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Drivers of U.S. toxicological 
footprints trajectory 1998–2013
S. C. L. Koh1,2, T. Ibn-Mohammed1,2, A. Acquaye3, K. Feng4, I. M. Reaney5, K. Hubacek4,6, 
H. Fujii7 & K. Khatab8

By exploiting data from the Toxic Release Inventory of the United States, we have established that the 
toxicological footprint (TF) increased by 3.3% (88.4 Mt) between 1998 and 1999 and decreased by 39% 
(1088.5 Mt) between 1999 and 2013. From 1999 to 2006, the decreasing TF was driven by improvements 
in emissions intensity (i.e. gains in production efficiency) through toxic chemical management options: 
cleaner production; end of pipe treatment; transfer for further waste management; and production 
scale. In particular, the mining sector reduced its TF through outsourcing processes. Between 2006 and 
2009, decreasing TF was due to decrease in consumption volume triggered by economic recession. Since 
2009, the economic recovery increased TF, overwhelming the influence of improved emissions intensity 
through population growth, consumption and production structures. Accordingly, attaining a less-toxic 
economy and environment will be influenced by a combination of gains in production efficiency through 
improvement in emissions mitigation technologies and changes in consumption patterns. Overall, the 
current analysis highlights the structural dynamics of toxic chemical release and would inform future 
formulation of effective mitigation standards and management protocols towards the detoxification of 
the environment.

Globally, supporting evidence and wider international recognition of the effect of climate change1 has demon-
strated a need to mitigate atmospheric CO2 concentration2,3 and prompted a range of international, regional and 
national energy and emissions policies targeting energy intensive sectors4,5. However, long-lasting and pervasive 
toxic chemical release impact on climate change and alter global and local development. Toxic emissions impact 
on soils and water bodies, affect ecosystems and are detrimental to human health, quality of life and wellbeing6,7. 
A new study published in the latest issue of environmental toxicology and chemistry8 highlighted among other 
factors that human actions (including mitigation of and adaptation to impacts of global climate change, GCC) 
may have as much influence on the fate and distribution of chemical pollutants as GCC. As such, climate change 
has the potential to alter human chemical exposures by changing how chemicals move and transform in the 
environment. The Intergovernmental Forum on Chemical Society (IFCS)9 reported that the physical changes 
in temperature, wind and rainfall caused by climate change affect the distribution and breakdown of chemicals 
in complex ways. This effect on human exposure will vary according to the properties of specific chemicals and 
chemical combinations, soil and water conditions, wind patterns, topography, land use, level of development and 
human demographics.

In the light of the above, gaining an understanding of the trends in toxic chemical release based on a robust 
analytical framework is therefore pertinent and this study draws on the Toxics Release Inventory (TRI) of the 
United States (U.S.), to explore these issues. Numerous studies have employed the TRI datasets for environmental 
analyses. Yet, despite the potentially significant implications for the wider U.S. environmental policy, there has 
been no quantitative analysis that provides a basis to understand the key drivers of toxic emissions, and their 
temporal contributions to the toxicological footprint. This study adopts an input-output structural decomposition 
analysis (SDA)10,11 that combines U.S. economic, population and the National TRI datasets to understand what 
has driven toxic chemical release across a 16 year period between 1998 and 2013.
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Our analysis quantifies the contribution of: population growth; changes in consumption volume induced 
exclusively by changes in per capita consumption of goods and services; consumption structure which is a func-
tion of shifts in consumption pattern or the types of goods and services being consumed; adjustments in produc-
tion structure or the mix of inputs (for example, labour, domestic and imported materials) required to produce 
U.S. goods and services; and changes in emissions intensity or the total sectoral toxic release per inflation-adjusted 
unit of economic output.

To unravel and quantify the drivers of U.S. toxic chemical release, we introduce the concept of the toxicolog-
ical footprint (TF) - a consumption-based12,13 indicator of toxic chemical release into the environment which 
accounts for all toxic emissions (based on the TRI) along entire domestic supply chains. This approach allows 
identification of the underlying drivers of the U.S.’s TF and the extent of their contributions to the overall changes 
in the toxic chemical release profile. A lack of understanding of these drivers hinders the opportunity for ascer-
taining the effectiveness of policies and the design of highly efficient supply chain networks induced by improve-
ments in production efficiency through technological and socio-economic factors, in mitigating the effects of 
toxic emissions. The impact that toxic emissions have on climate change and human health combined with the 
absence of relational quantitative insight underpin the timeliness of this contribution.

Sectoral toxic chemical release in the U.S. and derivation of toxic emissions intensity
All the raw toxic chemical release data set used in deriving the direct emissions intensity which forms the basis for 
the current work were obtained from the Toxics Release Inventory (TRI) of the U.S. The data captured within the 
TRI are for chemicals alone. Reporting is currently mandatory for individual manufacturing facilities in specified 
industries within the U.S. for over 600 chemicals and most cover environmental releases of each chemical, the 
medium of release (i.e. air, water, land and underground discharges of several thousand of toxic chemicals14,15) 
and facility characteristics. Other air pollutants or toxic releases including sulphur dioxide, carbon monoxide, 
nitrogen oxide and volatile organic compounds are not captured within the TRI. For detailed information on the 
data set and its associated limitations, see supplementary information (SI). The direct emissions intensity data 
covering 1998–2013 were derived from the TRI of the U.S.; see SI for details of how the toxic emissions intensity 
data were calculated. The data used are only for the chemicals in the TRI release. These datasets are reported in 
pounds (lb) of discharge, without any consideration given to the differences in toxicity among the chemicals, but 
the data provides the amount of discharge of the most important toxic chemicals.

Toxicological footprint of key economic sectors in the U.S.
By linking the sectorial direct toxic emissions intensities matrix with total supply chain requirements across the 
35 industries within the U.S. and final demand for goods and services, the toxicological footprint (TF) of the U.S. 
between 1998 and 2013 are calculated; refer to Methods Section and the SI for the methodological notes. Figure 1, 
shows TF for the top 10 economic industries. As indicated, the total TF decreased by approximately 37% (1000.08 
megatons of toxicological footprint, Mt TF) from 2713.14 Mt in 1998 to 1713.06 Mt in 2013.

Overall trajectory of the U.S. toxicological footprint from 1998 to 2013
Figure 2 shows the overall trajectory of the U.S. toxicological footprint (TF) and the contributions of different sec-
tors between 1998 (the baseline year) and 2013. After the surge in TF by 3.3% (88.4 Mt) between 1998 and 1999, 
driven by consumption volume (3.4%, 91 Mt), production structure (2.3%, 62 Mt) and population growth (1.2%, 
32 Mt), the overall TF of the U.S. declined by 39% (1089 Mt) between 1999 and 2013. Three factors: (i) continued 

Figure 1. Contributions of the top 10 most intensive economic sectors to the total toxicological footprint 
(TF) of the U.S. between 1998 and 2013. As indicated, the mining and quarrying sector exhibit the most 
prominent sector responsible for the toxicological footprints of the U.S.
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and steady growth in population (10.3%, 280 Mt); (ii) consumption volume triggered by per capita consumption 
(8.8%, 237 Mt) and (iii) consumption structure (3.2%, 88 Mt) acted as accelerators of the toxic release dynamics. 
However, the upward influence of these three factors was offset by a decline in emissions intensity (− 54.1%, 1467 
Mt) and production structure (− 8.3%, 226 Mt).

Despite an increase in population growth and consumption volume, and shift in consumption pattern, our 
results show improvements in emissions intensity drive the fluctuations pattern of TF. This trend demonstrates 
where technology (i.e. improved efficiency in production) directly mitigate toxic chemical release and by extension  
climate change due to reduced TF. To establish the overall strength or influence of toxic emissions intensity on TF 
across the time frame, we calculated the correlation coefficients (r) between these variables as 0.81. Thus, when 
the toxic emissions intensity (i.e. production efficiency) worsens in the U.S., TF increases. Efficiency gain was 
the main factor that drove down the TF during the 1999–2013 period, but other factors which dominated over 
shorter periods (See Fig. 3) are also discussed.

Declining toxicological footprint from 1999 to 2009
Based on the aggregate time interval of declining TF between 1999 and 2009, population growth and increased 
consumption volume increased the TF by 10.2% (280 Mt) (6.8%, 190 Mt and 3.4%, 100 Mt respectively), offset 
by an improvement in efficiency (− 50%, − 1360 Mt) resulting in an actual decrease in TF of − 54.2% (1470 Mt), 
Fig. 3. This latter effect was prominent between 1999 and 2006, where efficiency gains (i.e. improvement in emis-
sions intensity) were responsible for 79% (1200 Mt) reduction in TF with changes to production structure respon-
sible for 21% (330 Mt). Consumption structure, population growth and consumption volume exerted upward 
influence on TF during the same period. Overall, the TF decreased significantly by ~42% (1140 Mt) between 1999 
and 2006. Almost half (41%, 150 Mt) of the toxic emission reduction between 2006 and 2009 was due to a sharp 
decrease in the volume of consumed goods as a result of decline in per capita consumption during the global 
economic recession (Fig. 3, brown bar). In particular, sharp decreases in the volume of capital expenditures and 
exported goods between 2007 and 2009 reduced emissions10.

Given the influence of emissions intensity on the TF dynamics, we explored production and supply chain 
efficiencies to identify which industrial sectors are responsible for improvements or loss, and identify the factors 
upon which they depend. Figure 4 shows the percentage changes in the emissions intensity of key economic sec-
tors where significant improvements in efficiency in terms of toxic chemical release per U.S.$ of output have been 
recorded, driving down the overall TF of the U.S. economy over the period 1998 to 2013. As shown, all sectors 
experience a relatively similar fluctuating pattern.

Every economic sector has its specific characteristics. In our study, mitigation options for the specific man-
agement of toxic chemical release, driving the reduction in toxic emissions intensity were categorised into the 
following: (i) cleaner and efficient production processes (CP); (ii) end-of-pipe (EoP) treatment which involves 
the installation of filters like drains or smokestacks in the last process of production to prevent pollution; (iii) 
transfer for further treatment based on efficient waste management techniques, both on-site and off-site, includ-
ing recycling, energy recovery and waste treatment (TFT); and (iv) production scale (PS) (i.e. sectoral output at 
deflated price). These four options were further structurally decomposed to quantify their contributions towards 
improvements in emissions intensity. We refer readers to Methods Section and SI for details of how the aforemen-
tioned options were quantified based on TRI datasets. Figure 5 shows the contributions of the mitigation options 
to reductions in toxic emissions intensity across key economic sectors.

The mining & quarrying (M&Q) sector is responsible for the largest release of toxic chemicals and heavy met-
als into the environment, Fig. 1. The same sector is responsible for the largest improvements in toxic emissions 
intensity (Fig. 4, red curve). For instance, the emissions intensity (i.e. gain in production efficiency) of the M&Q 

Figure 2. Contributions of different factors to changes in the U.S. toxicological footprint (TF) between 
1998 and 2013. Using 1998 as a base year, the fat black line depicts the percentage change in total TF. The other 
trend lines show the contribution to the change in TF from population (yellow), consumption volume (blue), 
production structure (green), consumption structure (purple) and emissions intensity (red).
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sector improved tremendously by 66% from 1999 to 2006. CP (green curve) and PS (red curve) are the dominant 
climate change mitigation options responsible for the improvements in emissions intensity in the M&Q sector, 
Fig. 5a. Improvements in emissions based on CP was due to technology and methods for efficient and cheaper 
extraction. Examples include innovation in refs 16 and 17: (i) exploration (i.e. identification of minerals, chemical 

Figure 3. Contributions of different factors to the overall reduction in U.S. toxicological footprint (TF) 
based on three distinct categorical periods 1999–2006; 2006–2009 and 2009–2013. Each of the grey bars in 
each period represent the TF in gigaton. As shown, TF fell by 42.0% from 1999 to 2006 driven by efficiency gain, 
decreased by a further 12.3% between 2006 and 2009 due to global economic recession and increased by 14.1% 
between 2009 and 2013, driven mainly by economic recovery.

Figure 4. Percentage changes in the toxic emissions intensity of key sectors in the U.S. economy. See 
Supplementary Figure 2 for plots of trends in emissions intensity in absolute terms. As shown, the mining sector 
(red curve) is responsible for the largest improvements in toxic emissions intensity, relative to the weighted 
average of the toxic emissions intensity (black curve).
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compositions and physical properties directly in the field); (ii) ore deposit definition (i.e. modelling mineral 
deposits, their potential economic assets and challenges from the earliest stages of exploration); (iii) ore extraction;  
(iv) transport and communication; (v) ore processing; (vi) health and safety and (vii) remediation.

To explain the influence of production scale on improvements in emissions intensity in the M&Q sector, we 
explored trade data including export and import data of relevant items in the U.S. and found that it was largely 
due to outsourcing of the processing of hazardous chemicals to other parts of the world18,19. The U.S. in recent 
decades, has gradually shifted the most polluting aspects of its M&Q sector to developing countries, particularly 
lead ore. Almost all of the lead ore mined in the U.S. are exported for processing in countries whose environmen-
tal and occupational regulations are weaker or poorly enforced20,21. For example, 75% of the lead ore mined in the 
U.S. was processed and used domestically in 2000 with 25% exported to the rest of the world (RoW), whereas in 
2014, 72% and the remaining 28% of the lead ore were outsourced to China and the RoW respectively (Fig. 6, see 
also Supplementary Figure 3).

For mining, outsourcing has become integral allowing mining companies to reduce production and transac-
tion costs. Considerable capital is invested in constructing smelters and refineries and, along with energy costs, 
have encouraged outsourcing of processing-related mining activities. Based on U.S. Environmental Protection 
Agency’s new Clean Air rules22,23, it would require ~$100 m in new equipment, hence lead smelting lead ore pro-
cess has been outsourced. In addition to environmental regulation governing mining in the U.S., lack of talent, an 
aging workforce, unfavourable tax laws, market structure, wage and price differentials have prompted outsourcing 
of mining processes24. Although the U.S. Federal income tax structure supports the development of the mining 
sector, the U.S. still has an unfavourable business tax environment in comparison to those countries likely to 
obtain outsourced mining related activities. For example, effective tax rate of the U.S. is about one-third higher 
than the average Organisation of Economic Cooperation and Development (OECD) countries. Non-wage costs 
including health insurance, payroll taxes, cost of litigation and exchange rate are some other factors. For instance, 
some processing of mined ore outsourced to Canada are due to the favourable exchange rate. In particular, estab-
lished supply system, large engineering capacity and attractive labour force, encouraging environmental policies, 
low effective tax rates, competitive costs of raw materials and strong supplier networks in China are some of the 
motivating factors that prompted the U.S. to outsource large mining activities, Fig. 6b.

Improvements in emissions intensity in the M&Q sector is the most important driver in TF reduction, caused 
by a combination of outsourcing and more importantly cleaner production however, improvement in technology 
in other economic sectors also contributes. For instance, in the chemical sector, between 1999 and 2006, CP (− 11%, 
2,816 Mt), EoP (− 5%, 1,280 Mt) and TFT (− 13%, 3,327 Mt), Fig. 5b, contributed to reduction in toxic emissions 
of 24% (25,596 Mt). Similarly, between 1999 and 2006, in the basic and fabricated metal sector (Fig. 5c), TFT (blue 

Figure 5. Contributions of four categories of mitigation options to reductions in toxic emissions intensity 
in the U.S. across key economic sectors, 1998–2013. Shown are changes in emissions intensity related to 
(a) mining and quarrying; (b) chemical products; (c) basic and fabricated metals; (d) electrical and optical 
products. In each panel, the solid black line indicates the percentage in emissions intensity driven by the 
mitigation options namely transfer for further waste management (blue), end of pipe treatment (yellow), cleaner 
production (green) and production scale (red).
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curve) was the main climate change mitigation option responsible for an 18% reduction (2618 Mt). In the basic and 
fabricated metal sector, recycling rates of metals have increased and coupled with new and advanced technologies 
have reduced the need to extract virgin materials. This can be evidenced from the expansion of the low carbon 
and environmental business in the 1990 s which increased the value added of waste management and remediation 
services in the U.S. from $29.3 billion to $37.8 billion25,26. This investment stimulates companies to transfer their 
industrial waste to off-site plants rather than treatment on-site27. Of the 51% (3576 Mt) reduction in toxic emissions 
in the electrical and optical equipment sector (Fig. 5d), between 1999 and 2006, CP (green curve) and TFT (blue 
curve) have the greatest influence, each contributing 18% (643.7 Mt) and 19% (679.5 Mt). CP contributed to overall 
improvements in toxic emissions through improvement in production processes and product design to save on 
inputs derived from chemical substances in all sectors, Fig. 5. For instance, MidAmerican Energy succeeded in 
re-engineering their rubber and plastics manufacturing process through the use of advanced additives and ingre-
dients, reducing toxic emissions intensity. Also, Xerox invested in chemical material substitution processes to min-
imise heavy metals and toxic chemicals. They migrated to a solvent-free process for the cleansing of machine parts 
across 15 years and succeeded in eliminating mercury and lead from their new range of products27.

Growing toxicological footprint from 2009 to 2013
Between 2009 and 2013, as the economy recovered from recession, the U.S. TF surged by 14.1% (383 Mt) (Fig. 2, 
black curve). Economic recovery is reflected by the combined effects of production structure (5.7%, 155 Mt), 
consumption volume (5.3%, 145 Mt), consumption structure (3.6%, 97 Mt) and population growth (3.5%, 95 
Mt) which nullifies the influence of 4% (110 Mt) improvement in emissions intensity. The growth in popula-
tion, consumption volume caused by growth in per capita consumption and corresponding improved production 
activities in toxic emission intensive sectors of the economy resulted in an increase in the TF of the U.S. (see 
Supplementary Table 1). In this period, domestic raw and recycled materials were used to process aluminium, 
copper, brick, fertilizers, and steel and net imports of processed materials (worth about $28 billion) were con-
sumed by downstream industries28. Also, within this time frame, the share of U.S. consumption of manufactured 
goods increased compared to services10, suggesting that changes in the types of goods and services consumed 
over time influence emissions29 and that it is not as straightforward as the balance of manufactured goods and 
services. These results show climate change impact from increased TF as a result of the growing economy.

Discussion and Conclusion
Between 1999 and 2006, the TF of the U.S. decreased by 42% mainly driven by improvement in emissions inten-
sity (i.e. gain in production efficiency) in the M&Q sector. Our analysis shows that in the same period, despite 
growth in population and increased consumption volume, improvements in emissions intensity through CP, EoP, 
and TFT prompted by effective environmental regulations reduced the TF in the U.S. Environmental outsourcing 
as a mitigation strategy leaking toxic chemical releases should also be addressed, alongside radical innovations in 
CP, EoP, TFT and PS. This efficiency gains which drove down TF has demonstrated quantitatively that reduction 
of TF is possible despite growth in population and consumption volume. For instance, CP contributed to the 
reduction of all types of toxic chemical release in all the sectors, consistent with the findings of Bui and Kapon30 
and Fujii and Managi27. It can be concluded therefore, that legislation such as the 1990 Clean Air Act in the U.S. 
has been a positive technology-based or performance-based approach to enable large and small industrial sources 
of toxic chemical releases to adopt cleaner processes.

The relatively large decrease (− 12.3%) in TF of the U.S. between 2006 and 2009 was mainly due to economic 
recession. The recession may also have contributed to efficiency gains in production structure. Since 2009, 
recovery in the U.S. increased the TF, but improvement in emissions intensity was overwhelmed by the com-
bined effects of population growth, consumption and production structures as well as consumption volume. 

Figure 6. The destination of mined lead ore for processing. (a) destination of mined lead ore for processing 
in year 2000; (b) destination of mined lead ore for processing in 201421,54. As indicated, in year 2000, 75% of lead 
ore mined in the U.S. was processed domestically, but in recent years more than 70% was exported to China and 
the remainder to the RoW for processing.
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In fact, between 2009 and 2013, the TF of the U.S. increased by an average of 2.9% per year. This suggests that 
demand-side mitigation such as change in behaviour and consumption pattern, is needed to ensure a steady 
decline in the overall TF.

In addition to understanding the drivers of the U.S.’s TF dynamics during 1998–2013, our analysis assesses the 
efficacy of different drivers to reduce TF in the future. Efficiency gain, economic recession and economic recovery 
patterns which are coloured by population growth, change in consumption volume, production structure and 
emission intensity have provided the strong narratives in explaining why and how TF trajectory change in these 
reported 16 years for the first time. Although our results show the prominence of toxicological footprint emanat-
ing from the M&Q sector, should a more sectorial focus approach or even an international, a national, an organ-
izational or a product level approach, be designed to address TF reduction? This has wider policy implication for 
multi-region debates on environmental toxicity.

This study represents the first structural decomposition analysis that unravels the underlying drivers of tox-
icity and the extent of their impact on climate change. Such analysis is helpful for policy and decision makers 
to understand the structural dynamics of toxic chemical release to formulate effective toxic chemical release 
mitigation standards and management protocols. Based on this research and to sustainably mitigate impact on 
climate change from long-lasting and pervasive toxic chemical release we recommend: (i) further research on 
more advanced treatment plans, systems of production that do not use polluting agents and remediation tech-
nology; (ii) provision of incentives for research and development to ensure the implementation of more efficient 
techniques to draw down TF and (iii) publishing detailed standards and guidelines tailored towards individual 
chemicals given that different toxic chemicals have different effects.

Methods
Input-output analysis. The general input-output (IO) model is a quantitative technique that is employed 
to examine the interrelationships between economic sectors over a time frame. It interprete the flows of goods 
and services from one economic sector (i.e. producer) to other economic sector (consumers)31. The basis of an 
IO analysis is the IO table which is made available by national government and takes the form of a square matrix 
which illustrates the financial input of products in dollars (as in the case for U.S.) from each sector of the economy 
(row) required to produce total output of each industry sector (column) also expressed in dollars32. Final demand 
(y) are demands for products in $ used by household, government, export etc. Total output is the dollar equivalent 
of outputs produced by each industry. Accordingly, the interdependencies between suppliers and consumers along 
the production chain across upstream and downstream industries within an economy and between economies33.

The relationship between the three variables within the framework of economic IO analysis is given by:

= − ⋅−I Ax y( ) (1)1

Matrix I is the identity matrix and (I −  A)−1 known as the Leontief inverse matrix, L and represents the pro-
duction structure. It shows that if L remains constant over a given period of time, the changes in total output (X) 
depend on the changes in final demand (Y). The implication of this equation is that sector i is required to generate 
an equivalent amounts of product to meet changes in final demand Y. As such, the outputs from other sectors to 
fulfil the additional requirements from sector i are also taken into account. This implies that it produces a map-
ping between the final demand vector and the inputs.

By adding environmental information, such as toxic emissions as in the case of the current work, to each 
sector, an environmental burden (a “footprint”) can then be assigned to these financial transactions. This charac-
terises the environmental impact of an additional $1 of output from each industry. Environmental input-output 
analysis (EIO) illustrates economy-wide environmental repercussions (here we use toxic emissions as environ-
mental indicator) triggered by economic activity, and can be expressed mathematically as:

= − −g f I A y( ) (2)1

where g is the total economy-wide toxic release; f is a row vector of toxic coefficients (toxic release per unit of eco-
nomic output) in each economic sector; I is the identity matrix; A is a matrix, and each column of A shows input 
requirement from each sector to produce one unit output of this column sector; y is a column vector of final con-
sumption. For further information on how EIO framework is expanded upon and adopted the current work, see SI.

Structural Decomposition Analysis (SDA). Structural Decomposition Analysis (SDA) is a method fre-
quently used to calculate the contribution of different factors to the overall change in carbon emissions and 
energy consumption. The SDA overcomes many of the static features of input-output models, enabling the eval-
uation of changes over time in economic structure, final demand components and categories. SDA is capable of 
distinguishing production and final demand effects that the Index Decomposition Analysis approach lacks34, and 
assesses direct and indirect effects along the entire supply chain across upstream and downstream industries33. 
Although the high level of data requirement by the SDA approach has been a barrier in the past since many 
countries publish input-output tables only once every 5 or more years, the recent development of global time 
series input-output databases (e.g. World Input-Output Database or WIOD35 and The EORA multi-region IO 
database36) and more regular publication of economic-structure data in countries like the U.S. now make time 
series SDA feasible and has been used in Australia37, Denmark38,39, India40, Korea41, Netherlands42, the United 
States43 and China34,44–46.

We consider the production structure through L =  (I – A)−1, the Leontief inversion matrix. Changes in the 
production structure thus refer to changing input requirements of each sector or, in other words, industries using 
more or less intermediate inputs from each other. To distinguish the contributions of different final demand 
components, we further decompose y into three components – average consumption structure, per capita 
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consumption volume, and population: y = ysyv p, where ys is a vector of per capita consumption patterns; yv is a 
scalar of per capita consumption volume; p is a scalar of population which could appear at the front or the back of 
the input-output equation. Therefore, Eq. 2 can be transformed to:

=g pfLy y (3)s v

Over a given period of time, any changes in toxic footprint (Δ TF) in a country can be represented by Eq. 3, 
in which the five factors of population, toxic release intensity, production structure, consumption patterns, and 
consumption volume fully account for the changes in toxic release. A total difference of Eq. 3 generates Eq. 4

∆ = ∆ + ∆ + ∆ + ∆ + ∆TF p y p y p y p y y p yfLy fLy f Ly fL fLy (4)s v s v v v vs s s

where, ∆ is the difference operator. Eq. 3 converts five multiplicative terms in the first term of Eq. 3 into five addi-
tive terms. Each additive term in Eq. 4 represents the contribution to a change in toxic release triggered by a factor 
assuming all other factors are constant. For example in the fifth term, ΔyV is change in per capita consumption 
volume, and the term represents the change of total toxic release caused by a change in per capita consumption vol-
ume, with population size, toxic release intensity, production structure, and consumption patterns staying constant.

In SDA, it is possible to compare different terms relative to any time point within a study period. However, 
there is no unique solution for the decomposition. We use the average of all possible first-order decompositions 
suggested by Dietzenbacher and Los47 and Seibel48. The U.S. input-output tables (IOT) from 1998 to 2013 were 
collected from the Bureau of Economic Analysis (BEA) which is in make-use format49. We convert the make-use 
table to symmetric IO table following the method by Miller and Blair33 and then aggregated them into 35 eco-
nomic sectors to match the toxic release data. For further details on structural decomposition analysis, see SI.

Logarithmic Mean Divisia Index (LMDI). Given that improvement in emissions intensity induced by 
technology options was the main driver in reducing toxic emissions, it is important to evaluate how various 
technology options contributed towards the reduction. Accordingly, following the approach adopted by Fujii and 
Managi27 we further explored the TRI datasets based on three variables for toxic chemical release namely total 
chemical releases (Et); total off-site transfers for further waste management (Toff); and on-site waste management 
(Ton). We further established two additional variables namely: total amount of chemical substances generated (G), 
calculated as G =  Et +  Toff +  Ton and waste transferred out of the facility(O), computed as O =  Et +  Toff. X is the 
sectoral output data at constant dollar.

Based on the above generated and calculated dataset, Logarithmic Mean Divisia Index (LMDI) technique was 
adopted to decompose the changes in toxic emissions intensity using four factors namely (i) cleaner production 
(CP); (ii) end-of-pipe treatment (EoP); (iii) transfer for further waste management (TFT); and (iv) production 
changes (PC). We defined the CP as G

X
, which is a function of toxic chemical release per gross output. This indica-

tor can be decreased through the reduction of toxic chemical release whilst maintaining the same production 
output. This reduction can be achieved through improvement in production process and product design which 
can lead to overall reduction in the input of intermediate chemical materials. The EOP indicator was computed 
using the relation O

G
, which is a function of the proportion of the out-of-facility chemical releases with respect to 

the total toxic chemical release during production. The reduction of this indicator can be realised by increasing 
the share of on-site waste management within the total toxic chemical releases.

The TFT indicator was calculated using the formula E
O

, which is a function of the proportion of emissions with 
respect to the amount of toxic chemical release outside of the manufacturing facility (i.e. the summation of the 
toxic emissions and the amount transferred for further treatment). This indicator can be reduced if the total 
amount of toxic emissions released decreases and off-site waste management increases. Finally, the PC indicator 
is a function of change in production. Given the difficulty in obtaining the correct dataset based on individual 
product type, we employed the total sectoral output data to evaluate this variable.

The total amount of chemical substances emission (E) was decomposed as Eq. (5).

= × × ×E E
O

O
G

G
X

X (5)

To decompose the emission change factor, the LMDI which has also been applied in several energy studies50–53 
is adopted in this study as expanded upon in Eq. 6
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Accordingly, changes in the total toxic chemical emission (Δ E) were composed of the changes in TFT (first 
term), EOP (second term), CP (third term) and PC (fourth term).
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