This is a repository copy of Real world emissions performance of a HDD truck with SCR NOx control.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/109192/

Version: Published Version

Proceedings Paper:
Andrews, GE orcid.org/0000-0002-8398-1363, Li, H orcid.org/0000-0002-2670-874X, Hadavi, AS et al. (2 more authors) (2016) Real world emissions performance of a HDD truck with SCR NOx control. In: Proceedings Fifth International Exhaust Emissions Symposium. Fifth International Exhaust Emissions Symposium, 19-20 May 2016, BOSMAL, Bielsko-Biala, Poland. BOSMAL.

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Real World Emissions Performance of a HDD Truck with Urea SCR NOx Control

Gordon E. Andrews, Hu Li, Ali S. Hadavi, Buland Dizayi and Alison S. Tomlin

Clean Combustion Group
School of Chemical and Process Engineering
University of Leeds, Leeds, LS2 9JT, UK.
<profgeandrews@hotmail.com>
Contents

1. Air quality issues and Real Driving Emissions (RDE) in urban areas of cities
2. Factors that influence RDE
3. Experimental equipment
4. HDD truck RDE test for Euro V with SRC
Real Driving Emissions (RDE) - 1

The current appalling press regarding RDE shows a lack of understanding of the issue and an industry that has not got its voice across to the public.

The VW issue in the press has been more about vehicles with higher emissions in RDE than on test cycles, which has been the situation since emissions regulations came in and applies equally well to SI engines as diesel, as I will show in this lecture.

Whether VW have ‘cheated’ and made the RDE worse relative to the test cycle, is a separate issue, but the RDE would have been higher than on the test cycle irrespective of any RDE calibrations that were different to those on the test cycle.

It is my view that congested traffic is a key feature of RDE.
My research group on RDE at Leeds University have over the last 12 years published over 40 SAE papers on RDE and why they are higher than on test cycles.

RDE higher than on test cycles applies to all vehicles SI and diesel and for SI vehicles the RDE effect is closely related to longer cold start in RDE and higher acceleration rates and more stop/starts, as I will show in this presentation.

Modern Euro 6 diesels with particle filters have no real world issues with PM emissions and yet SI engines without a particle trap are now emitting more PM in RDE than diesels with particle traps fitted. The major RDE effect for diesels is on NOx and CO₂ and with catalysts to control NOx, either NSR or Urea SCR, the catalyst has to be above about 200°C to be active and the lower temperatures of diesel exhausts make this difficult, as I will illustrate for a HDD truck RDE journey.
Tsukamoto, Y. et al., Development of new concept catalyst for low CO\textsubscript{2} emissions Diesel engine using NOx adsorption at low temperatures. Toyota. SAE 2012-01-0370

Future low CO\textsubscript{2} vehicles will have lower exhaust temperatures due to more TC and associated leaner diesel engine operation.

deNOx catalyst for lean burn require T>200\textdegree C for light off. RD temperatures are lower than on test cycles and so NOx emissions will be higher.
Prediction of Urban Air Quality in Europe -1

There are relatively few experimentally based air quality measurements in Europe and in UK cities. One per city is quite common.

In Leeds the entire Leeds air quality is measured by the official government funded site at ONE location in the centre of Leeds. This is about 20m from a busy slip road leading to the Leeds Inner Ring Road. Concentrations elsewhere are based on the Leeds air quality model.

The city council has additional roadside measurement locations and one of these is in Headingley on the A660, on the congested route used in this study. This is a site that frequently exceeds European regulations on NOx and PM and this study investigates the pollution from traffic passing this site using a probe vehicle in the traffic flow with PEMS.

Predictions of air quality relating to traffic rely on three inputs:

1. Traffic modelling for traffic flows and mean travel time.
2. The UK national database for the age of registered vehicles in Leeds
3. The certified emissions per vehicle according to its age – using the NEDC test cycle.
4. Although there is a procedure agreed in the UK to take into account cold start in situations where they may be significant, this is often ignored for Euro 3 onwards and was ignored in the Leeds model.
Professor Gordon E. Andrews, Energy Research Institute, University of Leeds, UK.

Real World Diesel and SI Engine Gaseous Emissions

1:1 agreement

y = 1.281x

On average the Leeds air quality model is 28% too low in its prediction of NO₂ at the monitored sites across Leeds.

Regulations for NO₂ are 40 µg/m³ annual limit. 100µg/m³ one hour limit.

Very poor agreement of measurements and model

Air quality is modelled using the Leeds Traffic model and vehicle legislated emissions data. No account taken of traffic congestion.

Measured NO₂ using Drager Tube sensors, µg/m³

Headingley

Traffic doubles the NO₂ exposure

Leeds NGT Trolleybus Public Inquiry TWAO Doc. A-08c-1 Air Quality, Sept. 2013

4th Int. Exhaust Emissions Symposium 22-23 May 2014, BOSMAL, Bielsko-Biała, Poland
Very poor agreement between air quality modelling and measurements for PM10. This is because the model used PM for traffic from the legislated test cycles and emissions in congested traffic are higher.

Very limited PM10 data for Leeds.
This RDE is predominantly extra-urban. Completely unrealistic for the UK as there is no congestion.

Figure 1. Representation of the Moving Average Window (MAW) approach to determining applicability of PEMS data from in-use emissions. Solid lines represent test data. Dashed lines represent two levels of tolerance or acceptability of the data. (8)
Comparison of congestion simulated in test cycles

This assumes a regulated speed of 30 mph or 48.3kph for urban driving

<table>
<thead>
<tr>
<th>Test Cycle</th>
<th>NEDC</th>
<th>FTP</th>
<th>CAFE</th>
<th>JC09</th>
<th>WLTC</th>
<th>RDE</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Vel. kph</td>
<td>33.6</td>
<td>31.5</td>
<td>52.3</td>
<td>24.4</td>
<td>46.5</td>
<td>30 - 110¹</td>
<td>5 – 26</td>
</tr>
<tr>
<td>Congestion</td>
<td>30%</td>
<td>34%</td>
<td>0%</td>
<td>49%</td>
<td>3%</td>
<td>0%</td>
<td>90% - 46%</td>
</tr>
<tr>
<td>Max. Acc. m/s²</td>
<td>1.0</td>
<td>1.5</td>
<td>1.7</td>
<td>1.7</td>
<td>1.5²</td>
<td>2.2 – 2.8</td>
<td></td>
</tr>
<tr>
<td>Distance, km</td>
<td>11</td>
<td>12</td>
<td>8.2</td>
<td>23.3</td>
<td>~80-90¹</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>No. Acc. From Idle / km</td>
<td>1.3</td>
<td>1.5</td>
<td>1.5</td>
<td>0.4</td>
<td>~0.2¹</td>
<td>1.2 - 7</td>
<td></td>
</tr>
</tbody>
</table>

RDE in congested traffic involves lower speeds, higher accelerations and many more accelerations from idle than on any legislated test cycle. WLTC will have lower emissions than NEDC due to higher speeds and proposals for RDE ignore congested driving completely.

¹RDE Examples from S. Hausberger et al. TU Graz, 3rd Conf. RDE, Berlin, Oct. 2015.
The air quality exceedances for PM and NO$_2$ in cities is based on local monitoring stations close to roads with congested traffic e.g. Marylebone Road in London and Headingley in Leeds. It is the local congested traffic that is the problem and as I have shown, none of the test cycles or so called improved test cycles address this issue and it is totally ignored in the proposals for RDE testing.

In congested traffic the average speed is low, peak accelerations are high and the number of accelerations from idle/km is much higher than on any test cycle. These are the reasons for real world driving causing poor air quality in cities and these conditions are ignored in WLTC and RDE proposals. Thus these new test procedures will not address the issue of real world driving and poor urban air quality.
Contents

1. Air quality issues and Real Driving Emissions (RDE) in urban areas of cities

2. Factors that influence RDE

3. Experimental equipment

4. HDD truck RDE test for Euro V with SRC
Factors that influence RDE – both SI and Diesel

1. Driver behaviour – aggressive drivers – high acc./decel

2. Ambient temperature – affects catalyst light off and water and lube oil warm-up times, related to cold start.

3. Congested traffic in urban driving – low average speed and more stop/starts – influence of other drivers – this is the main topic of this presentation.

4. Traffic lights and road junctions – most emissions in urban areas occur at these real driving events.

5. Cold start in RDE is longer than on test cycles and often occurs in congested traffic.

6. Diesels have an additional problem that the catalyst can cool down after it has lit off – cruise and reaching congested traffic after a period of high speed driving. This will be shown for SCR and has previously been shown for oxidation catalysts.
Example of emissions mapping using Horiba OBS g/s in a Ford Mondeo Euro 1 For Euro II – VI with lower emissions there are no significant emissions other than at junctions, so the effect of junctions is greater.

Pollution and CO$_2$ is predominantly at junctions for Euro 2 and increasingly so for Euro 4+

Junctions are the most important influence of congested traffic driving in urban locations. There are no junctions in the NEDC!
The present work was not designed to include a cold start, the time at the start of the test while instruments and data loggers were set up was sufficiently long for catalyst cooling to occur. The low oxidation catalyst temperatures at the start of the test resulted in high CO and HC emissions during the subsequent warm up period. For most of the journeys the catalyst temperature was well above 200°C. However, there were times when the catalyst cooled down to around 150°C in congested traffic, where CO and HC increased. This is a different catalyst behavior to that in SI vehicles operating at λ=1 as the exhaust temperature are higher and there is greater heat release at the catalyst due to CO and HC oxidation.
Contents

1. Air quality issues and Real Driving Emissions (RDE) in urban areas of cities

2. Factors that influence RDE

3. Experimental equipment

4. HDD truck RDE test for Euro V with SRC
PEMS – Temet FTIR (Gasmet) with Horiba OBS pitot tube exhaust mass flow measurements and gas sampling.

Racelogic GPS for velocity and acceleration measurements

Mercedes Benz AXOR-C6x2

Engine Mercedes-Benz OM457LA Euro V

Euro 5 with SCR deNOx

Unit injectors, TCIC, 4v/cyl.
Mercedes Benz AXOR-C6x2
Engine Mercedes-Benz OM457LA Euro V
Euro 5 with SCR deNOx
Unit injectors, TCIC, 4v/cyl.

Note that Euro V HDD did not have any cold start requirements to meet.
The RDE are dominated by cold start issues
Contents
1. Air quality issues and Real Driving Emissions (RDE) in urban areas of cities
2. Factors that influence RDE
3. HDD truck RDE test for Euro V with SRC
4. Experimental equipment
5. Congested traffic route – Headingley, Leeds
6. Number of starts from idle
7. Typical emissions records for one journey
8. Average journey emissions v. mean velocity
9. Most congested section of the journey
10. Individual acceleration events v. mean vel. In acc.
11. Individual constant velocity (cruise) sections of the journey
12. Conclusions
Cold start into congested traffic

Sharp changes in direction indicates a junction event
This is the NOx mass emission in $g_{\text{NOx}}/\text{kg}_{\text{fue}}$.

Clearly the deNOx efficiency is poor on this journey and the cold start effect is very clear over the first 300s. The spikes are likely to be due to inadequate Urea control and the rise in the mean NOx to inadequate catalyst temperature.
Several NOx mass emissions for different trips on the same journey are shown in this and the next slide.

Very poor SCR efficiency in congested traffic for cold start AND prior hot catalyst.

Poor SCR catalyst efficiency due to low cat. temps. in the congested traffic.
Low T

700s Cold start

EI, NOx —— w, km/h

Time, s

Vehicle speed, km/h

EI, NOx, g/kgf

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750

0 20 40 60 80 100 120

0 50 100 150

0 -50 -100 -150 -200