This is a repository copy of Automatic assessment of English learner pronunciation using discriminative classifiers.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/109268/

Version: Accepted Version

Proceedings Paper:

https://doi.org/10.1109/ICASSP.2015.7178993

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
AUTOMATIC ASSESSMENT OF ENGLISH LEARNER PRONUNCIATION USING DISCRIMINATIVE CLASSIFIERS

Mauro Nicolao, Amy V. Beeston, Thomas Hain

Speech and Hearing Research Group, Department of Computer Science, University of Sheffield, UK

ABSTRACT

This paper presents a novel system for automatic assessment of pronunciation quality of English learner speech, based on deep neural network (DNN) features and phoneme specific discriminative classifiers. DNNs trained on a large corpus of native and non-native learner speech are used to extract phoneme posterior probabilities. A part of the corpus includes per phone teacher annotations, which allows to train two Gaussian mixture models, representing correct pronunciations and typical error patterns. The likelihood ratio is then obtained for each observed phone. Several models were evaluated on a large corpus of English-learning students, with a variety of skill levels, and aged 13 upwards. The cross-correlation of the best system and average human annotator reference scores is 0.72, with miss and false alarm rate around 19%. Automatic assessment is 81.6% correct with a high degree of confidence. The new approach significantly outperforms spectral distance based baseline systems.

Index Terms— Pronunciation assessment, Computer-Assisted Language Learning, DNN-GMM, binary classifier.

1. INTRODUCTION

As automatic assessment tools permeate teaching methodologies, reliable automatic assessment of English learners’ speech is of increasing interest. Interactive language learning tools incorporate a variety of approaches, however, assessment of pronunciation quality remains a particularly challenging task, especially with adolescent students. Approaches to computer-assisted pronunciation training were reviewed in [? , ?], and use a variety of metrics designed to assess pronunciation at the fine-grained phonetic level [?]. Nonetheless, studies in this area tend to score a learners’ speech on longer time-intervals, reporting assessments in units of words [? , ?] or longer, e.g. per-sentence or per-student measures as in [?].

This paper describes a method for phone-level pronunciation error detection developed as part of a research project on language learning for Dutch learners of English. The project has collected a large corpus of classroom recordings which is described in more detail below. Our approach is similar to that of [? , ?] in that a student’s attempt to pronounce a given phrase is compared directly against an audio example provided by their teacher.

Our proposed method produces a phoneme-level assessment, which is a far more challenging task than word, sentence or student level assessment. We introduce a binary error classification regime that allows an efficient pronunciation assessment, and which benefits from advanced acoustic modelling with deep neural networks (DNNs). The new method is also computationally efficient, as it uses DNN features and GMM-based binary classification rather than ASR, as recent related work describes [?]. The cross-correlation of our best system and average human annotator reference scores is 0.72, with miss and false alarm rate around 19%. Automatic assessment is 81.6% correct with a high degree of confidence.

2. PRONUNCIATION ASSESSMENT

The objective is to assess the pronunciation quality of an unknown student utterance, \(U_s \). It is assumed that a reference utterance \(U_t \) exists, spoken by a teacher. The system then outputs a vector \(S = \{s_i\} \) with a pronunciation quality assessment score for each of the \(M \) phonemes in \(U_s \). By design, teacher and student utterances have the same word content, \(W_s = W_t \). Moreover, a proficient learner should exactly match their teacher’s phonetic sequence, \(P_s = P_t \).

Given two recordings of the same text prompt – one from the student, \(O_s \), and one from the teacher, \(O_t \) – we would like to compute the probability that the learner recording mimics the teacher reference in pronunciation. Alternatively one can ask if the teacher’s reference is a good predictor for the student utterance, i.e. we would like to compute \(P(O_s|O_t) \).

With the reference \(O_t \), the word \(W_t \) and the phonetic \(P_t \) sequences are also determined. Hence, \(P(O_s|O_t) \) can be written as

\[
P(O_s|O_t) = \frac{P(O_s,W_t,P_t,O_t)}{P(W_t,P_t,O_t)}
\]

(1)

For estimating the above we use that teacher and student words are the same, i.e \(W_t = W_s = W \), but also assume that the two phonetic sequences are identical, \(P_t = P_s = P \). As \(P(P,W,O_t) \) depends only on the reference segmentation, it is constant for every similar utterance of the learner.
In order to give each realisation of the phone the same importance, the duration is normalised to a fixed length. Other solution would be to resample or interpolate the values along each dimension (such as in the posterior features domain), another solution would be to resample or interpolate the values on each dimension to achieve feature sets with same length. The above phoneme sequence prior is constant for all observations. Assuming segmentation information for phonemes, both student and teachers feature sequences can be split into the phone-related sets:

\[P(O_i, O_t | P) = \prod_{s=1}^{M} P(O_i^s, O_t^s | r^s) \]

The paired sets, \(O_i^s \) and \(O_t^s \), are normally of different length. In order to give each realisation of the phone the same importance, the duration is normalised to a fixed length \(L \). The simplest solution might set \(L = 1 \) and chose, for example, either the central feature vector, \(O^t = O^{t, central} \) or an average of the feature vectors within the phone \(r \) along each dimension. If the feature domain is assumed to be continuous along each dimension (such as in the posterior features domain), another solution would be to resample or interpolate the values on each dimension to achieve feature sets with same length \(L \), e.g. \(O_i^{s, L} \) and \(O_t^{t, L} \) with \(L = 20 \). Each element of the product in (2) can be thus modelled as a phoneme-dependant mixture of Gaussians (GMM).

The problem then can be turned into a binary classification problem, where phoneme-level scores for each student utterance \(O^t \) are computed. For pairwise aligned data, \(O^{s, L} = [O_i^{s, L}, O_t^{t, L}] \), each student’s phone is judged to be well pronounced (C=correct) when \(P(C=correct | O^{s, L}) > P(C=error | O^{s, L}) \). This is equivalent to

\[\frac{P(O_i^{s, L} | C=correct)}{P(O_i^{s, L} | C=error)} > \frac{P(C=correct)}{1 - P(C=correct)} \]

where the right hand side of (2) serves as a threshold \(T \), which depends on the degree of proficiency of the learners.

ACC gives the percentage of phones that were correctly assessed. CC Cross-correlation detects similar behaviour in different sequences of values [7].

3. THE ITSLANGUAGE DATASET

The dataset underpinning this work comprises recordings of native-speakers and learners of English, a portion of which has mispronunciation annotated at a phonetic level.

<table>
<thead>
<tr>
<th>Set name</th>
<th>Use</th>
<th># sessions</th>
<th>Acquisition</th>
<th># talkers</th>
<th>Age</th>
<th># files</th>
<th># hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA\textsubscript{ph} 1–2</td>
<td>GMM training</td>
<td>7</td>
<td>Apr 2013</td>
<td>238</td>
<td>13+</td>
<td>6,252</td>
<td>3.05</td>
</tr>
<tr>
<td>INA\textsubscript{ph} 3–6</td>
<td>GMM test & regression tree training</td>
<td>7</td>
<td>Apr 2013</td>
<td>222</td>
<td>13+</td>
<td>6,640</td>
<td>2.99</td>
</tr>
<tr>
<td>INT</td>
<td>DNN and acoustic model training</td>
<td>10</td>
<td>May 2013</td>
<td>598</td>
<td>13+</td>
<td>88,697</td>
<td>46.49</td>
</tr>
<tr>
<td>INY</td>
<td>Pronunciation reference ((U_t))</td>
<td>1</td>
<td>Dec 2013</td>
<td>8</td>
<td>-</td>
<td>1,869</td>
<td>1.68</td>
</tr>
</tbody>
</table>

Table 1. ITSLanguage data subsets. Annotated learner recordings in INA are split into two portions of around 3 hours duration each. Learner material in INT is used in training, and INY contains teacher recordings used as pronunciation references.

<table>
<thead>
<tr>
<th>Comparison</th>
<th>vs. Agreement</th>
<th>CC</th>
<th>vs. Agreement</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>a2</td>
<td>0.858</td>
<td>0.434</td>
<td>R</td>
</tr>
<tr>
<td>a2</td>
<td>a3</td>
<td>0.782</td>
<td>0.412</td>
<td>R</td>
</tr>
<tr>
<td>a3</td>
<td>a1</td>
<td>0.818</td>
<td>0.523</td>
<td>R</td>
</tr>
</tbody>
</table>

Table 2. Inter-annotator analysis. Left: pairwise comparisons showing Agreement (where annotators scores match) and cross-correlation (CC, which detects similar behaviour across sequences of values [7]). Right: Each annotator is compared with the combined reference, R.

Recordings were made via an online learning environment, by mainly Dutch children in schools across the Netherlands. Working individually, the learners read items from an ordered list of 193 text prompts (both words and short sentences), re-recording each item until satisfied with their pronunciation. Recorded with predominantly USB headset microphones, audio signals were stored in MS-WAVE format (22.05 kHz, 16-bit). Many students performed the recording task simultaneously; a high degree of background noise was therefore present in each classroom. Meta-data for each learner detailed their age, mother tongue and other languages spoken. Further, their familiarity with English was quantified in several ways: number of years learning, self-reported confidence, and the Common European Framework level of the class in which the student was enrolled. The learner dataset consisted of around 80 hours of raw speech. Recordings with prominent distortion were removed using clipping detection. Items with partial, missing, or inappropriate speech content were filtered out by aligning the audio with the known text prompt (using a British English acoustic model and multiple-pronunciation dictionary). Table ?? illustrates learner subsets selected for the current work: around 6 hours (INA\textsubscript{ph}) was selected for phone-level annotation and c. 46.5 hours (INT) was used in system development as detailed below.

Pronunciation references (INY) for the 193 test items were recorded by proficient British English speakers. A high quality microphone and quiet room were used, but other conditions replicated those described above. Teacher data comprised 6 sets of recordings by native-speaking adults (2 male, 2 female) and 4 sets by non-native adults (2 male, 2 female, with Dutch, Austrian, and Flemish backgrounds).

The annotation dataset (INA) included utterances from as
many learners as possible, balancing gender, age and learner level. Around half was annotated at the phone-level (cf. INA\textsubscript{ph}, in Table ??), and half at the word-level (unused in the present study). These utterances were aligned (allowing for multiple pronunciations) in order to provide a standard phone sequence reference, P_a, which was presented alongside the audiofile in an online annotation tool. Three native Dutch-speaking phoneticians (a1, a2, a3) acted in the role of teacher to assess the correctness of the learners’ pronunciation. Table ?? quantifies inter-annotator consistency. To handle differences of opinion, a combined reference, R, comprised the average of the three responses for each phone in each utterance. This located regions that all three annotators considered well-pronounced or mispronounced, and ambiguous regions causing disagreement. This approach differs from [?], where items that were not unanimously labelled were removed. Moreover, it reflects the fact that an ‘error’ resists clear definition since pronunciation varies continuously between native and unintelligible [?]. A threshold on R then highlights consistently well- or poorly-spoken phones.

4. Evaluation Framework

The method described in § ?? was implemented with the architecture outlined in Figure ??, The observation vector in (??) has no restriction on the type of features that can be used. Here, posterior probability features (labelled \textit{post}) were extracted, using a deep neural network (DNN). Two DNNs were tested: DNN\textsubscript{UK}, a 2-layer network trained on clean British English pronunciation using the WSJCAM0 corpus [?], and DNN\textsubscript{UK+INT}, a 4-layer network trained using both British and Dutch-accented student audio (WSJCAM0 and INT). As input, both DNNs used a 15-frame span vector with 23 filter-bank coefficients per frame. The bottleneck (BN) layer had 26 coefficients and the output layer had 144 monophone states (English phone set). Posterior features were extracted from both the INA\textsubscript{ph} learner corpus and one or more teachers in NY. The three \textit{post} values measured for each phone state were combined into a single value. The output of the BN layer (\textit{bn}) was also used to train the triphone-based GMM-HMM acoustic model used in alignment.

During training, learner and teacher audio fragments were fused in a pairwise manner, phone-by-phone, by means of the annotation sequences P_a. During assessment, a ‘2-step’ process first obtained a target phone sequence from the teacher’s audio using a multiple-pronunciation dictionary, and secondly used this sequence in forced alignment of the student’s recording. Teacher and learner phones typically have different durations; same-length feature sets were created here by interpolation of the extracted vectors along each dimension, setting length $L = 20$. The alignment and fusion processes thereby generated the phone-comparison vectors $O^{i,L} = [O^{i,L}_s, O^{i,L}_t]$, of (??). In training, these vectors were then grouped into 47 (one per phone i), giving sets of $L \times N_i$ vectors, where N_i is the number of phone realisations. Each set was further split using the reference R with a threshold at 0.5, which provided a binary decision label based on the annotators’ majority opinion. After this, $\{O^{i,L}_s\}_i^{N_i}$ stored all the correct phone pronunciations, and the mispronunciations were gathered in $\{O^{i,L}_t\}_i^{N_i}$. These sets were input of the GMM expectation-maximisation training, allowing computation of $P(O^{i,L}_s|C=\text{correct})$ and $P(O^{i,L}_t|C=\text{error})$. In total, 94 GMMs were created, each counting 64 Gaussian functions.

During assessment, the same feature extraction process took place, using the 2-step alignment discussed above. The left side of (??) was then computed using the synchronised feature set, resulting in a wide range of continuous likelihood ratio values. These were mapped into the [0,1] interval using a regression tree which was optimised using the annotated data of the GMM training, a measure of the time-discrepancy
between teacher and student phone durations (D), and their differential values (Δ). A pronunciation error resulted when mapped scores fell beneath a threshold whose level sets the system’s strictness. Here, the rate of undetected mispronunciations (MISS) balanced the well-pronounced phones marked as errors (false alarm rate, FAR).

5. EXPERIMENTS

The evaluation framework was used to assess learner pronunciation in the (unseen) INAph1–6 dataset. For this, the system outcome, S, was compared with the combined human reference, R, using six common information retrieval indices. Of these, CC, FAR, and MISS were previously defined; additionally, Accuracy (ACC), F-score, and normalised cross-entropy (NCE) are displayed in Table 3. ACC gives the percentage of phones that were correctly assessed. The F-score combines recall and precision rates [2]. NCE concerns the mutual information between the correctness of the mispronunciation detection and the confidence score in making that decision [2]. For the perfect system, CC, ACC, F-score, and NCE values are high; FAR and MISS are low.

The baseline system reported in [2] performed pairwise comparison of temporal and spectral acoustic features averaged at the phone-level (duration, D, energy, E, and spectral shape, S). These were combined into a single score in the [0,1] range using a regression tree as described above.

Table 3 provides the evaluation framework’s improvement (middle) over the baseline (top), and outlines the relative gains (or losses) arising as each component is introduced. Annotated learner speech material (Uₜ) is compared against utterances recorded by a single teacher (here, Uₜ=INY51, female), simulating the manner in which this learning environment would be used in the classroom. The proposed system uses audio data from the selected teacher to train the GMMs. System performance is loosely similar to that of the baseline, even without the regression tree mapping (e.g., CC is 0.426 and 0.443 respectively). The performance is boosted substantially when the regression tree is tuned on student utterances used in the GMM training stage (CC=0.716 for INAph1–6). Importantly, cross-correlation remains high (CC=0.613) when this system is then tested on unseen learner audio, i.e. when INAph3–6 is used for Uₜ, simulating a new student group. A slight improvement is observed by introducing D and Δ as input to the regression tree (CC=0.616). However, inclusion of the student data in the DNN creation (DNNUK+INT) brings about a small reduction in performance (CC=0.581). This arises due to the higher diversity of pronunciation captured in the DNN posterior distributions.

An ideal system would allow introduction of a new teacher without penalty (e.g., Uₜ=INY52, male, in Table 3, bottom). However, a drop in performance occurred when the DNNUK+INT+D+Δ system was used with INY52. To lessen the dependency on the training teacher, the GMM was created using multiple teacher references (MULTI). When a teachers is involved in both test and training (i.e., Uₜ=INY51, female), there is no further benefit from this MULTI condition. However, a different pattern of results emerges for the mis-matched teacher condition using Uₜ=INY51, male, where the MULTI condition gives an improvement in system performance (CC increases from 0.574 to 0.587).

6. CONCLUSIONS

This paper introduced a novel system for automatic assessment of pronunciation quality of English learner speech, based on DNN features and phoneme-specific discriminative classifiers. In this challenging phone-level decision task, one in which even expert annotators often disagree, the proposed method achieved good accuracy values with high decision confidence. Improvements in DNNs and annotation quality might address the low performance in FAR and MISS.