section describes the GUI created by
the author for this scenario. A short video demonstrating
how to run and use this file is available on this link
[http://controleducation.group.shef.ac.uk/matlabguis.html].

A screen dump of the VL (or GUI interface) is shown
in figure 1. In this case the student has used 3 different
values for input flow from which it is clear that the time
constant, but not the gain, depends upon the input flow. It
is also clear that asymptotically, the output concentration
matches the input concentration.

• The GUI will overlay lines each time the push to
update button is selected. Hence students should plan
which variants of parameters they wish to overlay
before beginning.

• Students can change 4 different values and thus
explore how each of these affects the dynamics.

Fig. 1. Screen dump of mixing tank GUI with 3 different
choices of input flow rate.

• Although not clear on this figure, the colour of the
fluid in the tank changes smoothly to represent the
concentration (red for low CA and blue for large CA);
this animation effect is to help students visualise the
changing concentration.

• The animation runs at 20x normal speed (about 10sec
for a single run); slow enough to see the animation but
not so slow to be tedious.

• To reset, simply close the window and re-open.
• It is possible to augment this GUI such that each line
plot has a different colour or style and to include la-
bels however, this is an extra programming task and
thus involves academic time which needs to be judged
against the benefits or needs for the anticipated users.
In the authors case this was not merited.

2.2 Dynamics and GUI for a simple heat exchanger

The example taken here is of a heat exchanger where the
heat is supplied by condensing steam and this is used to
heat up a flow of water. A simplified model of this is given
as:

V

T

dT

dt
+ T = Tin +

λ

ρFCp

Q (2)

where V is the volume of the tank, F the flow rate of water,
Cp the specific heat of water, λ the latent heat of steam
and ρ the density of water. In this case the system has 2
inputs, the inlet temperature Tin and the steam flow Q.
The remainder of this section describes the GUI created by
the author for this scenario. A short video demonstrating
how to run and use this file is available on this link
(http://controleducation.group.shef.ac.uk/matlabguis.html).
Students can explore the impact on gain, time constant
and steady-state of changes in 4 parameters. The GUI
is shown in figure 2 and has the following animation
attributes:

• The animation runs continuously rather than for a
fixed time.

• When a parameter is changed, the impact is immedi-
ate as demonstrated in figure 2.

Fig. 2. Simulation of a heat exchanger with a change in
steam flow Q at about 0 sec, 60 sec and a change in
fluid flow rate F at 130 sec.

• The colours of the water in the tank change to
represent temperature (light for hot and dark for
cold).

• The line used to represent heat supply changes in
thickness to represent Q.

2.3 Tank level control

Controlling levels in tanks is a common process for chem-
ical engineers and thus a good example for a VL. In
this case, a simplified model (assuming flow through a
restriction is approximately linear) can be given as:

A

ρgR

dh

dt
+ h =

1

ρgR
fin (3)

Where A is the cross-sectional area of the tank, g is
acceleration due to gravity, R a constant linked to the
outflow resistance, ρ is the density of the fluid and h is
the depth. The remainder of this section describes the
GUI created by the author for this scenario. A short video
demonstrating how to run and use this file is available
on this link (https://youtu.be/nVu2TsiwQhY). The GUI
here assumes fixed tank parameters and focuses on anal-
ysis and design of a PI compensator to control the depth.
The animations and interactions include:

• Students can choose open-loop or closed-loop control.
• Students can change the PI compensator parameters
and the target depth to investigate issues such as
offset and effective tuning.

• Students can enter their name before attached a
screen dump to an assignment submission.

• The tank is seen to fill and also the inflow pipe
changes shape to represent the magnitude of the input
flow. Overflow of the tank due to poor compensator
design is also represented. A typical run time is
around 15 seconds so that students can view the
behaviour effectively.

• Figure 3 gives a view of the GUI.

Fig. 3. MATLAB GUI for control of level in a tank with
PI compensation.

2.4 Control of temperature with a simple house model

This system is not a pure chemical engineering process
but is chosen as it links well to students understanding of
what constitutes reasonable behaviour and thus is a good
platform to investigate the efficacy of PI compensation. A
simplified model of a house with internal heating and heat
loss due to temperature differentials can be given as:

C
dT

dt
+ kT = kTout +W (4)

Where T is the internal temperature, Tout the external
temperature, k is the heat loss coefficient, C the specific
heat of the house and W the heating power. The VL
developed here allows students to change parameters C,
k and also the PI parameters as well as the target tem-
perature. The main objective is to support the learning
of PI compensation design rather than the dynamics of
the house temperature, although students can investigate
how changes in the house parameters necessitate a change
in the PI parameters. As with other GUIs, the animation
runs much faster than real time (about 5 sec for 6hr) and
also the colour of the house changes to give a visual impact
it also gives an alert if the temperature goes too high due
to a failure of the control design.

2.5 Summary of MATLAB GUIs and access

Within the authors University students can access or copy
the GUI files from a shared folder. External users can
get them from an open access website (Rossiter 2015)
under the MATLAB section. There are additional VLs
on the site but the focus of those is more on control
and modelling in general rather than specifically towards
chemical engineering.

3. AUTHORING VIRTUAL LABORATORIES USING
MATLAB TOOLS

This section will be brief as MATLAB itself comes with
numerous guides and directions on how to use the tools.
Rather the aim of this section is to illustrate to readers

Fig. 4. MATLAB GUI to illustrate PI control of tempera-
ture in a house.

how quickly and easily an effective VL can be developed
within the guide environment. The author has prepared a
short 15min video showing the context and construction
of a GUI from start to finish so that readers can see the
processes for themselves (https://youtu.be/2hxfV2osjxY).

3.1 The basic operation of guide

GUIDE is a windows driven environment so that users
build their GUI using drag/drop and resize of icons in
an intuitive fashion (see figure 5). Moreover, each icon
has a set of easy to access properties such as fontsize,
colour, etc. so that the author can shape their GUI to
the desired student view double click on an icon to access
the properties. The icons can be moved around the screen
to the desired position using the mouse and the screen can
be resized in an intuitive manner.

Some obvious icons that an author may wish to use are:
(i) sliders and edit text boxes for users to enter values;
(ii) pop-up menus to allow selection from a list; (iii) push
buttons to set an action going; (iv) axes for display of plots
or other pictures. These are shown in figure 5.

3.2 Basic coding of a MATLAB GUI

A GUI consists of 2 files, a *.fig file which gives the
screen layout and a *.m file which contains the implied
computation and calculations required; a GUI will not run
unless both files are in the same folder! After setting up
the basic screen (*.fig) file, when the user saves then the
associated *.m file is created automatically and indeed,
anytime an extra icon is added to the fig file and saved,
the *.m file is augmented as required.

• The m-file is critical as this determines the operation
of the GUI. Each active icon such as a slider or push
button will have a related subfunction within the m-
file which will be denoted something like: function
slider1 callback()

• Whenever the user selects a particular icon, the code
in the associated call-back subfunction is activated, so

Fig. 5. Edit mode in GUIDE where the left hand toolbar
contains the icons and the main screen indicates the
shape of the final student view.

the coding for the academic is easy: what do I want
to happen when a student selects that icon simply
put the required code here!

• Readers should note that this subfunction can be
empty if you want nothing to happen such as when
the user is changing a parameter value but this change
is not to be implemented yet. The author leaves many
subfunctions empty and this accords with a generic
aim of keeping life simple for academics.

• When MATLAB creates the subfunctions, it always
gives a line showing how to access the properties of
the icons and this includes things like the values from
sliders, e.g. v=get(handles.slider1,value) will give the
current value of the slider with name slider1 . Hence
it is easy to get all the required parameter values from
within any subfunction and perform computations
based on these.

• A demonstration can be done real-time at the confer-
ence for those who would like this and is also available
on the link (https://youtu.be/2hxfV2osjxY).

3.3 Animating the GUI the easy way

Without animation, one could write a good GUI with
sliders, edit textboxes and plots in about 30min (as seen in
the example video provided) this is very fast and may suit
the purposes of many academics. Nevertheless, a critical
point for a VL is how to create animations, that is to give
life to the GUI so that things are changing in real time.
The author is a pragmatist and uses a very simple tool,
that is the pause function within a loop. As MATLAB is
effectively instantaneous for simple computations, hence a
command such as pause(0.2) will stop the GUI for 0.2sec
meaning a loop with 100 iterations would translate to a run
time of about 20sec; readers can make their own decisions
on what timescales would work for them.

The basic idea is to update any colours, line plots, tank
fills and so forth every time one goes through a loop (this

is done using a command such as set(plot1,Xdata,tt) which
updates the x-coordinate data in the axes with tag plot1).
If these updates are fast enough, but not too fast, then the
user will be able to perceive and relate to the associated
dynamics. The associated dynamic simulation could be
discretised to run within this loop, or done in a single shot
and then the values accessed as required.

It is relatively easy to write a GUI which runs for a
prescribed runtime, animating as it goes, and then stops.
The basic technique is to use a pushbutton to begin the
animation and do not allow interruptions until this is
complete. If the author wishes to allow the user to update
parameters on the go, then the coding is slightly more
subtle but still relatively straightforward. Nevertheless, it
may be obvious that the more functionality you want from
your GUI, the harder the coding will become which is
one reason the GUIs or VLs illustrated in this paper are
relatively simple in scope.

4. CONCLUSION

This paper has made some simple but hopefully useful
contributions. It has highlighted some virtual laborato-
ries that have been created in the guide environment of
MATLAB to support learning and facilitate independent
study by chemical engineers. These VLs are open access
so other academics can take them and distribute them
to their own students. However, more importantly, the
illustrations serve to demonstrate that the creation of such
learning resources is now within the reach of non-expert
programmers so that most academics could create one of
these in about half a day and thus provide their students
with interactive learning resources such as VL whereas
previously these have been too expensive or complicated
to produce. Indeed, as seen in the provided video, one can
do something basic in well under an hour.

APPENDIX: ILLUSTRATIVE MATLAB CODE

An indication of the coding complexity is apparent from
the code snippet below linked to the mixing tank GUI. it
is noted that the core part of the code is less than 20 lines
long.

• The first few lines collect the user selected informa-
tion from the sliders.

• next, the appropriate response is computed. Here, as
that has a known algebraic form, it can be done in a
single line.

• The for loop is used to animate the presentation
of the plot, thus slowing down the presentation of
the response and illustrating the dynamics through
a dynamic change of colours as the concentration
changes.

% Change in input data leads to a change in concentration
% C(t) = (C(0)-Cin)exp(-Ft/V) + Cin
endtime=str2num(get(handles.edit6,’string’));
tt=linspace(0,endtime,200);
c0=get(handles.slider4,’value’); % initial concentration
Cin=get(handles.slider2,’value’); % inlet concentration
vol=get(handles.slider1,’value’); % tank volume
flow=get(handles.slider3,’value’); % flow rate
conc=(c0-Cin)*exp(-flow*tt/vol) + Cin;

% Plotting using pause function to animate
axes(handles.axes2);xlim([0,endtime])
linec=plot(0,Cin,’linewidth’,3);
for kk=1:length(tt);
% Update colour [1-conc/.4,0,conc/.4]
axes(handles.axes1);
set(handles.inhandle,’Facecolor’,[1-Cin/0.4,0,Cin/0.4]);
set(handles.outhandle,’Facecolor’,[1-conc(kk)/0.4,... ;
% Update line plot
axes(handles.axes2);
set(linec,’Xdata’,tt(1:kk),’Ydata’,conc(1:kk));
pause(0.03);
end

REFERENCES

Abdulwahed, M, 2010, Towards enhancing laboratory ed-
ucation by the development and evaluation of the trilab
concept, PhD Thesis, University of Loughborough

Cameron, I., 2009, Pedagogy and immersive environments
in the curriculum, Blended Learning conference, 290-
294.

Chen, X., G. Song, and Y. Zhang, 2010, Virtual and
remote laboratory development: A review. In Earth
and Space, Engineering, Science, Construction, and Op-
erations in Challenging Environments, 3843-3852. doi:
10.1061/41096(366)368.

de la Torre, L., R. Heradio, C. A. Jara, J. Sanchez, S.
Dormido, F. Torres, and F. Candelas, 2013, Providing
Collaborative Support to Virtual and Remote Labora-
tories. IEEE Transactions on Learning Technologies.

Dormido, S., H. Vargas, J. Sanchez, 2012, AutomatL@bs
Consortium: A Spanish Network of Web-Based Labs
for Control Engineering Education, Internet Accessible
Remote Laboratories: Scalable E-Learning Tools for
Engineering and Science Discipline, 11, 206-225, A.
Azad, M. E. Auer, V. J. Harward (Ed), IGI Global.

Fabregas, E., G. Farias, S. Dormido-Canto, S. Dormido,
and F. Esquembre, 2011, Developing a remote labora-

tory for engineering education. Computers & Education
57:1686-1697.

Goodwin, G. , 2010, Virtual laboratories for control sys-
tems design. http://www.virtual-laboratories.com/(last
checked 1/9/10).

Goodwin G.C., A. M. Medioli, W. Sher, L. B. Vlacic,
and J. S. Welsh, 2011, Emulation-based virtual labo-
ratories: A low-cost alternative to physical experiments
in control engineering education, IEEE Transactions on
Education, 54:48-55.

Guzman, J., K. Astrom, S. Dormido, T. Hagglund and
Y. Piguet, 2006, Interactive learning modules for pid
Control, IFAC symposium on Advances in Control Ed-
ucation.

Memoli, P., 2011, Virtual experiments,
http://www.edshare.soton.ac.uk/6589/1/preloader-
diode.html. Project funded by HESTEM.

Perez, J., S. Dormido and L. Vlacic, 2011, Enhancing stu-
dent learning: On-line interactive laboratory for mod-
elling of real world control system applications, IFAC
world congress, pp.7268-7273.

Y. Qiao, G. Liu, G. Zheng and C. Luo, 2012, Design and
realization of networked control experiments in a web-
based laboratory, Proc. UKACC.

Rossiter, J.A., Y. Baradaranshokouhi, I. Lilley and C.
Bacon, 2011, Developing web accessible laboratories for
introductory systems and control using student projects,
IFAC world congress.

Rossiter, J.A., S. Dormido, L. Vlacic, B. Ll. Jones, R.M.
Murray, 2014, Opportunities and good practice in con-
trol education: a survey, IFAC world congress.

Rossiter, J.A., 2015, Lectures and resources in modelling
and control, http://controleducation.group.shef.ac.uk/
indexwebbook.html

Vargas, H., J. Sanchez, C. A. Jara, F. A. Candelas, F.
Torres, S. Dormido, 2011, A Network of Automatic
Control Web-based Laboratories, IEEE Transactions on
Learning Technologies, 4, 3, 197-208.

