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Abstract

Users with disabilities can greatly benefit from personalised

voice-enabled environmental-control interfaces, but for users

with speech impairments (e.g. dysarthria) poor ASR perfor-

mance poses a challenge to successful dialogue. Statistical di-

alogue management has shown resilience against high ASR er-

ror rates, hence making it useful to improve the performance of

these interfaces. However, little research was devoted to dia-

logue management personalisation to specific users so far. Re-

cently, data driven discriminative models have been shown to

yield the best performance in dialogue state tracking (the infer-

ence of the user goal from the dialogue history). However, due

to the unique characteristics of each speaker, training a system

for a new user when user specific data is not available can be

challenging due to the mismatch between training and working

conditions. This work investigates two methods to improve the

performance with new speakers of a LSTM-based personalised

state tracker: The use of speaker specific acoustic and ASR-

related features; and dropout regularisation. It is shown that

in an environmental control system for dysarthric speakers, the

combination of both techniques yields improvements of 3.5%

absolute in state tracking accuracy. Further analysis explores

the effect of using different amounts of speaker specific data to

train the tracking system.

Index Terms: dialogue state tracking, dysarthric speakers

1. Introduction
Due to the rapidly growing demand on spoken interfaces for

electronic devices, the development of these interfaces has be-

come a key research topic in speech technology [1]. Dialogue

state tracking (DST) is a key requirement in these interfaces,

as it maps the dialogue history up to the current dialogue turn

(Spoken language understanding (SLU) output, actions taken

by the device, etc.) to a probabilistic representation called the

dialogue state or belief state. This representation will later be

the input used by the dialogue policy to decide which action

should be taken next [2, 3]. Recently, the Dialogue State Track-

ing Challenges (DSTC) [4, 5, 6] were held, where it was shown

that data driven discriminative models for DST outperform gen-

erative models. One of the reasons for this is the capacity of

discriminative models to use higher dimensional, possibly cor-

related, input features, by directly modelling the conditional

probability of the dialogue state given the input features [7].

The DSTCs also defined standard DST scoring metrics and pro-

vided annotated corpora for further research. However, these

corpora were gathered in a specific domain (information gath-

ering) where many users interacted with a system once or a few

times. Therefore, the corpora are not suitable to study system

adaptation to specific speakers. On the other hand, spoken inter-

faces to digital devices are likely to be used by a single user over

many interactions. Speaker adaptation of ASR acoustic models

is commonly used [8], but little research investigated user adap-

tation of dialogue management or state tracking [9, 10, 11].

Personalisation of dialogue interfaces can bring a large im-

provement to voice enabled environmental control interfaces for

assistive technologies. For instance, users with dysarthria face

various problems when using conventional spoken interfaces

due to high error rates of the ASR. This is caused by the unusual

characteristics of their speech with respect to conventional and

other dysarthric speakers. However, using a small amount of

data from the target speaker to adapt the acoustic model greatly

improves ASR performance for dysarthric speakers [12, 13]. In

dialogue management, extending the input features of the dia-

logue policy with speaker specific features (extracted from the

acoustic signal and the ASR) showed improvements in dialogue

reward [10]. If the usual DST input features (the SLU output

and the last system action) are extended with these extra speaker

features, the capacity of the discriminative trackers to handle

a richer set of input features can increase the benefit obtained

from using these features.

When developing an environmental control interface de-

signed for dysarthric speakers, such as homeService [14], the

following scenario is likely to be found: a system for a new tar-

get user must be set up, in which only data from other source

users is available. This will result in a mismatch between the

training and the evaluation data, which was one of the main

problems machine learning-based dialogue state trackers faced

in the DSTCs [4, 6]. In order to solve this, techniques that

lead to generalization to unseen data have to be applied or

the performance with the target user will be poor. This paper

proposes two techniques aiming to improve generalization to

data from unseen speakers, to be used with an LSTM-based

state tracker: First, the previously mentioned input feature aug-

mentation with speaker specific features (iVectors and ASR-

related), which helps to find similarities between the target and

the source speakers. Second, dropout regularization [15], which

helps to not only generalize to unseen speakers, but also in-

creases the performance improvement of the tracker when using

the augmented input features. In a further analysis, it is shown

that the effect of these generalization techniques increases when

a small amount of target speaker data is available.

2. Dialogue state tracking
In each dialogue turn, the dialogue manager decides which ac-

tion to take depending on the dialogue state, a representation

of what the user has stated up to the current turn. Therefore, a

component in charge of inferring the dialogue state in each turn

is needed, the dialogue state tracker. This component takes the

dialogue history as input (the collection of ASR-SLU observa-

tions, machine actions, etc. up to the current turn) and estimates

the distribution over the dialogue state, also known as the belief

state. Historically, machine learning approaches to DST used

generative models [2, 16], which need to model all the correla-

tions in the input features. This forced the generative models to



make many conditional independence assumptions and to use

just the dialogue features (SLU output plus last system action)

as input features in order to maintain tractability. On the other

hand, in the DSTCs it was shown how discriminative models

outperform generative ones in DST, because of their capability

to incorporate a rich set of features without worrying about their

dependencies on one another. Most models used very high di-

mensional input features generated from the dialogue features

[17, 18, 19] and others even extracted the features directly from

the ASR output [20].

2.1. RNN-LSTM for DST

Recurrent neural networks (RNNs) are sequence classification

models, composed of a neural network with one or more recur-

rent connections. Each time step t, the value of one or more

layers of the network, known as the state h, is updated by a

function depending on the current input xt and the value of the

layer itself at the previous time step ht−1:

ht = σ(Whht−1 +Wxxt); (1)

where Wh and Wx are weight matrices and σ is an element-

wise sigmoid function. This lets the network to “encode” all

the inputs of the previous time steps into a fixed dimensional

vector. From a dialogue management perspective, this can be

interpreted as encoding all dialogue history up to the current

turn. RNNs have been shown to be a powerful DST model

performing competitively in the DSTCs [20, 19]. One of the

shortcomings of RNNs is the difficulty in learning long-term de-

pendencies due to the issue known as vanishing gradient [21].

Long-short term memory networks (LSTM) [22] address this

issue by maintaining an additional cell state to store long term

information and using a series of gates depending on ht−1 and

xt to update the information stored in the cell. LSTMs have

been applied to DST with promising results [23].

2.1.1. DST feature extension

Historically, dialogue management has used a very defined data

flow (shown in Fig. 1 as the continuous line), starting with the

user utterance (acoustic signal), being transformed to a string of

words by the ASR and to a set of concepts by the SLU, then be-

ing feed to the state tracker of the dialogue manager, and so on.

In this architecture, each module reduces the data dimension-

ality. However, some useful information could be lost in each

step. One motivation for this architecture was the need to ob-

tain an input feature set small and decorrelated, to maintain the

generative state tracker independence assumptions [16]. As dis-

criminative models are better able to handle high dimensional,

possibly correlated, input features, the tracker’s input features

can be augmented with features extracted in previous modules

of the dialogue system. The ability to handle high dimensional

input features is especially interesting in personalised dialogue

management, since the dialogue features can be extended with

user specific features such as acoustic or ASR-related features.

These features give useful information that represent a certain

type of speaker behaviour, which allows to relate it to the be-

haviour observed on “similar” source speakers. We propose to

modify the usual dialogue data flow including features extracted

directly from the acoustic signal and from the ASR (Fig. 1). In

dysarthric user oriented state tracking of a environmental con-

trol interface, iVectors [24] are used as acoustic features and

ASR performance-related features as ASR features (sec. 3.3).

2.1.2. Dropout regularization

The dialogue data gathered from the source speakers used for

training might have been generated following a different dis-

Figure 1: Typical dialogue data flow (continuous line) and pro-

posed extended dialogue data flow (dashed line)

tribution than the data the target speaker will generate. As

mentioned in section 1, if the distribution between the source

(training) data and the target (test) data differ, the tracker might

overfit to the source data, thus performing poorly on the tar-

get. To address this issue, we propose to use dropout regular-

ization [15], which has been proven to be a powerful regular-

ization technique for neural networks. A percentage of neurons

is randomly “deactivated” in each layer at every training itera-

tion, forcing neurons to learn activation functions independent

of other neurons. But as RNNs and especially LSTMs are dif-

ficult to train, dropout can make it more complicated to learn

long term dependencies [25]. To avoid this issue, dropout is

only applied in the non-recurrent connections between layers as

proposed in [26].

3. Experimental setup
To test the system in a scenario with high variability between

the dynamics of the speakers, the experiments are performed

within the context of a voice-enabled control system designed

to help speakers with dysarthria to interact with their home de-

vices. The user can interact with the system in a mixed initiative

way, speaking single-word commands1 from a set of 36 com-

mands. As the ASR is configured to recognise single words, the

SLU operates a direct mapping from the ASR output, an N-Best

list of words, to an N-Best list of commands. The dialogue state

of the system is factorized into three slots, with the values of the

first slot representing the devices to control (TV, light, bluray...),

the second slot its functionalities (channel, volume...) and the

third slot the actions that these functionalities can perform (up,

two, off...). The slots have 4, 17 and 15 values respectively, and

the combination of the values of the three slots compose the

joint goal (e.g. TV-channel-five, bluray-volume-up). The set of

valid2 joint goals G has a cardinality of 63, and the belief state

for each joint goal g is obtained by multiplying the slot proba-

bilities of each of the individual slot values and normalising:

P (g) =
Ps1(g1)Ps2(g2)Ps3(g3)∑

h∈G
Ps1(h1)Ps2(h2)Ps3(h3)

(2)

where Psx(gx) is the probability of the value gx in slot sx and

g = (g1, g2, g3).

3.1. Dialogue corpus collection

One of the main problems in dialogue management research is

the lack of annotated dialogue corpora and the difficulty of us-

ing data from one domain for training a system in a different

domain. The corpora released for the first three DSTCs aimed

1Severe dysarthric speakers cannot articulate complete sentences.
2Take into account that many combination of slot values wont be

valid, e.g. light-channel-on



to mitigate this problem. However, they have been collected in

a scenario where many different speakers interact only a few

times, thus making adaptation to specific speakers infeasible.

Furthermore, there is no acoustic data available, hence, features

extracted from the acoustics cannot be used. For these reasons,

a large part of dialogue management research relies on simu-

lated users (SU) [27, 28, 29] to collect the data needed. The dia-

logue corpus used in the following experiments has been gener-

ated with simulated users interacting with a rule based dialogue

manager. To simulate data collected from several dysarthric

speakers during a large number of interactions from each user,

a set of SUs with dysarthria has been created. As stochastic fac-

tors influence the corpus generation (Simulated user, stochastic

policy), three different corpora have been generated with dif-

ferent random seeds. To reduce the effects introduced by the

random components, the results presented are the mean results

of the tracking evaluation on the three corpora. 1200 dialogues

are collected for each speaker for each seed.

3.1.1. Simulated dysarthric users

Each SU is composed of a behaviour simulator and an ASR

simulator. The behaviour simulator decides on the commands

uttered by the SU in each turn. It is rule-based and depending on

the machine action, it chooses a command corresponding to the

value of a slot or answers a confirmation question. To simulate

confusions by the user, it uses a probability of producing a dif-

ferent command, or of providing a value for a different slot than

the requested one. The probabilities of confusion vary to sim-

ulate different expertise levels with the system. Three different

levels are used to generate the corpus to increase its variability.

The ASR simulator generates an ASR N-Best list given the

true user action. It is data driven and to train the ASR sim-

ulator for users with different dysarthria severities, data from

a dysarthric speech database (UASpeech database [30]) has

been used. This database includes data from 15 speakers with

dysarthria severities clustered in 4 groups depending on their in-

telligibility: 4 very low, 3 low, 3 medium and 5 high. For more

details on the ASR simulator, the reader may refer to [31].

3.1.2. Rule-based state tracker

One of the trackers used in the DSTCs as baseline [32] has been

used to collect the corpus. This baseline tracker performed com-

petitively in the DSTCs, proving the difficulty for data driven

trackers when the training and test data are mismatched. The

state tracking accuracy of this tracker is also used as the base-

line in the following experiments.

3.1.3. Rule-based dialogue policy

The dialogue policy used to collect the corpus follows simple

rules to decide the action to take in each turn: For each slot, if

the maximum belief of that slot is below a threshold the system

will ask for that slot’s value. If the belief is above that threshold

but bellow a second one, it will confirm the value, and if the

maximum beliefs of all slots are above the second threshold

it will take the action corresponding to the joint goal with the

highest probability. The thresholds values are optimized by grid

search to maximize the dialogue reward. In addition, the policy

implements a stochastic behaviour to induce variability in the

collected data; choosing a different action with probability p

and requesting the values of the slots in a different order. The

corpus is collected using two different policy parameter sets.

3.2. LSTM-based state tracker

The methods proposed in section 2.1.1 and 2.1.2 to improve

generalization to new speakers are tested on a set of LSTM-

Figure 2: Topology of the LSTM-based tracker

based state trackers. To simulate the setting up of a system

where dialogue data from the target speaker is not available,

the tracker for each speaker is trained on data from the remain-

ing 14 source speakers. 1200 dialogues are used for each source

speaker (with a 0.9-0.1 train-validation split) and is tested with

1200 target speaker dialogues. In a second set of experiments,

target speaker dialogues are included in the training data in dif-

ferent amounts. The target speaker dialogues used for training

and testing are independent. The models are trained for 100

iterations with stochastic gradient descent and the five models

corresponding to the five iterations performing best in the vali-

dation set are combined to get the slot output distribution.

3.2.1. Different LSTM models

The topology of the network is shown in Fig. 2, in which for

each slot the turn input (the N-Best ASR output concatenated

with the speaker features (if any), see section 3.3) is put to a

linear projection layer that in turn feeds into a recurrent LSTM

layer. The output of this layer is the input to a softmax layer

with a size equal to the number of slot values. Two different

linear-LSTM layer sizes have been tested3: 25-75 (SML) and

75-150 (LRG). Each model is evaluated with and without using

dropout in training, with dropout rates of 20% in the input con-

nections and 50% in the rest. This defines a total of four LSTM-

based trackers evaluated in section 4, named SML, SML-DO,

LRG and LRG-DO respectively.

3.3. Extended input features

The standard input features of the tracker in each turn xt are the

dialogue features, i.e. the N-best list of commands outputted

by the ASR plus the system action in turn t. In addition, the

models are evaluated concatenating the dialogue features with

the following speaker features xs:

IV: In [33] it was shown that iVectors [24] can be used

to predict the intelligibility of a dysarthric speaker. For each

speaker s, xs is a 50 dimensional vector corresponding to the

mean iVector extracted from each utterance from that speaker.

For more information on the iVector extraction, refer to [34].

APW: The statistics of the ASR can be used as speaker fea-

tures. In this paper, the accuracy per word (command) is used,

defining xs as a 36 dimensional vector where each element is

the ASR accuracy for each of the 36 commands4.

IV+APW: The concatenation of APW and IV features.

3The reason to compare LSTMs with different sizes is because
dropout reduces the effective size of the network [15], thus optimal net-
work sizes might vary depending on the dropout rate. Several network
sizes were tested, and the two with better performance are presented.

4This is computed on the enrolment data, a small set of commands
recorded from the user when the system is set up [14].



Speaker features

Tracker no feat. IV APW IV+APW

Baseline
acc. 64.85 - - -

L2 0.667 - - -

SML
acc. 66.93 65.21 66.60 67.17

L2 0.482 0.501 0.484 0.483

SML-DO
acc. 67.31 68.77 70.17 70.60

L2 0.451 0.427 0.418 0.408

LRG
acc. 66.12 66.24 66.50 68.63

L2 0.497 0.505 0.489 0.464

LRG-DO
acc. 67.42 69.72 69.75 70.05

L2 0.459 0.427 0.424 0.417

Table 1: State tracking accuracy (%) and L2 results for the dif-

ferent trackers using different speaker features. SML (25-75)

and LRG (75-150) are the size of the layers, and DO indicates

that dropout is used. IV are iVectors and APW accuracy per

word features.

4. Results
The performance of the state trackers is evaluated on 8 different

SUs corresponding to the speakers with ASR accuracy between

40% and 90%5. State tracking accuracy and L2 measure are

used as metrics, following scoring schedule 2 of the DSTCs [5].

Table 1 shows results when the trackers are trained with

data from the source speakers only. The first row is the perfor-

mance of the baseline tracker and the rows below compare the

4 LSTM-based trackers. The columns denote the features used

in the input. It can be seen that the performance of the baseline

tracker is only between 1% and 3% absolute below the perfor-

mance of all the LSTM trackers when not using speaker specific

features. This shows that the baseline tracker can compete with

machine learned models in mismatched train-test data condi-

tions, even in challenging ASR environments. Without dropout,

using APW and IV features degrades the tracker performance in

the case of SML network, and shows insignificant improvement

for LRG. However, the concatenation of both features increases

the performance slightly in SML and for more than 2% in LRG.

Analysing the results speaker by speaker (not included in this

paper for space reasons), it can be observed that, depending on

the speaker, APW and IV features independently can degrade

the performance. This suggests that for some speakers the best

similarity measure with other speakers are APW features, and

IVs for others. By combining both, the LSTM tracker is able to

learn which features work better for a certain type of speaker.

Dropout regularization improves the results of SML-DO and

LRG-DO without using speaker features, but the performance

increase is considerably more pronounced when APW or IV

features are used, with improvements between 1.5% and 3% ab-

solute. Combining the features and dropout gives the largest im-

provement with respect to the baseline, 5.75%, and 3.67% with

respect to the LSTM tracker not using dropout or extended fea-

tures. This shows that extending the networks input increases

the chance to overfit, because neurons learn co-adaptations that

only work for the training data. By using dropout, these co-

adaptations can not be learnt because the presence of any par-

ticular input is unreliable. The improvement on accuracy and L2

measures given by the extended features is highly correlated.

In figure 3, the performance of the SML and SML-DO

trackers when different amounts of user specific dialogues are

included in the training set is shown. The results are presented

5In [31] it was shown that, for high intelligibility speakers, the ASR
accuracy is above 90% so the improvement obtained from dialogue
management is small, and for some very low intelligibility speakers,
the ASR accuracy is too low to get any useful performance.
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Figure 3: Accuracy for SML tracker, using different amounts of

target speaker dialogues in the training data. DO indicates that

dropout regularization is applied and IV+APW that the con-

catenation of IV and APW features is used.

with no speaker features and IV+APW features. The improve-

ment obtained from speaker features increases when the tar-

get speaker dialogues are included in the training set, obtain-

ing more than 4% absolute improvement compared with not

using speaker features for any amount above 400 dialogues.

When a small number of target speaker dialogues are included

in the training set, the gain obtained from the combination of

speaker specific features and dropout regularization (SML-DO-

IV+APW) is significantly higher than any of these approaches

alone (e.g. 3% with 200 dialogues). As more target speaker

data is included in the training set, the gain obtained from the

IV+APW features is increased with respect to the gain obtained

from dropout, even if SML-DO-IV+APW still performs around

1% better. This shows how dropout helps to generalize when

little or no speaker specific data is available for training, while,

as more speaker specific data is included in the training set, the

speaker features can work without the need for dropout.

5. Conclusions
In this paper, speaker specific features extracted from the raw

acoustics and from the ASR were used to train an LSTM-

based state tracker personalised to a target speaker, when train-

ing data from that speaker is not available. Dropout regu-

larization showed to significantly increase the DST accuracy

gained by including the features. It was shown that the im-

provement obtained with speaker features is larger when small

amounts of data from the target speaker become available. Re-

sults where presented for an environmental control system de-

signed for dysarthric speakers, but the features have the poten-

tial to be used with normal speakers too. Data from only 15

different speakers was used in this study. Having access to data

from more source speakers could increase the chance of finding

speakers “similar” to the target, which might increase the ef-

fectiveness of this method. Two types of features were used in

this study, both related to time-invariant speaker characteristics.

Feature-rich discriminative DST opens up the possibility of us-

ing numerous different features extracted from the acoustics or

the ASR, such as features related to the noise, to the quality of

the utterance, or to words appearing in the ASR output.
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