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S U M M A R Y
The geomechanical analysis of a highly compartmentalized reservoir is performed to simulate
the seafloor subsidence due to gas production. The available observations over the hydro-
carbon reservoir consist of bathymetric surveys carried out before and at the end of a 10-yr
production life. The main goal is the calibration of the reservoir compressibility cM, that is,
the main geomechanical parameter controlling the surface response. Two conceptual mod-
els are considered: in one (i) cM varies only with the depth and the vertical effective stress
(heterogeneity due to lithostratigraphic variability); in another (ii) cM varies also in the hori-
zontal plane, that is, it is spatially distributed within the reservoir stratigraphic units. The latter
hypothesis accounts for a possible partitioning of the reservoir due to the presence of sealing
faults and thrusts that suggests the idea of a block heterogeneous system with the number of
reservoir blocks equal to the number of uncertain parameters. The method applied here relies
on an ensemble-based data assimilation (DA) algorithm (i.e. the ensemble smoother, ES),
which incorporates the information from the bathymetric measurements into the geomechani-
cal model response to infer and reduce the uncertainty of the parameter cM. The outcome from
conceptual model (i) indicates that DA is effective in reducing the cM uncertainty. However,
the maximum settlement still remains underestimated, while the areal extent of the subsidence
bowl is overestimated. We demonstrate that the selection of the heterogeneous conceptual
model (ii) allows to reproduce much better the observations thus removing a clear bias of
the model structure. DA allows significantly reducing the cM uncertainty in the five blocks
(out of the seven) characterized by large volume and large pressure decline. Conversely, the
assimilation of land displacements only partially constrains the prior cM uncertainty in the
reservoir blocks marginally contributing to the cumulative seafloor subsidence, that is, blocks
with low pressure.

Key words: Inverse theory; Geomechanics.

1 I N T RO D U C T I O N

The prediction of the subsurface compaction of producing hydro-
carbon fields is an important issue within the general reservoir
management framework. Undesirable impacts such as casing de-
formations and wellbore failures (Hilbert et al. 1999; Fredrich
et al. 2000; Sayers et al. 2006) must be prevented to reduce sig-
nificant economical risks and ensure the maximum safety of the
drilling operations. Moreover, the forecast of the land subsidence
caused by the compaction of the rock formation can be of ma-
jor importance. Indeed, the surface settlement can cause, in the
case of offshore reservoirs, platform sinking, as observed at the
Ekofisk field in the North Sea (Kristiansen & Plischke 2010),
pipeline deformation and a certain environmental impact partic-

ularly in coastal areas (Baù et al. 2000; Morton et al. 2006;
De Waal et al. 2012).

Geomechanical simulators have long been recognized as impor-
tant tools to predict land subsidence during and after field opera-
tions, as well as to evaluate the risks associated with it. However,
numerical modelling of the reservoir geomechanical response to
fluid extraction is affected by several sources of uncertainty, such as
the rock mechanical properties, the geological structure of the reser-
voir and the initial stress regime. In light of the above, establishing
a probabilistic framework may provide a powerful strategy to cope
with the problem uncertainties and to constrain our knowledge of
the system.

The major geomechanical parameter influencing rock com-
paction is the vertical uniaxial rock compressibility cM (van Hasselt
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1992; Baù et al. 2002; Hueckel et al. 2005). An overview of the
methodologies used to estimate cM is given in Ferronato et al. (2004,
2013). This parameter can be evaluated from either laboratory tests
or in situ field investigations. In the former category, core sam-
ples are tested in compaction devices, which aim at replicating the
loading conditions expected in the reservoir. Most often, these con-
ditions are hard to reproduce in the laboratory, which can result
in significant errors of estimation of the reservoir rock properties.
As to the latter category, the radioactive-marker technique (RMT)
was developed in the 1990s and 2000s to estimate rock properties
based on direct measurements of the reservoir compaction (Cas-
siani & Zoccatelli 2000; Baù et al. 2002; Kristiansen & Plischke
2010). With the RMT, the reservoir compaction is measured by
monitoring the variation of the vertical distance between a series of
isotope markers shot into the formation through logging boreholes.
Despite the improved results with respect to laboratory techniques,
the interpretation of RMT data remains affected by uncertainties
and caution to their use is recommended (Ferronato et al. 2003,
2004). For example, radioactive markers need to be installed in
non-producing wellbores, as horizontal pressure gradients in a pro-
ducing wellbore leads to the measurement of the compressibility in
non-oedometric conditions, thus to a cM underestimate. In addition,
a detailed knowledge of the reservoir lithostratigraphy is needed to
optimally position the radioactive markers and correctly interpret
the corresponding measurements.

Values of cM can be also ‘inverted’ using observations of ground
movement obtained, for example, with satellite Interferometric
Synthetic Aperture Radar (InSAR) measurements (Ferronato et al.
2013). Teatini et al. (2011) used these type of measurements to cal-
ibrate a finite element (FE) transversely isotropic model to simulate
the behaviour of an underground gas storage (UGS) reservoir in
Italy. The methodology provided an indirect estimate of the cM in
loading/reloading conditions. Moreover, 4-D seismic data, that is,
time-lapse 3-D seismic surveys, can be used as indirect information
for the prediction of reservoir petrophysical properties (Mezghani
et al. 2004; Hatchell & Bourne 2005; Herwanger & Horne 2009).

Since each of the measurement methods presented above is af-
fected by uncertainties, it is advisable to select data with caution and
develop procedures to integrate different and seemingly indepen-
dent sources of information, as well as validate simulation results.
In this work, we apply a data assimilation (DA) framework to infer
the reservoir rock compressibility cM and reduce the uncertainties
in its estimation. DA is an analysis technique that allows for in-
corporating observations from a dynamic system into a simulation
model solution to reduce the uncertainty in the forecast of the sys-
tem state. In reservoir history-matching applications, DA has been
used to update the dependent variables of multiphase flow models,
such as pressure and saturations, and as an inverse modelling tool
to ‘condition’ model parameters, such as porosity and permeability,
based on the observed data (e.g. Lorentzen et al. 2003; Nævdal
et al. 2003; Gu & Oliver 2005; Skjervheim et al. 2011; Emerick &
Reynolds 2013).

The estimation of geomechanical parameters via DA is a fairly
new application. Fokker et al. (2013) employed measurements of
ascending and descending line-of-sight displacements from InSAR
to calibrate the compaction coefficient and the subsurface basement
elastic modulus for the Bergermeer gas field in The Netherlands.
Baù et al. (2014) presented an ensemble smoother (ES), that is,
an ensemble-based DA approach, to joint assimilate horizontal and
vertical land surface displacements into a hypothetical reservoir
model based on Geertsma’s analytical solution (Geertsma 1973). A
real-world application is presented by Zoccarato et al. (2016), in

which the ES is used to reduce the uncertainty on the constitutive
parameters characterizing a transversely isotropic geomechanical
model of a UGS reservoir. The calibrated parameters are homoge-
neously distributed in the domain, although the heterogeneity due
to the lithostratigraphic variability according to the dependency of
cM on the depth, z, and the vertical effective stress, σ z is properly
accounted for.

In this study, an ES parameter estimation technique is developed
and implemented using seafloor bathymetric observations, collected
over an offshore gas reservoir, the Maja field. Two conceptual mod-
els for cM are selected and compared. As in Zoccarato et al. (2016),
the first conceptual model assumes cM dependent on z and σ z on
account of a basin-scale variability due to lithostatic loading. In
the second conceptual model, cM varies not only with respect to z
and σ z , but also horizontally, that is, it is assumed to be spatially
distributed within the reservoir layers. This assumption is justified
by the strong compartmentalization of the Maja reservoir, which
is physically partitioned into separate blocks, or zones, by a com-
plex system of faults and thrusts. To our knowledge, this is the first
attempt to calibrate cM as a 3-D field.

The constitutive law of cM versus σ z is assumed to be known
from previous basin-scale characterizations from RMT surveys
(Baù et al. 2002; Ferronato et al. 2013). The horizontal hetero-
geneity is introduced into the model by means of a horizontally
varying function fcM (x, y), which multiplies the cM(σ z) constitu-
tive law. Note that we do not aim to derive a new basin-scale com-
pressibility relationship, but rather to infer local (at the scale of the
reservoir) heterogeneities of cM by inverting surface displacement
observations.

This paper is organized as follows. Section 2 describes the major
components of the methodology followed in this work. These consist
of the reservoir data set available for the Maja gas field, the geome-
chanical model, the available observations of surface displacements
and the ES algorithm used to estimate the geomechanical model pa-
rameters. Section 2 also gives a detailed description of the two
conceptual models used for represent the heterogeneity of the cM

field. The results of the numerical forecast and the application of the
inversion algorithm are presented in Section 3, along with a discus-
sion (Section 4) on the adequacy of the adopted conceptual models.
The conclusions that can be drawn from this work are summarized
in Section 5.

2 M E T H O D O L O G Y

Our approach relies on the combination of a reservoir geomechan-
ical model, data of surface displacements observed over the Maja
reservoir and a DA framework that merges the latter into the results
of the former. These elements are presented in the following.

2.1 The Maja gas field

The Maja field is an offshore gas reservoir that was developed over
a period of 10 yr starting in the late 1990s. The field location cannot
be published to comply with a confidentiality agreement made with
the operator managing the gas field. Gas was produced from three
main gas pools A, B and C hydraulically disconnected from one
another (Fig. 1). The fluid pore pressure distribution in these layers
is obtained with the reservoir multiphase simulator ECLIPSETM

through history matching of the measured wellbore fluid pressures
and gas production rates. Maps of the pressure change, �P, at
the end of the 10-yr production life of the reservoir are shown in
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Figure 1. South–north interpreted seismic section through the Maja reser-
voir.

Figure 2. (a) Schematic representation of the fault-block distribution within
the Maja gas reservoir and (b)–(d) maps of the pressure change �P occurring
in layers A, B and C. The pore pressure variation is experienced over 10 yr
of production.

Fig. 2(b)–(d). The gas bearing pools are subdivided into different
compartments delimited by sealing faults and/or thrusts as shown
in the schematic representation of the fault-block distribution of
Fig. 2(a). The reservoir compartmentalization is derived from 3-D
seismic survey and accordingly supported by the pressure change
in the geological blocks measured during the field production.

The largest �P reached −75 bar in the intermediate pool B
(Fig. 2c) at the end of the field production. The aquifer hydrauli-
cally connected with pool B is significantly compartmentalized and
divided into three blocks with an average �P ∼ −20, −45 and −30
bar. Pool A shows a different pressure distribution with �P varying
from a −45 to −18 bar. Negligible �P is found in the deeper gas
pool C except for the central blocks.

Based on laboratory measurement on core samples and produc-
tion tests, the following data are used. The reservoir porosity φ

varies from 15 to 29 per cent. In pools A and B, the horizontal per-
meability kh ranges from 30 to 250 mD and from 13 to 680 mD,
respectively. In pool C, kh equals 13 mD. The vertical permeability
kv is 0.1kh.

2.2 Reservoir geomechanics

The subsurface deformation is a major consequence of the pore
pressure change in space and time due to the injection or the extrac-

Figure 3. Scale basin constitutive laws, cM versus z and cM versus σ z for
the Maja gas field (modified after Baù et al. 2002).

tion of fluids. The numerical solution of the governing flow and the
structural partial differential equations is required to simulate the
deformation up to the land surface. With the so-called ‘one-way’
coupling approach, the fluid pore pressure variation obtained with
a reservoir multiphase flow simulation is used as forcing term in
a geomechanical model to simulate the ensuing surface motion. In
this work, the geomechanical behaviour of the reservoir is simulated
using a FE poroelastoplastic model (Gambolati et al. 2001; Janna
et al. 2012). The isotropic relationship between the incremental
effective stress σ and strain ε vectors reads:

dε = Cdσ ⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dεxx

dεyy

dεzz

dγxy

dγyz

dγzx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1
E − ν

E − ν

E 0 0 0
ν

E
1
E − ν

E 0 0 0
− ν

E − ν

E
1
E 0 0 0

0 0 0 2(1+ν)
E 0 0

0 0 0 0 2(1+ν)
E 0

0 0 0 0 0 2(1+ν)
E

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dσxx

dσyy

dσzz

dτxy

dτyz

dτzx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1)

where E and ν are the Young and Poisson moduli, respectively. E
and ν are linked to the vertical uniaxial compressibility cM through
the well-known relationship cM=[(1 + ν)(1 − 2ν)]/[E(1 − ν)].

For the Maja gas field, cM varies accordingly with the hypoplas-
tic relationship developed by Baù et al. (2002) and improved by
Ferronato et al. (2013). This model is described in Fig. 3. Initially,
that is, before the field development, cM is distributed depending
exclusively on the depth z. Depth and vertical effective stress σ z are
linked through the Terzaghi relationship σ z(z) = ovb(z) · z − p(z)
where ovb(z) is the overburden gradient derived from density log
and p(z) is the initial fluid pressure. During production cM varies
with σ z , which is increased due to the reduction of fluid pressure
associated with gas production from the reservoir.

Fig. 4 depicts the 3-D grid used to discretize the geological setting
in which the Maja reservoir is embedded. This grid is made up
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Figure 4. (a) Axonometric view of the 3-D finite element (FE) grid of the geomechanical model of the Maja gas field with the coloured elements corresponding
to the productive units of the (b) reservoir production model. The colours in (b) are representative of the reservoir layers.

by 320 901 nodes and 1 824 768 tetrahedral elements and covers
a domain of 52 km×49 km×5 km (Fig. 4a). Reservoir layers in
pools A, B and C (Fig. 4b), which are subject to pressure variation,
include a total of 54 720 elements. No-displacement conditions
are prescribed on the lateral and bottom boundaries of the domain,
whereas its top, that is, the seafloor, is assumed traction-free.

2.3 Bathymetric survey data

The bathymetry is the measurement of the depth of a water body,
corresponding to the topography on the land surface. The differ-
ence between two bathymetric surveys conducted at different times
provides the variation of the depth profile, which is the differential
displacement that occurred from the initial to the final time. Bathy-
metric surveys are powerful tools to monitor the subsidence of the
seafloor over large areas due to the production of fluids from off-
shore reservoirs (e.g. Ottemöller et al. 2005; De Paulis et al. 2011).
These data are acquired from a moving ship using a multibeam
echosounder system, which emits sound waves and measures the
traveltime that the wave takes to bounce off the seabed and return
back to a receiver. Traveltime data are then processed to produce
maps of the water depth over the area covered by the survey. In the
case of the Maja reservoir, bathymetric data have been collected
both at the start and at the end of gas field operations. Multibeam
acquisitions have provided a map of the seafloor subsidence caused
by gas production over 10 yr as shown in Fig. 5. For confidential-
ity reasons, the contour lines are normalized to the measured peak
value, umax.

2.4 Data assimilation framework

DA methods aim at constraining the forecast solution of a mathe-
matical model based on spatiotemporal observations collected from
the response of a dynamic system. Including the observations from
past and present times into a simulation model allows for reducing
uncertainties in the system forecast. DA application to geophysical
models in atmospheric and oceanographic sciences dates back only
a few decades (Evensen 1994, 2003; Burgers et al. 1998; Evensen
& van Leeuwen 2000). In most applications, DA involves the use of
algorithms derived from the Kalman Filter theory (Kalman 1960),
such as the Ensemble Kalman Filter (EnKF; Evensen 1994). The
EnKF is a DA method in which system observations are integrated

Figure 5. Subsidence contour lines derived from multibeam bathymetric
surveys over the Maja gas field. The measured values are normalized to the
value of the maximum displacement, umax. The trace of the gas reservoir
is highlighted by red colour while the dashed rectangle refers to the one in
Fig. 2. The blue dots are the assimilation data points. A significant portion
of the subsidence bowl lies outside the outer trace of the gas reservoir due to
the presence of an active aquifer to the southeast of the reservoir, see Fig. 2.

into the response of a simulator sequentially, that is, as they become
available in time. The EnKF relies on a two-step forecast-update
process. The forecast step relies on the solution of the forward
model equations with a Monte Carlo simulation, which accounts
for the uncertainty on model inputs, such as stress terms and sys-
tem parameters. In the update step, the system state variables are
statistically conditioned in order to resemble the available system
observations.

DA gained attention in reservoir simulation in the early 2000s,
as it became clear it could be used to reduce uncertainties on model
parameters based on observations of the system, that is, as stochastic
inverse modelling tool. A complete review of the application of DA
techniques in petroleum engineering is given in Aanonsen et al.
(2009).
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Figure 6. (a) 2-D view of the geomechanical model grid (see Fig. 4(a)), (b) fcM distribution in CM1 (single random variable) and (c) f (i)
cM distribution in CM2

within the reservoir blocks (seven random variables).

Figure 7. Prior sample cumulative distribution function (CDF) of fcM

(CM1).

Table 1. Statistics from the prior f (i)
cM ensembles.

Zone number Mean Median Std. dev.
μ fcM

mcM σ fcM

1 5.11 5.16 2.50
2 5.19 4.72 2.60
3 5.65 5.97 2.53
4 4.83 4.12 2.78
5 5.63 5.71 2.55
6 5.77 5.81 2.71
7 6.04 6.45 2.48

2.4.1 The ensemble smoother

In this work, the ES is used for reservoir inverse modelling. The
ES relies on a forecast-update process similar to the EnKF, yet the
system observations at different times are assimilated all at once,
as opposed to sequentially. As such, the ES is able to condition

system states at all times and invariant model parameters with a
single forecast-update sequence. Here, we present a brief review of
the ES using the Bayesian formalism introduced by van Leeuwen
& Evensen (1996).

Assume u, α and d as the aleatory variables representing the
predicted data, the model parameters and the set of available mea-
surements, respectively. The ES scheme is derived from Bayes’
rule and the concept of conditional probability. The joint probabil-
ity distribution function (PDF) of the model state and parameters
conditional to the available data set, f [(u, α)|d], is given by

f [(u,α)|d] = f [(u, α)] f [d|(u,α)]

f (d)
. (2)

In eq. (2), f [(u, α)] is the joint PDF of the model prediction and pa-
rameters, f [d|(u, α)] is the PDF of the data given the model states,
also known as likelihood function, and f (d) is a normalization
factor. Using Bayes’ rule, eq. (2) can be rewritten as

f [(u,α)|d] ∝ f (α) f (u|α) f [d|(u, α)]. (3)

In the ES formulation, u is a vector including the predicted data
u1, . . . , uK at a given number K of time steps, whereas the vector
d is formed by the system observations d1, . . . , d J at a subset of
J time steps (J ≤ K). Assuming both model and measurement as
first-order Markov processes, eq. (3) can be expanded to

f [(u1, . . . , uk, α)|(d1, . . . , d J )] ∝ f (α)
K∏

i=1

f (ui |ui−1,α)

×
J∏

j=1

f [d j |(ui( j), α)]. (4)

In a linear Gaussian framework, the left-hand side of eq. (4) is also
Gaussian and the variance minimizing solution equals the maximum
likelihood estimate (Evensen & van Leeuwen 2000). In particular,
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Figure 8. CM1: forecast ensemble of the seabed subsidence over the reser-
voir domain in terms of (a) mean, μv,prior, normalized to umax and (b)
coefficient of variation, Cv,prior. The trace of the gas reservoir is marked by
the red line.

the ES updating equation for a parameter estimation problem is well
known and reads:

αa = α f + C f
U	

(
C f

UU + Cεε

)−1 (
z − u f

)
(5)

where α f and αa are the parameters vectors prior and after the
assimilation of measurements, that is, the forecast and the update
ensembles, respectively. C f

U	 is the cross-covariance between the
prior parameter vector α f and predicted data u f , C f

uu is the covari-
ance of the predicted data u f and Cεε is the measurement error
covariance matrix. The vector z holds the observations of the pre-
dicted data perturbed with an error sampled from a Gaussian PDF
with zero mean and variance σ 2

ε .

2.5 Parameter uncertainty and heterogeneity

Preliminary FE geomechanical simulations indicate that the land
subsidence estimated using the constitutive law shown in Fig. 3 is
significantly lower than the differential bathymetric observations
(Fig. 5). The reasons why this happens are possibly twofold. One
is a local departure of the cM(σ z) constitutive law with respect to
the basin-scale average estimated by Baù et al. (2002). Another is

Figure 9. CM1: comparison between the measured subsidence (red contour
lines) and the mean of the forecast subsidence, μv, prior (Fig. 8a).

a reservoir scale heterogeneity of cM. To verify these hypotheses, a
multiplier fcM of the cM constitutive model of Fig. 3 is introduced.
The importance of heterogeneity is addressed by comparing two
conceptual models, termed CM1 and CM2, which are described in
the following.

2.5.1 Conceptual model 1 (CM1)

In CM1, cM varies initially with respect to the depth z but is hori-
zontally constant. fcM is thus a spatially constant random variable,
which is sampled from a prior PDF in order to generate the ensem-
ble necessary to run the geomechanical model forecast. In this case,
a uniform PDF within the range 1–10 is selected:

fcM ∼ U [1, 10]. (6)

The limits of this PDF are determined after preliminary geomechan-
ical simulations that indicate the selected range is likely to include
the fcM values needed for the simulated land subsidence values to
be of the same order of magnitude of the available observations.
Note that fcM is applied only within the regions of the geomechan-
ical model domain where the variations of pressure occur (Fig. 4b).
The horizontal trace including these regions is depicted in Figs 6(a)
and (b). The cumulative distribution function (CDF) of the prior
ensemble for fcM is shown in Fig. 7. The CDF is approximately
linear and departure from linearity is due to the finite size of the
ensemble, nMC = 100.

2.5.2 Conceptual model 2 (CM2)

In CM2, the initial cM is heterogenous both vertically and hori-
zontally. Vertical variability is the same as in CM1, whereas the
horizontal one is explained by assigning fcM as a 2-D random pro-
cess. The ensuing conceptual model is intended to better match the
observed land subsidence distribution (Fig. 5) by accounting for
the geological structure of the Maja reservoir, which is strongly
compartmentalized (Figs 1 and 2).

As for CM1, fcM is applied to the regions of the geomechani-
cal model including pools A, B and C (Fig. 4b). Fig. 6(c) shows
the compartmentalization adopted in CM2. The subdomain is par-
titioned into seven zones based on the distribution of sealing faults
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Figure 10. (a) Bathymetric map (Fig. 5) with the location of points P1, P2 and P3 used to exemplify the error distribution in scenario B (CM1). (b) PDFs of

the measurement errors at P1, P2 and P3: ε(B) ∼ N [0, σ
(B)
ε ] grow as the point distance increases from the centre of the subsidence bowl.

Figure 11. CM1: prior and posterior CDFs of the updating model parameter
fcM for scenarios A and B.

and thrusts detected from 3-D seismic data. The traces of these zones
are shown in Fig. 6(c). fcM is uniform in each zone, but varies from
one to another. In practice, fcM is modelled as a random process
characterized by seven random variables ( f (1)

cM
, f (2)

cM
,..., f (7)

cM
), each of

which is sampled from a uniform PDF within the range 1–10:

f (i)
cM

∼ U [1, 10] i = 1, 2, . . . , 7. (7)

The CDFs of the model parameters f (i)
cM

(i = 1, 2, . . . , 7) are
similar to the one of Fig. 7 (nMC = 100). No spatial correlation
is hypothesized for the f (i)

cM
variables, thus they are considered as

statistically independent. The mean μ fcM
and the standard deviation

σ fcM
of the ensemble approximate with reasonable accuracy the

respective theoretical vales of 5.5 and 2.6 for the uniform PDF
U[1, 10] (see Table 1).

3 R E S U LT S

In this section, the forecast of the vertical displacements obtained
with the Monte Carlo geomechanical simulations and the parame-
ter updating via the ES algorithm are described in detail for both
conceptual models 1 and 2. Furthermore, the updating of the seabed

subsidence is carried out with the calibrated multiplier fcM as con-
strained in the analysis step.

3.1 Homogeneous fcM (CM1)

The forecast Monte Carlo geomechanical simulation is run using a
prior ensemble of fcM realizations, whose CDF is shown in Fig. 7.
The results of this simulation are summarized in Fig. 8, which shows
the maps of the mean μv, prior (subpanel a) and the coefficient of
variation Cv, prior (subpanel b) of the vertical surface displacement
field at the end of the 10-yr reservoir production life. Note that
μv, prior is normalized to umax. Cv, prior provides an estimate of the
variability of the ensemble.

The comparison of the observed land subsidence (Fig. 5) and
μv, prior (Fig. 8a) is shown in Fig. 9. The simulated peak displace-
ment value is slightly shifted to the west and the extent of the
simulated subsidence bowl is significantly larger than the observed
one. Consequently, the μv, prior largely overestimates the measured
subsidence over the reservoir area. A Cv, prior of about 24 per cent is
found over the central portion of the simulated area with a progres-
sive decrease toward the outer regions of the domain.

Parameter updating is performed by assimilation of data from the
bathymetric survey. The full data set consists of 1110 measurements
of vertical surface displacement over the reservoir area, which i
interpolated to obtain the map given in Fig. 5. However, only the
subset of 30 observations at the locations shown in Fig. 5 is used for
parameter estimation. These data points are chosen such that their
interpolation over the domain resembles with sufficient accuracy
the subsidence map obtained with the full data set. Indeed, the
seabed displacements due to gas extraction from deep reservoir
are characterized by a somewhat smooth distribution. Due to this
regularity, the displacements surface can be well represented by a
relatively small number of assimilation data.

Two scenarios A and B are investigated, which differ with respect
to the value of σ ε assigned to the measurement error. In scenario A,
a value σ (A)

ε = 0.0625 is assumed for all data. This value is deemed
representative of the accuracy of the bathymetric measurements.
In this scenario, all observations are given the same weight in the
assimilation.

In scenario B, σ (B)
ε is spatially variable in relation to the distance

of the measurement points from the location where the maximum
displacement umax has been observed. In particular, σ (B)

ε is assigned
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Figure 12. CM1: profiles of the mean seabed subsidence μv, post along (a) section A–A and (b) section B–B traced on the top map. Scenarios A and B are
compared with the bathymetric profile. Note that the subsidence values are normalized to umax.

a value of 0.025 at the seabed subsidence peak and a value of
0.125 at the farthest location, where the subsidence is smaller and
the measurements considered more uncertain. All other data points
are characterized by a σ (B)

ε value computed by linear interpolation
between the two endpoints in relation to the radial distance from
the location of the subsidence peak. In this scenario, measurements
away from the centre of the subsidence bowl are given a lower
weight than those closer to the displacement peak. Fig. 10 shows
the measurement error PDFs for the representative measurement
points P1, P2 and P3.

The results of the calibration are summarized in Fig. 11, which
shows the posterior CDFs for fcM in both scenarios A and B. The
prior CDF of fcM (Fig. 7) is also included for direct comparison.
A drastic reduction in the parameter uncertainty, as explained by
the spread of the sample CDF, is achieved by assimilating vertical
displacements from the time-lapse bathymetric surveys. One could
observe, however, that the results of scenarios A and B differ, with
the updated CDF in scenario A completely to the left of the CDF
in scenario B. This is a direct consequence of the assigned mea-
surement errors. In scenario A, all data carry the same weight in
the assimilation, and the ES produces an updated ensemble for fcM

that attempts to honor all observations regardless the displacement
intensity. In scenario B, a larger weight is given to larger vertical dis-
placements and the ES yields an ensemble of higher fcM values that
tends to honor more larger displacement observations, at the centre
of the subsidence bowl, and less lower displacement observations
at the margins of the reservoir.

These results imply that the updated fcM ensemble in scenario A
leads to a narrower land subsidence bowl (in a probabilistic sense),
which tends to underestimate the observed larger displacements in
order to honor also the lower displacements. On the other hand, the

land subsidence bowl in scenario B is wider (in a probabilistic sense)
and better matches the observed larger displacements, whereas the
displacements observed toward the margins of the reservoir are
likely overestimated.

To confirm these hypotheses, the updated fcM ensembles are used
to run a ‘posterior’ geomechanical simulations. Figs 12(a) and (b)
show the profiles of the seafloor subsidence mean after 10 yr of
gas production obtained for scenarios A and B and compared to the
bathymetric observations.

As expected, increasing the mean value of the multiplier fcM from
scenario A to B yields:

(i) A reduction of the maximum subsidence underestimate.
(ii) An enlargement of the subsidence bowl.

These contrasting effects suggest that a better match of the ob-
servations cannot be achieved assuming fcM as a single random
variable within the whole model. These results point to the use of a
spatial variability of fcM , as previously discussed in Section 2.5.2.

3.2 Heterogeneous fcM (CM2)

The prior ensemble of heterogeneous fcM realizations, generated as
in Section 2.5.2, is run to obtain the forecast ensemble of the surface
vertical displacements over the geomechanical model domain. As
in CM1, the simulation spans the 10-yr production period and the
ensemble size nMC equals 100. The results of the forecast Monte
Carlo simulation are summarized in Fig. 13, which shows the maps
of the mean and the coefficient of variation of the surface vertical
displacement.
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Figure 13. CM2: maps of (a) the mean and (b) the coefficient of variation of
the forecast ensemble of seabed subsidence over the reservoir domain. The
mean values are scaled to the maximum measured vertical displacement.

The peak subsidence value from the forecast ensemble mean is
equal to 1.01umax. The comparison of Figs 8(a) and 13(a) indicates
that CM1 and CM2 produce similar outcomes in terms of forecast
seabed subsidence mean. By contrast, the coefficient of variation
takes on higher values with CM2 (Fig. 13b) than with CM1 (Fig. 8b).

Fig. 13(b) points out that the pattern of Cv, prior resembles the
hypothesized spatial distribution of fcM shown in Fig. 6, which relies
on the compartmentalization of the reservoir. Moreover, Fig. 13(b)
shows that the statistical variability of surface displacement is more
pronounced over the zones characterized by larger areal extent and
higher values of �P. In particular, Cv, prior reaches maximum values
of 0.43 and 0.45 in zones 2 and 4, respectively, whereas in zones 1,
5, 6 and 7 it is not exceed 0.36.

For CM2, the update step is carried out similarly to CM1, except
that seven fcM parameters—as opposed to one—are estimated by
inverting the vertical displacement measured over the 30 locations
shown in Fig. 5. In this case, the standard deviation of the measure-
ment error σ ε is assumed uniformly distributed for all measure-
ments and equal to 0.0625. The results from the ES are presented in
Fig. 14(a) and Table 2. Fig. 14(a) shows the posterior CDFs for the
fcM value in the seven zones shown in Fig. 6. The prior CDF of fcM

Figure 14. CM2: (a) posterior CDFs of the random variables f (i)
cM after

assimilation of vertical displacements data and (b) updated subsidence map

after 10 yr of gas production using the calibrated f (i)
cM and normalized to

umax.

Table 2. Statistics from the posterior f (i)
cM ensembles.

Zone number Mean Median Std. dev.
μ fcM

mcM σ fcM

1 3.05 2.91 0.89
2 3.59 3.58 0.28
3 9.67 9.57 1.14
4 2.02 2.08 0.64
5 2.92 2.77 1.65
6 2.69 2.66 0.50
7 1.46 1.47 0.51

(Fig. 7) is also included for direct comparison. Table 2 reports the
major statistics of the updated fcM ensembles in the seven reservoir
zones.

The ES has the effect of steering the fcM ensembles toward dif-
ferent values in the seven zones characterizing CM2, which are
somehow quantified by the mean and the median of the updated
ensembles (Table 2). Fig. 14(a) shows that the spread of the poste-
rior CDF of fcM is shrunk significantly for all zones with respect
to the prior CDF. The σ fcM

values given in Table 2 indicate that the
spread varies significantly among zones. The largest value of σ fcM
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is found in zone 5, the easternmost in Fig. 6. The contribution to
the surface displacements from the deep deformation of block 5 is
likely less significant than for the other blocks because the pressure
variation �P is relatively smaller. Indeed, the constraint of f (5)

cM
is

more difficult to obtain.
Table 2 shows that for all zones the median and the mean of

the updated parameter ensemble are very similar, which indicates
that the posterior PDFs are reasonably symmetric. The updated
means μ fcM

are typically lower than the mean (5.5) of the prior
ensembles, except for zone 3 where such mean equals 9.67. This
value almost exceeds the upper support value of the prior PDF
U[1, 10] (eq. 7). Thus, the ES analysis suggests that higher values
for f (3)

cM
are required to match the measured seafloor settlement.

Moreover, the posterior PDF is quite spread around the mean value
indicating that this parameter is hardly constraint by the ES. Indeed,
zone 3 is rather small and the model response is not sufficiently
affected by the variation of the f (3)

cM
values. The largest reduction of

the ensemble spread is achieved for zone 2.
The updated parameter ensemble is used to run the posterior

geomechanical simulations and the map of the mean of the surface
displacement after 10 yr of gas production is shown in Fig. 14(b).
The extent of the seabed subsidence bowl is smaller than that shown
in the profiles of Fig. 12 for CM1. In the next section, this difference
is further discussed.

4 D I S C U S S I O N

Fig. 15 summarizes, in quantitative terms, the effectiveness of the
ES procedure for the two conceptual models addressed in this
study. The figure shows maps of the percentage error, calculated
as δ = 100 × (umeas − usim)/|umeas|, where umeas and usim are the
measured and simulated surface vertical displacements over the
reservoir domain. Figs 15(a) and (b) relate to CM1, for scenarios A
and B, respectively. Figs 15(c) relates to CM2. Positive δ values in-
dicate model underestimation, that is, the simulated displacements
smaller than the observations.

Scenarios A and B (CM1) are characterized by similar spatial dis-
tributions of δ. The average percentage error, μδ equals −36 per cent
in scenarios A and −51 per cent in scenario B. The standard devia-
tion σ δ is 51 and 57 per cent in A and B, respectively. Negative δ is
observed in the majority of the mapped region showing that CM1
leads to generally overestimating the seabed subsidence. By distinc-
tion, positive δ values are located in the areas where the measured
subsidence is greater than about 0.6. In particular, at the location
where the largest surface displacement has been observed (point M
in Fig. 15), values of +34 and +26 per cent are found in scenarios
A and B, respectively.

Adopting model CM2, the spatial distribution of δ results much
less variable than in the case of CM1 (Fig. 15c). The values of μδ

and σ δ are equal to +4 and 32 per cent, respectively. At point M, the
model underestimation reduces to +22 per cent thus indicating that
a higher fcM in this area may help to improve the misfit between
simulation and observations. However, the overestimation over the
aquifer obtained with CM1 is almost removed by adopting CM2.

The comparison of the maps in Fig. 15 clearly points out that
CM2 allows for a significantly improved matching of the observed
surface displacements with respect to CM1. The less constraints
are prescribed to the model, that is, a cM heterogeneous distribu-
tion, the better the model solution adapts to the observed response.
However, the enlargement of the parameter space may lead to run a
too large number of Monte Carlo simulations to adequately sample

Figure 15. Distribution of the percentage error δ over the area with mea-
sured subsidence larger than 0.1 for (a) CM1—scenario A, (b) CM1—
scenario B and (c) CM2. Positive (red) and negative (blue) values are repre-
sentative of a model underestimation and overestimation, respectively. The
black contour lines provide the normalized measured subsidence (Fig. 5).

the posterior PDFs. Indeed, the model parametrization is crucial, in
particular in real applications where a high computational cost is
required for each model run. In this sense, the previous knowledge
from the geological structure of the reservoir, such as the compart-
mentalization derived from the presence of sealing faults/thrusts,
may help improving the characterization of the field.

5 C O N C LU S I O N S

The ES algorithm provides an efficient tool for reservoir param-
eter estimation using observations of seafloor subsidence, that is,
vertical displacements measured through time-lapse bathymetric
surveys. These data represent a significant indirect information of
the rock formation properties. In particular, the ES allows for the
characterization of the reservoir vertical uniaxial compressibility,
cM, namely the geomechanical parameter that mostly controls the
reservoir compaction due to the pore pressure depletion during fluid
production. The method is herein tested on a real offshore gas reser-
voir with a highly complex distribution of sealing faults and thrusts
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that are also used to characterize the geomechanical properties of
the reservoir. The major conclusions can be summarized as follows:

(i) Data of seafloor displacements can be helpful to derive the
mechanical properties of a gas reservoir.

(ii) Weighting their observations based on the reliability affects
the outcome of the updating scheme.

(iii) Using the reservoir geological structure may improve the
reservoir characterization.

(iv) The ES constrains the prior PDF of the heterogeneous ge-
omechanical parameters in the portions of the reservoir contributing
considerably to the observed subsidence, for example, where the
pressure change and the compacting volume are significant.

(v) The assumption of a heterogeneous parametrization for the
compressibility, that is, a different value of cM, in each reservoir
block may provide a better matching of the seafloor subsidence
compared to the case of a uniform cM.

Further improvements will focus on the validation of the above
results using different data sources including compaction measure-
ments from RMT. Moreover, the compressibility law could be re-
visited in light of the fact the only one law for the whole reservoir
may not prove satisfactory results to address the local reservoir
geomechanical behaviour.
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Zoccarato, C., Baù, D., Ferronato, M., Gambolati, G., Alzraiee, A. &
Teatini, P., 2016. Data assimilation of surface displacements to improve
geomechanical parameters of gas storage reservoirs, J. geophys. Res., 121,
doi:10.1002/2015JB012090.


