Plasma Metabolomics Implicate Modified Transfer RNAs and Altered Bioenergetics in the Outcome of Pulmonary Arterial Hypertension

Running title: Rhodes et al.; Plasma metabolomics in pulmonary hypertension

Christopher J. Rhodes, PhD1†; Pavandeep Ghataorhe, BM, BCh1†; John Wharton, PhD1; Kevin C. Rue-Albrecht, PhD1; Charanka Hadinnapola, BM, BCh2; Geoffrey Watson, BM, BCh1; Marta Bleda, PhD2; Matthias Haimel, BSc2; Gerry Coglan, MD3; Paul A. Corris, FRCP4; Luke S. Howard, DPhil5,6; David G. Kiely, MD7,8; Andrew J. Peacock, MD9; Joanna Pepke-Zaba, PhD10; Mark R. Toshner, MD2,10; S. John Wort, PhD11; J. Simon R. Gibbs, MD5,6; Allan Lawrie, PhD8; Stefan Gräf, PhD2,12; Nicholas W. Morrell, MD, FMedSci2; Martin R. Wilkins, MD, FMedSci1†

1Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK; 2Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK; 3Cardiology Department, Royal Free Hospital, London, UK; 4Institute of Cellular Medicine, Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 5National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK; 6National Heart and Lung Institute (NHLI), Imperial College London, Hammersmith Campus, London, UK; 7Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK; 8Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK; 9Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, UK; 10Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, UK; 11Pulmonary Hypertension Service, Royal Brompton Hospital, London, UK; 12Department of Haematology, University of Cambridge, Cambridge, UK

†These authors contributed equally to this work
‡On behalf of the NIHR BioResource – Rare Diseases (BRIDGE) PAH Consortium and the UK National PAH Cohort Study Consortium

Address for Correspondence:
Martin R. Wilkins, MD, FMedSci
Department of Medicine
Imperial College London
Hammersmith Campus
Du Cane Road
London, W12 0NN, UK
Tel: 020 3313 2049
Email: m.wilkins@imperial.ac.uk,

Journal Subject Terms: Biomarkers; Metabolism; Pulmonary Hypertension; Mortality/Survival; Vascular Disease
Abstract

Background— Pulmonary arterial hypertension (PAH) is a heterogeneous disorder with high mortality.

Methods—We conducted a comprehensive study of plasma metabolites using ultra-performance liquid chromatography mass-spectrometry to (1) identify patients at high risk of early death, (2) identify patients who respond well to treatment and (3) provide novel molecular insights into disease pathogenesis.

Results— 53 circulating metabolites distinguished well-phenotyped patients with idiopathic or heritable PAH (n=365) from healthy controls (n=121) following correction for multiple testing (p<7.3e-5) and confounding factors, including drug therapy, renal and hepatic impairment. A subset of 20/53 metabolites also discriminated PAH patients from disease controls (symptomatic patients without pulmonary hypertension, n=139). 62 metabolites were prognostic in PAH, with 36/62 independent of established prognostic markers. Increased levels of tRNA-specific modified nucleosides (N2,N2-dimethylguanosine, N1-methylinosine), TCA cycle intermediates (malate, fumarate), glutamate, fatty acid acylcarnitines, tryptophan and polyamine metabolites and decreased levels of steroids, sphingomyelins and phosphatidylcholines distinguished patients from controls. The largest differences correlated with increased risk of death and correction of several metabolites over time was associated with a better outcome. Patients who responded to calcium channel blocker therapy had metabolic profiles similar to healthy controls.

Conclusions— Metabolic profiles in PAH are strongly related to survival and should be considered part of the deep phenotypic characterisation of this disease. Our results support the investigation of targeted therapeutic strategies that seek to address the alterations in translational regulation and energy metabolism that characterise these patients.

Key-words: metabolome; metabolomics; metabolism; pulmonary circulation; pulmonary hypertension
Clinical Perspective

What is new?

- This study provides a comprehensive analysis of circulating metabolite levels in patients with pulmonary arterial hypertension (PAH) and controls.
- It is the first to relate metabolite levels to clinical outcomes in PAH.
- Increases in circulating modified nucleosides originating from transfer RNAs, energy metabolism intermediates, tryptophan and polyamine metabolites, and decreased steroids, sphingomyelins and phosphatidylcholines independently discriminate PAH patients from controls and predict survival.
- Correction of metabolite levels over time is linked to better clinical outcomes and patients who respond well to calcium-channel blocker therapy have metabolic profiles comparable with healthy controls.

What are the clinical implications?

- Energy metabolism and stress-response pathways are disturbed in PAH.
- Monitoring plasma metabolites that report on these pathways over time could be useful to assess disease progression and response to therapy.
- Therapeutic strategies targeted against metabolic disturbances in PAH, particularly translational regulation and energy metabolism, merit further investigation.
Introduction

Pulmonary arterial hypertension (PAH) is a progressive vascular disorder that leads to increased pulmonary vascular resistance, right ventricular (RV) dysfunction and premature death. The pathogenesis of the vascular pathology is poorly understood. Several genetic mutations have been reported in hereditary and isolated idiopathic presentations of PAH, providing insight into perturbed signalling pathways and genome sequencing of clinically well characterised patient cohorts is underway in anticipation of finding new mutations. A complementary approach to identifying the molecular drivers of PAH is to conduct deep molecular phenotyping of patients beyond standard clinical tests.

Metabolomic technologies, such as ultra-performance liquid chromatography mass spectrometry, enable the detection and semi-quantitative measurement of hundreds of unique metabolites, representing a broad range of metabolic pathways, in small volumes of biofluids. These approaches have identified differences in circulating metabolites that distinguish physiological and disease states, such as diabetes and systemic cardiovascular disorders, and predict clinical outcomes. As yet, few metabolomics studies have been undertaken in patients with pulmonary vascular disease. Evidence of abnormal oxidation, arginine and sphingosine pathways have been found from mass spectrometry analysis of lung tissue from PAH patients and analysis of breath samples showed exhaled volatile compounds discriminate between severe idiopathic PAH and healthy volunteers. A targeted analysis of 105 circulating plasma metabolites in PAH, primarily amino acids, nucleosides and their derivatives, showed abnormal levels of tryptophan, purine and tricarboxylic acid cycle metabolites correlated to haemodynamic measures.
In this study, we used a broad metabolomics platform to analyse 1416 metabolites in plasma from patients with idiopathic or heritable PAH (n=365) in three distinct cohorts and compared circulating levels with both healthy (n=121) and disease controls (n=139). We identified specific metabolites that both discriminate PAH patients from healthy and disease controls and independently predict survival. These metabolites included several modified nucleosides specific to transfer RNAs that indicate alterations in cell proliferation and translation of disease-related proteins as well as several constituents of energy metabolism.

Methods

Sample collection

Samples were obtained from patients with idiopathic or heritable PAH attending the National Pulmonary Hypertension Service at Hammersmith Hospital, London between 2002-2015 and from patients recruited from other UK national centres as part of the National Cohort Study of Idiopathic and Heritable Pulmonary Arterial Hypertension (ClinicalTrials.gov NCT01907295). Control plasma samples were obtained from healthy subjects and disease controls, the latter being symptomatic patients presenting to the service but in whom pulmonary hypertension was excluded by cardiac catheterisation. The diagnosis of PAH was based on standard criteria from the most recent guidelines. Vasoresponders were defined as those who dropped their mean pulmonary artery pressure >10 mmHg to <40 mmHg, with preserved cardiac output, in response to an acute pulmonary vasodilator challenge and remained stable on calcium channel blocker therapy alone for at least 1 year. Whole-genome sequencing data from the UK National Institute of Health Research Biomedical Research Centres Inherited Diseases Genetic Evaluation...
(BRIDGE) consortium were used to determine which patients had known pathogenic mutations in the gene encoding the bone morphogenetic protein type II receptor (\textit{BMPR2}) 5.

Venous blood samples were drawn from the antecubital fossa and collected in EDTA Vacutainer tubes (BD, Oxford, UK), immediately put on ice, centrifuged (1,300g, 15 minutes) within 30 minutes and stored at -80\textdegree{}C until required. WHO functional class and six minute walk distance at sample date and clinical biochemical data (within 30 days) were recorded. All subjects provided informed written consent and local research ethics committees approved the study. A subset of patients consented to provide additional samples at later dates whilst attending follow-up clinical appointments.

\textbf{Metabolomics}

Metabolomic profiling by ultra-performance liquid chromatography mass spectrometry was conducted by Metabolon (Durham, NC, USA) 7, who provided semi-quantitative assessment of 949 named and 467 unnamed metabolite levels, annotated with pathways. Named compounds identified based on mass and fragmentation analysis but yet to be confirmed with standards are indicated by asterisks. Details can be found in the supplementary materials.

\textbf{Angiogenin}

Plasma angiogenin levels were determined by ELISA (Ref:DAN00, R&D Systems, Abingdon, UK) as per manufacturer’s guidelines, with EDTA plasma diluted 1:800 before assay.

\textbf{Statistical Analysis}

To prevent skewing of results by outliers, initial group comparisons between controls and patients were performed using non-parametric Mann Whitney U tests. Prior to modelling, metabolites whose distribution was not normal were transformed either by \log_{10} or power transformations (x^Y, with Y from -2 to 2 in 0.5 steps, as performed for Box-Cox transformations
whichever best normalised the data based on Kolmogorov-Smirnov tests, or ranked if no test met p>0.05. Samples where metabolites were undetected were imputed with the minimum detected level for the metabolite. Data in all groups were z-score transformed based on the mean and standard deviation in all healthy controls for ease of comparisons. Data are presented as absolute numbers, percentages, mean or median (±standard deviation, SD) and percentile range. Linear regression analysis was conducted to assess the relationships between metabolite levels, diagnoses and potential confounders to determine whether differences in metabolite levels between groups was independent of age, gender, ethnicity, body mass index, drugs, renal and hepatic dysfunction. In the disease control and PAH cohorts, preserved renal function was defined as creatinine <75 μmol/L, and liver function as bilirubin <21 μmol/L. Logistic regression was conducted to determine metabolites that independently distinguished between diagnostic groups. Orthogonal partial least squares discriminant analysis (OPLS-DA) modelling was used to test the performance of these metabolites. R² scores indicate model performance and Q² scores estimate reproducibility, based on cross validation (subjects were divided into 7 groups and their diagnosis was predicted based on the other subjects in seven analyses). Pathway enrichment analysis was conducted on discriminating and prognostic metabolites using Fisher’s exact test. All survival analyses were performed using time from sampling to death/census. Cox regression analysis was used to identify prognostic predictors, with proportional hazard assumptions tested and Kaplan-Meier plots used to illustrate events from time of sampling in relation to metabolite levels. Receiver Operating Characteristic (ROC) curves were used to assess discriminating and prognostic value of metabolites against diagnosis and all-cause mortality respectively. Hierarchical clustering based on Euclidean distances was used to assess if metabolites and patients clustered by functional pathways and phenotypes, respectively.
Network analysis was performed by calculating second order Spearman’s rank correlations using ParCorA \(^{16,17}\) and visualised using Cytoscape \(^{18}\). ‘Hub’ nodes are metabolites with the most ‘edges’ (correlations) to other metabolites.

Statistical analysis was performed using IBM SPSS Statistics 22 (International Business Machines Corporation, New York, USA), Matlab (Matrix Laboratory, MathWorks, Natick, Massachusetts, USA), Microsoft Excel (Microsoft, Redmond, Washington, USA), SIMCA-P software, (Umetrics, Umea, Sweden) and R with RStudio and associated packages \(^{19}\).

Results

Metabolites distinguishing between PAH and controls

We first compared plasma metabolite profiles from 116 consecutive patients with idiopathic or heritable PAH attending Hammersmith Hospital between November 2011 and August 2013 and 58 healthy controls (Table 1). To minimise confounding factors, only PAH patients aged 19-70 were compared with age- and sex-matched healthy controls in this analysis. Results were validated in 75 PAH patients recruited between 2002 and 2015 against a separate control group (n=63). A second validation analysis used 174 PAH patients recruited from other specialist centres in the UK from August 2013 to June 2015 and compared to all controls. Metabolites identified as xenobiotics or detected in less than 95% of samples were excluded from the analysis, leaving 686 well-quantified biological metabolites.

Circulating levels of 97 metabolites distinguished PAH from healthy subjects in all three analyses following Bonferroni correction (p<7.3e-5). Of these metabolites, 53 distinguished healthy and PAH subjects after correcting for potential confounders, including age, gender, ethnicity, body mass index, creatinine, bilirubin and drug therapies (p<0.05, Table S1, Fig. 1).
The most common confounders associated with metabolite levels were liver function (bilirubin) and renal function (creatinine). To determine whether these metabolite differences could be detected prior to initiation of PAH therapies, we performed a sub-analysis comparing 40 patients who were treatment naïve at the time of sampling and all 53 metabolites distinguished this group from healthy controls (p<0.05, Table S1). Patients with pathogenic *BMPR2* mutations (n=42) had similar metabolite levels to PAH patients without these mutations (Fig. S1, Table S1).

Given that many metabolic alterations might occur in a chronic disease such as PAH, we set out to prioritise more disease-specific metabolites by comparing the PAH patients with disease controls, the latter comprising symptomatic patients in whom pulmonary hypertension had been excluded. We again adopted a discovery and validation design, with two groups of disease controls (n=70 and 69). A subset (20/53) of the metabolites distinguished PAH patients from disease controls after correcting for potential confounders (p<0.05, Table S1). These ‘PAH-specific’ differences in metabolites included increases in purine, polyamine and tricarboxylic acid (TCA) cycle metabolites, and decreases in phosphocholines and sphingomyelins (Fig. 2A), with network analysis showing the importance of ‘hub’ metabolites N2,N2-dimethylguanosine and malate (Fig. 2B).

Discriminant analyses to distinguish PAH and control groups

To identify a minimal set of metabolites which could in combination best distinguish PAH patients, we performed logistic regression analysis. We found 7/53 metabolites – dehydroisoandrosterone sulfate (DHEA-S), methionine sulfone, N1-methylinosine, oleoylcarnitine, palmitoylcholine, sphingomyelin (d18:1/20:0, d16:1/22:0)* and X-24513 – independently distinguished PAH (aged 19-70) and healthy subjects in the discovery analysis, with 90% accuracy in an orthogonal partial least squares discriminant analysis (OPLS-DA,
R²=0.64, Q²=0.61). This model classified healthy and PAH subjects in the two validation analyses with 89% and 84% accuracy, respectively. In addition, 90% (9/10) of PAH vasoresponders in the discovery cohort had metabolite levels typical of healthy controls (Fig. 3A-B).

Out of the 20 ‘PAH-specific’ metabolites, four – N-acetylaspartate, octadecanedioate, palmitoylcholine and X-13737 – distinguished PAH patients and disease controls with 83% accuracy in the discovery analysis (R²=0.49, Q²=0.47). This model classified disease controls and PAH subjects in the two validation analyses with 69% and 67% accuracy, respectively (Fig. 3C-D).

Survival analysis of plasma peaks of interest in PAH

We hypothesised that metabolites most closely related to the disease pathobiology would be associated with clinical outcomes. To identify metabolites associated with disease progression and mortality, we performed survival analyses. 28/116 and 25/75 patients died in the discovery and first validation PAH groups, with an average follow-up of 3.3±1.0 and 4.5±4.0 years, respectively. The length of patient follow-up in the second validation cohort was insufficient to permit analysis. After controlling for creatinine and diuretic use, no other potentially confounding factor was associated with survival. Of the 686 well-quantified metabolites, 640 met the assumptions of Cox regression analysis, and 62 of these were prognostic after accounting for creatinine and diuretic use in both analyses. ROC analysis at 3 years of follow-up confirmed these metabolites were prognostic and identified optimal cut-offs (Fig. S2, p<0.05).

To identify metabolites that report on novel pathways independent of current prognostic estimates, we compared the 62 prognostic metabolites with three markers previously found to best predict survival in our patients – namely, N-terminal brain natriuretic peptide (NT-proBNP),...
six minute walk distance (6MWD) and red cell distribution width (RDW)20. 36/62 of the metabolites were independent of these measures (p<0.05, Fig. 4A, Table S2) and network analysis indicated two main clusters with ‘hub’ metabolites including again, among others, N2,N2-dimethylguanosine (Fig. 4B).

Enrichment and clustering of metabolites of interest

The above analyses identified and validated, after controlling for confounders, a total of 100 metabolites that were either discriminating or prognostic in PAH, representing twenty five metabolic pathways. Six pathways in particular were enriched with metabolites of interest, including fatty acid (acyl carnitines), polyamine and nucleoside metabolism (Table S3, p<0.05). Sixteen of these metabolites both discriminated PAH and were prognostic; these, along with the three other metabolites which were selected by logistic regression modelling to best distinguish PAH and healthy subjects, clustered into defined metabolic pathways (Fig. 5).

Analysis of serial samples

Changes in metabolite levels in individuals over time may indicate pathways that report clinical improvement or whose correction itself leads to improved outcomes. We analysed serial samples from 86 patients who were followed up for a minimum of 1 year (median 1.50, interquartile range 1.33-2.95 years) after the second sample. Twenty nine patients died during follow-up. Changes in metabolite levels between the two samples (median time between samples 1.75, IQR 1.07-2.58 years) were compared between ‘survivors’ and ‘non-survivors’.

Changes in 27/100 metabolites were significantly different between survivors and non-survivors (p<0.05), including several modified amino acids and nucleosides. ROC analysis confirmed these associations (Table S4) and identified prognostic cut-offs (Fig. 6).
Association of elevated modified nucleosides with elevated plasma angiogenin

Modified nucleosides can be released into the circulation during stress following cleavage of tRNAs by the ribonuclease angiogenin. To determine whether this mechanism was relevant to PAH, we measured plasma angiogenin in a representative subset of age- and sex-matched healthy controls and PAH patients from the discovery analysis (Table S5). Angiogenin levels were elevated in plasma from PAH patients and correlated with N2,N2-dimethylguanosine levels (Rho:0.49, p<0.001, Fig. 7). The strength of correlation was similar in male and female subjects (data not shown).

Discussion

This study represents the most comprehensive analysis of circulating metabolites in patients with PAH to date. It is the first to robustly identify and validate differences in comparison to both healthy and symptomatic disease controls without pulmonary hypertension, and to associate metabolic profiles with outcomes in PAH, strengthening the evidence that the pathways identified could be important modifiers of disease progression. Changes in the levels of metabolites over time were associated with survival in a direction that suggests that correction of these disturbances is linked to improved outcomes. In agreement with this, patients defined as vasoresponders, who have excellent outcomes on calcium channel blocker therapies, demonstrated metabolic profiles more similar to healthy controls than other patients. Metabolic profiles seen in incident cases were similar to those with established PAH, emphasising that metabolic dysregulation is not corrected in the majority of cases by current therapy.
Modified nucleosides

Two of the most robust distinguishing and prognostic differences identified in PAH patients were increased levels of N1-methylinosine and N2,N2-dimethylguanosine. These are recognised epigenetic, post-transcriptional modifications of transfer RNA (tRNA) \(^{21-23}\), and other tRNA modifications also found to be increased and prognostic included pseudouridine, N6-carbamoylthreonyladenosine and N1-methyladenosine. N2,N2-dimethylguanosine is found in the majority of tRNAs at position 26, upstream of the anticodon sequence at positions 34-36, and promotes the folding of tRNAs towards the classical clover-leaf structure \(^{24}\). N1-methylinosine is found 3' adjacent to the anticodon at position 37 of eukaryotic tRNAs and is formed from inosine by a specific S-adenosylmethionine-dependent methylase \(^{25}\). Increased serum and urine levels of N2,N2-dimethylguanosine, as well as pseudouridine and 1-methylinosine, have been observed in multiple solid tumour malignancies \(^{26}\) and may reflect the general upregulation of the translational apparatus, including tRNA turnover, in hyperproliferative cancerous cells \(^{27}\). Increased circulating 1-methyladenosine has also been shown to be an early indicator of oxidative stress, cell damage and mortality in kidney disease \(^{28}\).

Intracellular tRNA pools are dynamically regulated. For example under stress, tRNAs required for the translation of stress response proteins are preferentially expressed \(^{21}\). The altered levels of specific nucleoside modifications in PAH patients may reflect preferential expression of tRNAs that harbour them, as part of a switch towards translation of disease-related proteins. In addition, stress-induced cleavage of tRNA produces fragments that propagate the stress response and interfere with eukaryotic initiation factor (eIF)-4G and eIF4F\(^{21}\). Furthermore, eIF2\(\alpha\) kinase-4 (GCN2), which prevents eIF2\(\alpha\) interacting with the initiating Met-tRNA, suppressing general protein synthesis and activating stress-inducible transcription factors, is mutated and causally
implicated in some cases of pulmonary vascular disease. Mutations in tRNA genes themselves have also been reported to cause pulmonary hypertension driven by mitochondrial dysfunction.

The initial cleavage of tRNAs is mediated by angiogenin, which we showed to be elevated in the plasma of PAH patients in concert with elevated levels of modified nucleosides. Angiogenin is also upregulated in cancer cells, mediating angiogenesis, cell proliferation and protection from apoptosis, and is increased in breath condensates from patients with pulmonary hypertension, indicating a possible pulmonary origin in this disease. Angioproliferative plexiform vascular lesions are characteristic of advanced PAH and the pro-angiogenic activity of angiogenin is inhibited by mutation of its ribonuclease active site, suggesting that elevated angiogenin and nucleoside levels may report patients developing this type of pulmonary vascular remodelling. Alterations in tRNA biology appear to be capable of driving the development of rare forms of pulmonary hypertension and are closely linked to the progression of PAH, and circulating levels of modified nucleosides may reflect increases in both pulmonary vascular cell proliferation and stress.

Energy metabolism

Significant alterations were observed in several pathways related to cellular energy production, with accumulation of multiple acylcarnitines, glutamate and TCA cycle intermediates. Their accumulation in PAH patients may represent a failed attempt to increase utility of fatty acids as an energy source, perhaps reflecting the inability of fatty acid beta-oxidation to keep pace with the demands of the overburdened right ventricle. Glutaminolysis is another alternative energy production pathway to glucose oxidation, with the product glutamate entering the TCA cycle as α-ketoglutarate. Inhibition of glutaminolysis and restoration of glucose oxidation has beneficial effects in rat models of right ventricular hypertrophy. Increased circulating glutamate levels
have previously been seen in cancer patients \(^{35}\), however, anti-glutaminolysis therapeutic targets have demonstrated toxic side effects \(^{36}\). The build-up of TCA intermediates and the precursors to the molecules that enter the cycle (acylcarnitines and glutamate) may indicate dysfunction of this cycle, or at least the inability to keep pace with the demands of the most active cells, such as proliferating pulmonary vascular cells. Increased levels of citrate, succinate and fatty acid metabolites have been demonstrated in lung tissue from PAH patients \(^{11}\), suggesting dysfunctional energy metabolism is a feature of the diseased tissue. Restoration of glucose oxidation by dichloroacetate therapy is under investigation as a treatment for PAH \(^{37}\), and maximising the capacity of the TCA cycle to process the acetyl-CoA produced may be a complementary therapeutic approach.

Consistent with previous reports we found a significant increase in the circulating levels of long-chain acylcarnitines (oleoylcarnitine) \(^{38}\), and also short- (myristoylcarnitine, acetylcarnitine, hydroxbutyrylcarnitine) and medium- (adipoylcarnitine, suberoylcarnitine) chain products. The accumulation of acylcarnitines may itself be detrimental, effecting cardiac electrophysiological changes and arrhythmias \(^{39}\). There is also increasing evidence that accumulation of long chain acylcarnitines may contribute to insulin resistance \(^{40}\), which is itself common and associated with prognosis in PAH \(^{41}\).

Lipids, steroids, polyamines and tryptophan metabolites

Multiple sphingomyelin and phosphatidylcholine lipid species were significantly reduced in PAH patients, relating to increased mortality. Sphingomyelins are the most abundant subclass of sphingolipids, with other subclasses including sphinogosines, ceramides and glycosphospholipids \(^{42}\). In patients with chronic obstructive pulmonary disease (COPD), low plasma levels of several sphingomyelins relate to disease severity \(^{43}\). As a membrane constituent, sphingomyelins are
implicated in trans-membrane signalling and are generated from phosphatidylcholine and ceramide by sphingomyelin synthase, knockout of which leads to mitochondrial dysfunction and reduced insulin release. Sphingomyelins may also be considered a source of ceramide, which directly (and indirectly through other active lipid products) regulates cell proliferation, apoptosis, cell migration and autophagy.

Reduced lineoyl-GPC has been shown to be an early marker of insulin resistance in non-diabetics, and decreased circulating levels of several phosphatidylcholines were seen in patients with severe heart failure. Phospholipids are also sources of multiple cellular signalling molecules including eicosanoids such as prostacyclin, levels of which are known to be reduced in pulmonary hypertension, with replacement an established treatment option.

Circulating levels of DHEA-S and its metabolites (androsterone, epiandrosterone and androstenediol/4-androst-3beta, 17beta-diol disulfate) were reduced in PAH patients compared to healthy controls, consistent with a recent report of reduced circulating levels of DHEA-S in a small cohort of 23 male PAH patients compared to healthy controls. Differences in DHEA-S between PAH and controls were independent of the more subtle effects of both gender and age (Fig. S3), and lower DHEA-S levels were independently associated with mortality. Treatment with DHEA or DHEA-S has repeatedly been shown to prevent and reverse pulmonary hypertension in experimental rat models, with clinical trials ongoing in COPD-associated pulmonary hypertension (ClinicalTrials.gov NCT00581087).

We found increased levels of a breakdown product of N1-acetylspermidine, acisoga. Other metabolites of polyamine metabolism (4-acetamidobutanoate and N-acetylputrescine) were increased in PAH in relation to bilirubin levels and were prognostic in 2 distinct PAH cohorts, independent of established prognostic markers. Several animal models of pulmonary
hypertension have demonstrated evidence of increased polyamine levels and metabolism in lung tissue. Administration of monocrotaline to rats led to significantly increased levels of polyamines and the development of pulmonary hypertension and right ventricular hypertrophy, which could be prevented by the administration of an inhibitor of polyamine biosynthesis, suggesting these molecules may be novel therapeutic targets.

In our study, we validated findings of elevated circulating tryptophan metabolites with increased C-glycosyltryptophan and kynurenine in PAH patients compared to healthy controls, but changes in kynurenine were related to increased bilirubin levels and liver dysfunction. Levels of tryptophan and its other major metabolite, serotonin, were not significantly altered in our analysis.

Limitations

The majority of patients included in this study were prevalent cases on established treatments. A sub-analysis was conducted with 40 incident cases and showed similar results. Corrections were also made for potential treatment effects in the main analyses, including PAH-specific and comorbidity-related therapies, as well as demographics and renal/hepatic function. Patients and controls were sampled in the non-fasting state and information on insulin resistance was not available for all cases. Patients were also sampled from a peripheral vein. The stronger performance of discriminating models in discovery analyses suggests that optimisation could further improve their performance in distinct cohorts. Strongly correlated metabolites would not have been selected in the discriminant modelling, so each metabolite used in the final models may represent clusters of multiple metabolites. Evidence of tissue specificity and the source of circulating metabolites in pulmonary hypertension require further studies, for example, by transpulmonary sampling and direct measurements from tissue samples, to better localise the
source of informative metabolites. Plasma levels of metabolites may not reflect levels in the most
important tissues, for example increased bile acid metabolites have been demonstrated in PAH
lung tissue but no differences were seen in circulating levels in our study.

Summary and conclusions
Increased circulating modified nucleosides (N2,N2-dimethylguanosine, N1-methylinosine), TCA
cycle intermediates (malate, fumarate), glutamate, fatty acid acylcarnitines and polyamine
metabolites and decreased levels of steroids, sphingomyelins and phosphatidylcholines are a
characteristic of patients with PAH that distinguish them from symptomatic patients without
pulmonary hypertension. Improvements in circulating metabolite levels are associated with a
better prognosis and could be used to monitor response to PAH treatments. Indeed, our results
support the investigation of therapeutic strategies targeted at alterations in energy metabolism in
PAH and suggest options for correcting translational regulation also merit further study.

Acknowledgements
This paper presents independent research that was supported by the National Institute for Health
Research/Wellcome Trust Imperial Clinical Research Facility, at Imperial College Healthcare
NHS Trust, London, UK. The views expressed are those of the authors and not necessarily those
of the NHS, the NIHR or the Department of Health. We are indebted to Souad Ali and Sharon
Meehan for blood sample collection and to Abdul Mulla, George Villas, Lavanya Ranganathan
and the TRIPHIC (Translational Research in Pulmonary Hypertension at Imperial College)
system for the processing and pseudonymisation of patient information. The authors would also
like to thank all the staff and participants of the BRIDGE and Cohort studies for their invaluable
and ongoing contributions.
Sources of Funding

CJR is supported by a British Heart Foundation (BHF) Intermediate Basic Science Research Fellowship (FS-15-59-31839) and AL by a BHF Senior Basic Science Fellowship (FS/13/48/30453). MRW is supported by a BHF programme grant (RG/10/16/28575). NWM is an NIHR Senior Investigator. This research was also supported by a BHF Special Project (SP/12/12/29836), MRC Experimental Challenge Award (MR/K020919/1), the NIHR Bioresource for Rare Diseases, Imperial College and Cambridge NIHR Biomedical Research Centres and the NIHR Rare Diseases Translational Research Collaboration.

Disclosures

None

References

HJ, Haber I, Rehman J, Lopaschuk GD and Archer SL. The inhibition of pyruvate
dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two
models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. Journal of
Molecular Medicine (Berl). 2010;88:47-60.
38. Brittain EL, Talati M, Fessel JP, Zhu H, Penner N, Calcutt MW, West JD, Funke M,
Lewis GD, Gerszten RE, Hamid R, Pugh ME, Austin ED, Newman JH and Hemnes AR. Fatty
Acid Metabolic Defects and Right Ventricular Lipotoxicity in Human Pulmonary Arterial
39. DaTorre SD, Creer MH, Pogwizd SM and Corr PB. Amphipathic lipid metabolites and
their relation to arrhythmogenesis in the ischemic heart. Journal of Molecular and Cellular
40. Schooneman MG, Vaz FM, Houten SM and Soeters MR. Acylcarnitines: reflecting or
41. Zamanian RT, Hansmann G, Snook S, Lilienfeld D, Rappaport KM, Reaven GM,
Rabinovitch M and Doyle RL. Insulin resistance in pulmonary arterial hypertension. Eur Respir
42. Hannun YA and Obeid LM. Principles of bioactive lipid signalling: lessons from
Schaffer JE, Reisdorph N and Kechris K. Plasma sphingolipids associated with chronic
obstructive pulmonary disease phenotypes. American Journal of Respiratory and Critical Care
Medicine. 2015;191:275-84.
44. Yano M, Watanabe K, Yamamoto T, Ikeda K, Senokuchi T, Lu M, Kadomatsu T,
Tsukano H, Ikawa M, Okabe M, Yamaoka S, Okazaki T, Umehara H, Gotoh T, Song WJ, Node
K, Taguchi R, Yamagata K and Oike Y. Mitochondrial dysfunction and increased reactive
oxygen species impair insulin secretion in sphingomyelin synthase 1-null mice. The Journal of
Biological Chemistry. 2011;286:3992-4002.
45. Taniguchi M and Okazaki T. The role of sphingomyelin and sphingomyelin synthases in
cell death, proliferation and migration-from cell and animal models to human disorders. Biochim
46. Ferrannini E, Natali A, Camastra S, Nannipieri M, Mari A, Adam KP, Milburn MV,
Kastenmuller G, Adamski J, Tuomi T, Lyssenko V, Groop L and Gall WE. Early metabolic
markers of the development of dysglycemia and type 2 diabetes and their physiological
HY and Yang NI. Metabolic Disturbances Identified in Plasma Are Associated With Outcomes
in Patients With Heart Failure: Diagnostic and Prognostic Value of Metabolomics. Journal of the
American College of Cardiology. 2015;65:1509-20.
49. Ventetuolo CE, Baird GL, Barr RG, Bluemke DA, Fritz JS, Hill NS, Klinger JR, Lima
JA, Ouyang P, Palevsky HI, Palmisciano AJ, Krishnan I, Pinder D, Preston IR, Roberts KE and
Kawut SM. Higher Estradiol and Lower Dehydroepiandrosterone-Sulfate Levels Are Associated
with Pulmonary Arterial Hypertension in Men. American Journal of Respiratory and Critical

Table 1. Cohort Characteristics. Means and standard deviations or counts are given. BMI, body mass index; NT-proBNP, N-terminal brain natriuretic peptide at time of sample; RDW, red cell distribution width; HC, healthy controls; DC, disease controls; COPD, chronic obstructive pulmonary disease; CAD, coronary artery disease; IHD, ischaemic heart disease; AF, atrial fibrillations; PDE5, phosphodiesterase 5; ERA, endothelin receptor antagonists; CCB, calcium channel blocker; ACE, angiotensin converting enzyme. Ethnicity is shown for subjects who self-declared.

<table>
<thead>
<tr>
<th></th>
<th>Discovery</th>
<th>Validation 1</th>
<th>Validation 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HC (n=58)</td>
<td>DC (n=70)</td>
<td>PAH (19-70) (n=88)</td>
</tr>
<tr>
<td>Age at sampling, years</td>
<td>48+/-13.5</td>
<td>56.5+/-15.9</td>
<td>48.1+/-13.8</td>
</tr>
<tr>
<td>Sex, Female:Male (ratio)</td>
<td>38:20 (1.9:1)</td>
<td>48:22 (2.2:1)</td>
<td>61.27 (2.3:1)</td>
</tr>
<tr>
<td>Ethnicity, % non-Caucasian</td>
<td>32.5</td>
<td>56.9</td>
<td>17.0</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>30.5+/-10.5</td>
<td>27.9+/-6.0</td>
<td>28.7+/-8.2</td>
</tr>
</tbody>
</table>

Baseline haemodynamics at diagnosis

Pulmonary capillary wedge pressure, mmHg	11.6+/-4.5	11.9+/-6	12.1+/-4.6	10.8+/-3.5	10.8+/-4.9	9.4+/-3.8
Mean pulmonary artery pressure, mmHg	19.3+/-4.1	53.1+/-14.3	46.3+/-14.6	19.1+/-4.7	53.7+/-11.1	56.2+/-15.2
Pulmonary vascular resistance, Woods units	12.3+/-5.7	8.6+/-4.7	12.4+/-5.8	13+/-6.4		
Mean right atrial pressure, mmHg	7.3+/-3.4	10.0+/-5.7	9.3+/-4.9	6.3+/-3.2	11.8+/-5.8	9.2+/-5.3
Cardiac output, L/min	4.4+/-1.7	4.5+/-1.8	4.0+/-1.7	4.0+/-1.3		

Functional status and pathology

Six minute walk distance, m	279.4+/-153.4	197.9+/-158.7	271.3+/-169.5	334.8+/-119.0		
WHO Functional Class, I/II/III/IV	2/11/65/10	0/2/23/1	0/7/52/9	2/24/119/18		
RDW, %	14.8+/-2.1	15.0+/-1.1	16.0+/-2.9	14.7+/-3.3		
NT-proBNP, pmol/L	735+/-882	1137+/-1123	895+/-1244			
Creatinine, umol/L	76.3+/-21.8	81.2+/-29.1	107.6+/-35.7	87+/-40.6	92.7+/-32.6	89.9+/-25.1
Bilirubin, umol/L	13.9+/-13.9	15.6+/-10.7	12.4+/-8.5	16.3+/-22.8	17.2+/-10.4	12.1+/-9.0

Comorbidities

Asthma/COPD	17.1	11.4	11.1	11.6	17.1	17.6
Diabetes	8.6	17.0	48.1	13.0	24.3	14.2
CAD/IHD	10.0	12.5	37.0	11.6	12.9	8.3
AF/flutter	14.3	18.2	25.9	17.4	8.6	5.9
Systemic hypertension	22.9	19.3	77.8	36.2	22.9	17.2
Hypercholesterolaemia/lipidaemia	12.9	12.5	22.2	10.1	15.7	6.5

Drug therapy

<p>| Anticoagulation | 32.9 | 71.6 | 78.6 | 34.8 | 65.3 | 66.7 |
| PDE5 inhibitors | 0.0 | 65.9 | 67.9 | 0.0 | 48.0 | 77.8 |
| ERA | 0.0 | 48.0 | 30.8 | 0.0 | 33.8 | 64.3 |</p>
<table>
<thead>
<tr>
<th>Diuretics</th>
<th>12.9</th>
<th>37.5</th>
<th>75.0</th>
<th>21.7</th>
<th>53.3</th>
<th>54.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldosterone antagonists</td>
<td>7.1</td>
<td>31.8</td>
<td>21.4</td>
<td>1.4</td>
<td>34.7</td>
<td>8.2</td>
</tr>
<tr>
<td>Statins/lipid lowering drugs</td>
<td>25.7</td>
<td>22.7</td>
<td>57.1</td>
<td>33.3</td>
<td>24.0</td>
<td>24.0</td>
</tr>
<tr>
<td>CCB</td>
<td>10.0</td>
<td>14.8</td>
<td>28.6</td>
<td>24.6</td>
<td>14.7</td>
<td>21.1</td>
</tr>
<tr>
<td>Cardiac glycosides</td>
<td>7.1</td>
<td>17.0</td>
<td>14.3</td>
<td>8.7</td>
<td>21.3</td>
<td>9.4</td>
</tr>
<tr>
<td>Antidiabetic drugs</td>
<td>8.6</td>
<td>12.5</td>
<td>35.7</td>
<td>10.1</td>
<td>18.7</td>
<td>9.4</td>
</tr>
<tr>
<td>Prostanoids</td>
<td>0.0</td>
<td>9.1</td>
<td>0.0</td>
<td>0.0</td>
<td>6.7</td>
<td>33.3</td>
</tr>
<tr>
<td>Iron replacement therapy</td>
<td>4.3</td>
<td>13.6</td>
<td>25.0</td>
<td>5.8</td>
<td>4.0</td>
<td>10.5</td>
</tr>
<tr>
<td>ACE inhibitors</td>
<td>27.1</td>
<td>17.0</td>
<td>60.7</td>
<td>37.7</td>
<td>28.0</td>
<td>16.4</td>
</tr>
</tbody>
</table>
Figure Legends

Figure 1. Analysis flow chart. Summary of analytical workflow showing numbers of metabolites that distinguish PAH from controls, and/or are prognostic in PAH.

Figure 2. Metabolites which discriminate PAH and control subjects. (A) Average metabolite levels in PAH and control subjects for 20 metabolites found to significantly distinguish PAH and both healthy and disease controls, independent of potential confounders. Values plotted are z-scores calculated based on mean and standard deviation of all healthy volunteers in study - negative values indicate metabolites at lower levels in patients versus healthy controls and positive values indicate higher levels of metabolites in patients. For the discovery analysis only data from PAH patients aged 19-70 is plotted and for the validation analysis all patients data are shown. (B) Network analysis of the same 20 metabolites based on second order correlations. Line thickness indicates strength of correlations (all p<0.0001). *probable metabolite identity, but unconfirmed (see methods). EPE, eicosapentaenoyl; DHE, docosahexaenoyl; DPE, docosapentaenoyl; DHEA-S, dehydroisoandrosterone sulphate; GPC, glycerophosphocholine; SM, sphingomyelin.

Figure 3. Discriminant analysis models based on low numbers of metabolites distinguish PAH patients from controls. (A&C) Dotplots showing individual subjects’ model scores in healthy controls (HC), PAH patients, vasoresponders and disease controls (DC) in discovery and validation analyses. Metabolites were selected by logistic regression of PAH-HC (A) and PAH-
DC (C) comparisons, respectively. (B&D) ROC curves showing performance of models in distinguishing PAH and HC (B) and DC (D) subjects.

Figure 4. Prognostic metabolites independent of established risk factors. (A) Hazard ratios after correcting for creatinine and diuretic use of 36 metabolites which were prognostic in PAH patients independent of RDW, NT-proBNP and six minute walk distance. Hazard ratios indicate the risk of a change in each metabolite of 1 standard deviation, for ease of comparison. Patients of all ages were included in both discovery and validation survival analyses. (B) Network analysis of the same 36 metabolites based on second order correlations. Line thickness indicates strength of correlations (all p<0.0001). Red lines indicate negative correlations. *probable metabolite identity, but unconfirmed (see methods). EPE, eicosapentaenoyl; DHE, docosahexaenoyl; DPE, docosapentaenoyl; DHEA-S, dehydroisoandrosterone sulphate; GPC, glycerophosphocholine; GPE, glycerophosphoethanolamine.

Figure 5. Hierarchical clustering of 19 discriminating and prognostic metabolites in PAH patients. (A) Venn diagram shows overlap between metabolites that discriminate PAH from healthy controls in all 3 cohorts, from logistic regression between PAH and healthy controls and prognostic metabolites in the discovery and first validation cohorts. (B) Clustering of the 19 overlapping metabolites from A. is shown between healthy controls (n=58), PAH survivors (n=110, alive at 3 years post-sample) and non-survivors (n=24) in the discovery analysis. Red indicates metabolite levels that are increased (and blue levels that are decreased) in PAH versus controls. *probable metabolite identity, but unconfirmed (see methods), ‡metabolites also
distinguish PAH from disease controls. GPC, glycerophosphocholine; EPE, eicosapentaenoyl; SM, sphingomyelin.

Figure 6. Analysis of serial samples. (A) ROC analysis of changes in metabolite levels and survival status at last follow-up. (B&D) Changes in individual patient metabolite levels, grouped by survival status at last follow-up. (C) Kaplan-Meier analysis illustrating survival over time in PAH patients divided into groups according to the changes in N-acetyl-methionine levels between serial samples.

Figure 7. Circulating angiogenin levels. (A) Plasma angiogenin levels determined by ELISA in healthy controls and PAH patients. (B) Scatter-plot of plasma N2,N2-dimethylguanosine versus plasma angiogenin in controls and PAH patients. Statistics shown are from Spearman’s Rank test.
1416 metabolites quantified, 187 xenobiotics excluded, 686 metabolites quantified in >95% of subjects

97 distinguish IPAH and healthy subjects in 3 analyses (p<7.3e-5)

53 independent of confounders – age, gender, ethnicity, BMI, liver/renal function, therapies (p<0.05)

20 ‘PAH-specific’ – distinguish PAH from both healthy and disease controls, independent of confounders (p<0.05)

62 prognostic, independent of creatinine and diuretic use, in PAH patients in 2 analyses (p<0.05)

36 independent of established prognostic markers NT-proBNP, 6 minute walk and RDW (p<0.05)

100 either distinguish or prognostic

16 both distinguishing and prognostic
Analysis of Metabolite Scores

A Discriminant score based on 7 metabolites:

- **Discovery**
 - AUC: 0.990, Sig.: 2E-22
 - 95% CI: 0.979 - 1.000

- **Validation-1**
 - AUC: 0.950, Sig.: 2E-19
 - 95% CI: 0.912 - 0.989

- **Validation-2**
 - AUC: 0.939, Sig.: 1E-37
 - 95% CI: 0.914 - 0.964

B Comparison of Sensitivity and 1 - Specificity:

- **Discovery**
 - AUC: 0.914, Sig.: 4E-18
 - 95% CI: 0.869 - 0.958

- **Validation-1**
 - AUC: 0.723, Sig.: 2E-06
 - 95% CI: 0.647 - 0.816

- **Validation-2**
 - AUC: 0.747, Sig.: 6E-14
 - 95% CI: 0.692 - 0.801

C Discriminant score based on 4 metabolites:

- **Discovery**
 - AUC: 0.990, Sig.: 2E-22
 - 95% CI: 0.979 - 1.000

- **Validation-1**
 - AUC: 0.950, Sig.: 2E-19
 - 95% CI: 0.912 - 0.989

- **Validation-2**
 - AUC: 0.939, Sig.: 1E-37
 - 95% CI: 0.914 - 0.964
A

Discovery

Validation

Hazard ratios, after correcting for creatinine and diuretic use

B

Amino acid metabolism

- Alanine and Aspartate
- Histidine
- Met, Cys, SAM and Taur
- Polyamine

Nucleoside metabolism

- Purine, Adenine
- Pyrimidine, Uracil

Unidentified metabolites

- Unknown

Lipid metabolism

- Acyl carnitine
- Lysolipid
- Phospholipid
- Steroid

1: N1-methylinosine
2: 4-acetamidobutanoate
3: N-acetylaspartate
4: X - 11564
5: X - 24513

1-oxy-2-DPE-GPC (18:1/22:5n6)*
1-oleoyl-2-DPE-GPC (18:0/20:5, 16:0/22:5n6)*
1-myo-inositol-2-arachidonoyl-GPC (14:0/20:4)*
phosphatidylcholine (18:0/20:5, 16:0/22:5n6)*
1-palmitoyl-2-eicosapentaenoyl-GPC (16:0/20:5)*
1-linoleoyl-2-eicosapentaenoyl-GPC (18:2/20:5)*
1-myristoyl-2-eicosapentaenoyl-GPC (20:5)*
1-myristoyl-2-docosahexaenoyl-GPC (14:0/22:6)*

- N6-succinyladenosine
- N6-carbamoylthreonyladenosine
- N1-methylthiolinosine
- N2,N2-dimethylguanosine
- X - 24020
- N-acetylmethionine
- X - 24513
- 1-methylimidazoleacetate
- X - 12472
- 4-acetamidobutanoate
- pimeloylcarnitine/3-methyladipoylcarnitine
- X - 12739
- N-acetylgalactosamine
- N1-methyldenosine
- X - 24527
- X - 12688
- N-formylmethionine
- pseudouridine
- 4-acetamidobutanoate
- X - 12739
- N-acetylgalactosamine
- X - 24411
- dehydroandrostosterone sulfate (DHEA-S)
- 1-linoleoyl-2-docosahexaenoyl-GPC (18:2/22:6)*
- 1-oleoyl-2-docosapentaenoyl-GPC (18:1/22:5n6)*
- 1-eicosapentaenoyl-GPE (20:5)*
- 1-myristoyl-2-arachidonoyl-GPC (14:0/20:4)*
- phosphatidylcholine (18:0/20:5, 16:0/22:5n6)*
- 1-palmitoyl-2-eicosapentaenoyl-GPC (16:0/20:5)*
- 1-linoleoyl-2-eicosapentaenoyl-GPC (18:2/20:5)*
- 1-eicosapentaenoyl-GPC (20:5)*
- 1-myristoyl-2-docosahexaenoyl-GPC (14:0/22:6)*
- 1-oleoyl-2-DPE-GPC (18:1/22:5n6)*
- X - 24041

urate
- X - 24041

Downloaded from http://circ.ahajournals.org/ by guest on December 7, 2016
Plasma Metabolomics Implicate Modified Transfer RNAs and Altered Bioenergetics in the Outcome of Pulmonary Arterial Hypertension

Circulation. published online November 21, 2016;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2016/11/21/CIRCULATIONAHA.116.024602
Free via Open Access

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2016/11/21/CIRCULATIONAHA.116.024602.DC1.html

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/
SUPPLEMENTAL MATERIAL

Title: Plasma metabolomics implicate modified transfer RNAs and altered bioenergetics in the outcome of pulmonary arterial hypertension

Authors: Christopher J. Rhodes1†, PhD; Pavandeep Ghataorhe1†, BM BCh; John Wharton1, PhD; Kevin C. Rue-Albrecht1, PhD; Charaka Hadinnapola2, BM BCh; Geoffrey Watson1, BM BCh; Marta Bleda2, PhD; Matthias. Haimel2, BSc; Gerry Coghlan3, MD; Paul A. Corris4, FRCP; Luke. S. Howard5,6, DPhil; David G. Kiely7,8, MD; Andrew J. Peacock9, MD; Joanna Pepke-Zaba10, PhD; Mark R. Toshner2,10, MD; S. John Wort11, PhD; J. Simon R. Gibbs5,6, MD; Allan Lawrie8, PhD; Stefan Gräf2,12, PhD; Nicholas W. Morrell2, MD FMedSci; Martin R. Wilkins1*‡, MD FMedSci

Affiliations:
1Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
2Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 OQQ, UK
3Cardiology Department, Royal Free Hospital, London, NW3 2QG, UK
4Institute of Cellular Medicine, Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
5National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
6National Heart and Lung Institute (NHLI), Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
7Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, S10 2JF, UK
8Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, S10 2RX, UK
9Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, G81 4HX, UK
10Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, CB23 3RE, UK

Supplementary Materials
Supplementary Materials

Metabolomic profiling methodology

Samples were prepared with use of an automated MicroLab STAR system (Hamilton Company, Reno, NV, USA). For quality control (QC), a pooled sample from all experimental samples was used throughout the experiment, and a mixture of Metabolon QC standards were spiked into all experimental samples to monitor instrument performance and chromatographic alignment. Samples were randomised prior to experimentation.

Experiments were conducted on Waters Acuity ultra-performance liquid chromatography (UPLC) systems (Waters Corporation, Milford, MA, USA) using Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated electrospray
ionization (HESI-II) source and Orbitrap mass analyser (Thermo Fisher Scientific, MA, USA).

The analysis platform used four methods for Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS) including a) positive ion mode electrospray ionisation (ESI), b) positive ion mode optimised for hydrophobic compounds, c) negative ion mode ESI and d) negative ionisation following elution from a hydrophilic interaction chromatography (HILIC) column. Scan time varied between methods and covered 70-1000m/z.

The resulting spectra were compared to the in-house Metabolon standard library using retention time, mass (m/z), adducts and MS/MS spectra. Analysis using this platform has been applied to measure metabolite levels in human plasma in control1, 2 and disease populations3, 4. All experiments and runs were conducted on the same day.
Table S1 (below). Metabolites distinguishing pulmonary arterial hypertension (PAH) from healthy (HC) and disease controls (DC). 97 metabolites that are significantly different between PAH and healthy controls in 3 cohorts (p<7.3e-5) are shown. Mean values are given and the data is scaled to the healthy control group. Significance from linear regression is shown (p value), and for metabolites with p>0.05 in PAH HC linear regression, the significant confounder is shown. Significance is also shown for Mann Whitney U test between PAH treatment naïve patients versus all HC, and PAH bone morphogenetic protein type 2 receptor (BMPR2) mutation carriers versus patients with no BMPR2 mutation. GPC, glycerophosphocholine. *probable metabolite identity, but unconfirmed (see methods).
<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Metabolic Pathway</th>
<th>Discovery</th>
<th>Validation1</th>
<th>Validation2</th>
<th>PAH</th>
<th>BMPR2</th>
<th>Linear Regression (p-values)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HC</td>
<td>DC</td>
<td>PAH (19-70)</td>
<td>HC</td>
<td>DC</td>
<td>PAH Naive</td>
</tr>
<tr>
<td>Increased in PAH vs HC and DC (independent of confounders)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-acetylaspartate (NAA)</td>
<td>Alanine & Aspartate</td>
<td>0.12</td>
<td>0.21</td>
<td>1.13</td>
<td>-0.11</td>
<td>0.64</td>
<td>1.32</td>
</tr>
<tr>
<td>octadecanedioate</td>
<td>Fatty Acid, Dicarboxylate</td>
<td>0.07</td>
<td>0.12</td>
<td>0.82</td>
<td>-0.07</td>
<td>0.34</td>
<td>0.93</td>
</tr>
<tr>
<td>3-hydroxy-3-methylglutarate</td>
<td>Mevalonate</td>
<td>-0.07</td>
<td>0.57</td>
<td>0.89</td>
<td>0.07</td>
<td>0.57</td>
<td>1.15</td>
</tr>
<tr>
<td>acisoga</td>
<td>Polyamine</td>
<td>-0.10</td>
<td>1.07</td>
<td>1.42</td>
<td>0.09</td>
<td>1.14</td>
<td>1.95</td>
</tr>
<tr>
<td>N1-methylinosine</td>
<td>Purine, Hypoxanthine/Inosine</td>
<td>-0.22</td>
<td>0.58</td>
<td>1.50</td>
<td>0.20</td>
<td>0.86</td>
<td>1.85</td>
</tr>
<tr>
<td>xanthine</td>
<td>Purine, Hypoxanthine/Inosine</td>
<td>0.11</td>
<td>0.56</td>
<td>0.98</td>
<td>-0.10</td>
<td>0.62</td>
<td>1.06</td>
</tr>
<tr>
<td>N2,N2-dimethylguanosine</td>
<td>Purine, Guanine</td>
<td>-0.11</td>
<td>0.83</td>
<td>1.56</td>
<td>0.10</td>
<td>1.15</td>
<td>2.00</td>
</tr>
<tr>
<td>3-ureidopropionate</td>
<td>Pyrimidine, Uracil</td>
<td>-0.14</td>
<td>0.22</td>
<td>0.62</td>
<td>0.13</td>
<td>0.09</td>
<td>1.16</td>
</tr>
<tr>
<td>malate</td>
<td>TCA Cycle</td>
<td>-0.18</td>
<td>0.60</td>
<td>1.17</td>
<td>0.17</td>
<td>0.69</td>
<td>1.64</td>
</tr>
<tr>
<td>X - 12688</td>
<td>Unknown</td>
<td>-0.11</td>
<td>1.01</td>
<td>1.50</td>
<td>0.10</td>
<td>1.14</td>
<td>1.70</td>
</tr>
<tr>
<td>X - 13737</td>
<td>Unknown</td>
<td>-0.05</td>
<td>0.19</td>
<td>0.97</td>
<td>0.05</td>
<td>0.38</td>
<td>1.03</td>
</tr>
<tr>
<td>X - 21796</td>
<td>Unknown</td>
<td>0.07</td>
<td>0.19</td>
<td>0.96</td>
<td>-0.07</td>
<td>0.44</td>
<td>1.06</td>
</tr>
<tr>
<td>Decreased in PAH vs HC and DC (independent of confounders)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>palmitoylcholine</td>
<td>Fatty Acid (Acyl Choline)</td>
<td>-0.05</td>
<td>-0.14</td>
<td>-1.33</td>
<td>0.05</td>
<td>-0.35</td>
<td>-0.73</td>
</tr>
<tr>
<td>1-arachidonoyl-GPC (20:4n6)*</td>
<td>Lysolipid</td>
<td>-0.08</td>
<td>-0.14</td>
<td>-1.09</td>
<td>0.08</td>
<td>-0.25</td>
<td>-0.74</td>
</tr>
<tr>
<td>1-docosapentaenoyl-GPC (22:5n3)*</td>
<td>Lysolipid</td>
<td>-0.03</td>
<td>-0.17</td>
<td>-1.03</td>
<td>0.03</td>
<td>-0.21</td>
<td>-0.80</td>
</tr>
<tr>
<td>1-linoleoyl-2-eicosapentaenoyl-GPC (18:2/20:5)*</td>
<td>Phospholipid</td>
<td>0.03</td>
<td>-0.39</td>
<td>-0.81</td>
<td>-0.03</td>
<td>-0.13</td>
<td>-1.13</td>
</tr>
<tr>
<td>sphingomyelin (d18:1/20:0, d16:1/22:0)*</td>
<td>Sphingolipid</td>
<td>0.05</td>
<td>-0.43</td>
<td>-1.02</td>
<td>-0.05</td>
<td>-0.38</td>
<td>-1.09</td>
</tr>
<tr>
<td>sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0)*</td>
<td>Sphingolipid</td>
<td>0.03</td>
<td>-0.44</td>
<td>-0.89</td>
<td>-0.03</td>
<td>-0.32</td>
<td>-0.93</td>
</tr>
<tr>
<td>sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1)*</td>
<td>Sphingolipid</td>
<td>0.07</td>
<td>-0.37</td>
<td>-1.09</td>
<td>-0.06</td>
<td>-0.32</td>
<td>-1.16</td>
</tr>
<tr>
<td>sphingomyelin (d18:2/23:0, d18:1/23:1, d17:1/24:1)*</td>
<td>Sphingolipid</td>
<td>0.04</td>
<td>-0.27</td>
<td>-0.63</td>
<td>-0.04</td>
<td>-0.17</td>
<td>-0.60</td>
</tr>
</tbody>
</table>

Supplementary Materials
Increased in PAH vs HC (independent of confounders)

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Metabolite</th>
<th>Unsupervised Feature Selection</th>
<th>Unsupervised Feature Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oleoyl ethanolamide</td>
<td>Endocannabinoid</td>
<td>0.10 1.02 0.88</td>
<td>-0.09 1.15 1.02</td>
</tr>
<tr>
<td>3-hydroxybutyrylcarnitine (1)</td>
<td>Fatty Acid (Acyl Carnitine)</td>
<td>0.02 0.52 0.91</td>
<td>-0.01 0.81 0.97</td>
</tr>
<tr>
<td>3-hydroxybutyrylcarnitine (2)</td>
<td>Fatty Acid (Acyl Carnitine)</td>
<td>0.07 0.76 1.26</td>
<td>-0.06 1.02 1.24</td>
</tr>
<tr>
<td>Acetylcarnitine</td>
<td>Fatty Acid (Acyl Carnitine)</td>
<td>0.11 0.43 1.02</td>
<td>-0.10 0.77 0.88</td>
</tr>
<tr>
<td>Adipoylcarnitine</td>
<td>Fatty Acid (Acyl Carnitine)</td>
<td>-0.04 0.41 1.44</td>
<td>0.04 0.94 1.69</td>
</tr>
<tr>
<td>Myristoleoylcarnitine*</td>
<td>Fatty Acid (Acyl Carnitine)</td>
<td>0.04 0.33 0.75</td>
<td>-0.04 0.64 0.85</td>
</tr>
<tr>
<td>Myristoyl carnitine</td>
<td>Fatty Acid (Acyl Carnitine)</td>
<td>0.01 0.46 0.81</td>
<td>-0.01 0.87 1.06</td>
</tr>
<tr>
<td>Oleoyl carnitine</td>
<td>Fatty Acid (Acyl Carnitine)</td>
<td>0.03 0.53 0.96</td>
<td>-0.03 0.83 1.39</td>
</tr>
<tr>
<td>Palmitoleoylcarnitine*</td>
<td>Fatty Acid (Acyl Carnitine)</td>
<td>0.08 0.56 0.91</td>
<td>-0.07 0.90 1.23</td>
</tr>
<tr>
<td>Suberoyl carnitine</td>
<td>Fatty Acid (Acyl Carnitine)</td>
<td>0.10 0.55 1.40</td>
<td>-0.09 0.98 1.61</td>
</tr>
<tr>
<td>Glutamate</td>
<td>Glutamate</td>
<td>0.16 0.47 1.13</td>
<td>-0.14 0.41 0.98</td>
</tr>
<tr>
<td>Methionine sulfone</td>
<td>Met, Cys, SAM & Tau</td>
<td>-0.03 0.49 1.57</td>
<td>0.03 0.98 1.79</td>
</tr>
<tr>
<td>N-acetyl methionine</td>
<td>Met, Cys, SAM & Tau</td>
<td>-0.04 0.48 1.08</td>
<td>0.04 0.63 1.27</td>
</tr>
<tr>
<td>N-acetyltaurine</td>
<td>Met, Cys, SAM & Tau</td>
<td>0.07 0.56 1.02</td>
<td>-0.06 0.71 1.15</td>
</tr>
<tr>
<td>N-formyl methionine</td>
<td>Met, Cys, SAM & Tau</td>
<td>-0.17 0.49 1.08</td>
<td>0.16 0.69 1.53</td>
</tr>
<tr>
<td>5,6-dihydrothymine</td>
<td>Pyrimidine, Thymine</td>
<td>-0.22 0.65 1.33</td>
<td>0.20 0.96 1.37</td>
</tr>
<tr>
<td>Alpha-ketoglutarate</td>
<td>TCA Cycle</td>
<td>-0.04 0.45 0.68</td>
<td>0.04 0.71 1.57</td>
</tr>
<tr>
<td>Fumarate</td>
<td>TCA Cycle</td>
<td>-0.15 0.30 0.65</td>
<td>0.13 0.45 1.14</td>
</tr>
<tr>
<td>C-glycosylpropan</td>
<td>Tryptophan</td>
<td>-0.05 0.55 1.11</td>
<td>0.05 0.84 1.37</td>
</tr>
<tr>
<td>X - 12127</td>
<td>Unknown</td>
<td>0.06 0.63 0.85</td>
<td>-0.06 0.61 1.05</td>
</tr>
<tr>
<td>X - 12472</td>
<td>Unknown</td>
<td>-0.04 0.71 1.03</td>
<td>0.04 0.82 1.05</td>
</tr>
<tr>
<td>X - 12739</td>
<td>Unknown</td>
<td>-0.09 0.87 1.02</td>
<td>0.08 1.11 1.12</td>
</tr>
<tr>
<td>X - 12824</td>
<td>Unknown</td>
<td>-0.02 0.54 0.85</td>
<td>0.02 0.74 1.08</td>
</tr>
<tr>
<td>X - 17327</td>
<td>Unknown</td>
<td>0.03 0.66 0.86</td>
<td>-0.03 0.81 0.97</td>
</tr>
<tr>
<td>X - 21829</td>
<td>Unknown</td>
<td>-0.07 0.44 0.82</td>
<td>0.06 0.65 1.24</td>
</tr>
<tr>
<td>X - 24307</td>
<td>Unknown</td>
<td>0.04 0.68 0.70</td>
<td>-0.04 0.52 1.18</td>
</tr>
</tbody>
</table>

Supplementary Materials
<table>
<thead>
<tr>
<th></th>
<th>X - 24513</th>
<th>X - 24527</th>
<th>X - 24678</th>
<th>X - 24766</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>0.09</td>
<td>0.08</td>
<td>0.21</td>
<td>-0.31</td>
</tr>
<tr>
<td></td>
<td>0.92</td>
<td>1.17</td>
<td>0.62</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>1.44</td>
<td>1.22</td>
<td>1.34</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>0.98</td>
<td>1.06</td>
<td>0.70</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>1.30</td>
<td>1.22</td>
<td>1.33</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>0.77</td>
<td>0.94</td>
<td>0.83</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>1.40-01</td>
<td>4.8E-01</td>
<td>1.2E-01</td>
<td>3.9E-01</td>
</tr>
<tr>
<td>X - 23765</td>
<td>0.09</td>
<td>-0.05</td>
<td>-0.08</td>
<td>-0.09</td>
</tr>
<tr>
<td>Unknown</td>
<td>-0.72</td>
<td>-0.50</td>
<td>-0.50</td>
<td>-0.90</td>
</tr>
<tr>
<td></td>
<td>-0.72</td>
<td>-0.50</td>
<td>-0.50</td>
<td>-1.02</td>
</tr>
<tr>
<td></td>
<td>-0.90</td>
<td>-1.22</td>
<td>-1.53</td>
<td>-1.02</td>
</tr>
<tr>
<td></td>
<td>-0.95</td>
<td>-0.95</td>
<td>-1.56</td>
<td>-1.08</td>
</tr>
<tr>
<td></td>
<td>8.1E-04</td>
<td>4.1E-01</td>
<td>7.3E-01</td>
<td>2.0E-01</td>
</tr>
<tr>
<td></td>
<td>0.97</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>3.9E-01</td>
<td>1.9E-01</td>
<td>3.9E-01</td>
<td>1.9E-01</td>
</tr>
<tr>
<td></td>
<td>1.4E-07</td>
<td>9.1E-03</td>
<td>5.1E-07</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Decreased in PAH vs HC (independent of confounders)

- Asparagine: Alanyl-Aspartate
 - -0.06 -0.58 -0.88
 - 0.05 -0.55 -1.00
 - -0.90 -1.22 -0.95
 - 8.7E-04 8.5E-02

- Dehydroepiandrosterone sulfate (DHEA-S): Steroid
 - -0.05 -1.17 -1.53
 - 0.04 -0.95 -1.74
 - -1.77 -1.53 -1.56
 - 2.5E-02 4.1E-01

- X - 23765: Unknown
 - 0.09 -0.50 -0.72
 - -0.08 -0.50 -0.90
 - -0.90 -1.02 -1.08
 - 8.1E-04 2.0E-01

Increased in PAH vs HC

- N-acetylanaline: Alanyl-Aspartate
 - -0.11 0.55 0.76
 - 0.10 0.88 1.15
 - 0.66 1.04 0.50
 - 9.9E-01 2.3E-01

- N-acetylneuraminic acid: Aminosugar
 - -0.11 0.50 0.93
 - 0.11 0.63 0.88
 - 0.47 0.76 0.28
 - 7.4E-02 2.4E-01

- erythronate: Aminosugar
 - -0.11 0.45 0.71
 - 0.10 0.68 1.16
 - 0.59 1.10 0.37
 - 7.1E-01 6.5E-01

- N-acetylglycosaminic acid: Aminosugar
 - -0.14 0.50 0.72
 - 0.13 0.89 0.95
 - 0.58 0.62 0.54
 - 1.0E-01 7.3E-01

- gulonic acid*: Ascorbate & Aldarate
 - -0.08 0.49 0.61
 - 0.07 0.57 0.79
 - 0.61 0.81 0.47
 - 8.5E-01 5.3E-01

- palmitoylcarnitine: Fatty Acid (Acyl Carnitine)
 - -0.03 0.49 0.91
 - 0.03 1.03 1.28
 - 0.95 1.23 0.90
 - 6.0E-02 9.2E-01

- malonylcarnitine: Fatty Acid Synthesis
 - 0.00 0.20 0.56
 - 0.00 0.29 0.94
 - 0.48 0.96 0.57
 - 1.3E-01 3.8E-02

- N-acetylsaricine: Glycine, Serine & Threonine
 - -0.16 0.63 1.00
 - 0.15 1.04 1.49
 - 0.97 1.38 0.85
 - 5.2E-01 4.0E-01

- N-acetyllthreone: Glycine, Serine & Threonine
 - -0.22 0.31 0.68
 - 0.20 0.64 0.99
 - 0.55 1.10 0.47
 - 6.5E-01 9.7E-01

- 1-methylimidazoleacetate: Histidine
 - -0.05 0.52 0.86
 - 0.04 0.50 1.32
 - 0.86 1.02 0.74
 - 6.0E-02 9.5E-02

- imidazole propionate: Histidine
 - -0.21 0.44 0.84
 - 0.19 0.71 0.99
 - 0.79 0.98 0.84
 - 1.4E-01 8.1E-01

- quinoline: Nicotinate & Nicotinamide
 - -0.11 0.46 0.76
 - 0.10 0.68 1.19
 - 0.86 0.95 0.58
 - 6.0E-01 5.0E-01

- vanillylmandelate (VMA): Phenylalanine & Tyrosine
 - -0.21 0.35 1.00
 - 0.19 0.37 1.52
 - 0.83 1.75 0.96
 - 2.3E-01 1.5E-02

- 4-acetamidobutanoate: Polyamine
 - -0.10 0.72 1.22
 - 0.09 0.90 1.93
 - 1.26 1.83 1.19
 - 8.6E-01 7.0E-01

- N-acetylputrescine: Polyamine
 - -0.16 0.66 0.84
 - 0.15 0.72 1.32
 - 0.66 0.93 0.53
 - 5.8E-01 6.2E-01

- N6-carboxoxygenylthreonyl adenosine: Purine, Adenine
 - -0.12 0.58 1.04
 - 0.11 0.90 1.49
 - 1.06 1.31 0.92
 - 1.7E-01 4.5E-01

- N1-methyladenosine: Purine, Adenine
 - -0.21 0.70 0.94
 - 0.19 0.91 1.26
 - 0.65 1.03 0.46
 - 8.6E-01 1.4E-01

- N6-succinyladenosine: Purine, Adenine
 - -0.06 0.38 0.63
 - 0.05 0.43 0.86
 - 0.50 0.94 0.44
 - 1.5E-01 2.7E-01

- N4-acetylcyctidine: Pyrimidine, Cytidine
 - 0.07 0.55 1.31
 - -0.06 0.77 1.50
 - 1.22 1.33 1.19
 - 2.7E-01 6.7E-01

- orotidine: Pyrimidine, Orotate
 - -0.11 0.58 1.07
 - 0.10 0.95 1.27
 - 0.96 1.27 0.83
 - 2.8E-01 5.3E-01

- pseudouridine: Pyrimidine, Uracil
 - -0.08 0.77 1.22
 - 0.08 1.05 1.66
 - 1.17 1.68 0.97
 - 1.5E-01 8.6E-01

Supplementary Materials
<table>
<thead>
<tr>
<th>Compound</th>
<th>Tryptophan</th>
<th>Histidine</th>
<th>1-linoleoyl-GPC (18:2)</th>
<th>1-dihomo-linoleoyl-GPC (20:2)*</th>
<th>behenoxy sphingomyelin (d18:1/22:0)*</th>
<th>4-androsten-3beta,17beta-diol disulfate (1)</th>
<th>4-androsten-3beta,17beta-diol monosulfate (1)</th>
<th>androsterone sulfate</th>
<th>pregn steroid monosulfate*</th>
<th>X - 23749</th>
<th>arginine</th>
<th>homoarginine</th>
</tr>
</thead>
<tbody>
<tr>
<td>kynurenone</td>
<td>-0.14</td>
<td>-0.07</td>
<td>-0.10</td>
<td>0.02</td>
<td>-0.04</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.02</td>
<td>-0.08</td>
<td>-0.04</td>
<td>-0.05</td>
<td>-0.05</td>
</tr>
<tr>
<td>X - 12100</td>
<td>-0.13</td>
<td>-0.09</td>
<td>-0.10</td>
<td>0.01</td>
<td>-0.06</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.02</td>
<td>-0.08</td>
<td>-0.04</td>
<td>-0.05</td>
<td>-0.05</td>
</tr>
<tr>
<td>X - 11564</td>
<td>-0.13</td>
<td>-0.10</td>
<td>-0.10</td>
<td>0.01</td>
<td>-0.06</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.02</td>
<td>-0.08</td>
<td>-0.04</td>
<td>-0.05</td>
<td>-0.05</td>
</tr>
<tr>
<td>X - 12026</td>
<td>-0.16</td>
<td>-0.11</td>
<td>-0.11</td>
<td>0.01</td>
<td>-0.06</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.02</td>
<td>-0.08</td>
<td>-0.04</td>
<td>-0.05</td>
<td>-0.05</td>
</tr>
<tr>
<td>X - 12117</td>
<td>-0.12</td>
<td>-0.09</td>
<td>-0.10</td>
<td>0.01</td>
<td>-0.06</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.02</td>
<td>-0.08</td>
<td>-0.04</td>
<td>-0.05</td>
<td>-0.05</td>
</tr>
<tr>
<td>X - 15503</td>
<td>-0.17</td>
<td>-0.12</td>
<td>-0.12</td>
<td>0.01</td>
<td>-0.06</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.02</td>
<td>-0.08</td>
<td>-0.04</td>
<td>-0.05</td>
<td>-0.05</td>
</tr>
<tr>
<td>X - 11429</td>
<td>-0.07</td>
<td>-0.05</td>
<td>-0.07</td>
<td>0.01</td>
<td>-0.06</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.02</td>
<td>-0.08</td>
<td>-0.04</td>
<td>-0.05</td>
<td>-0.05</td>
</tr>
<tr>
<td>X - 21736</td>
<td>-0.06</td>
<td>-0.05</td>
<td>-0.06</td>
<td>0.01</td>
<td>-0.06</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.02</td>
<td>-0.08</td>
<td>-0.04</td>
<td>-0.05</td>
<td>-0.05</td>
</tr>
<tr>
<td>pro-hydroxy-pro</td>
<td>-0.03</td>
<td>0.00</td>
<td>-0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.08</td>
<td>-0.04</td>
<td>-0.05</td>
<td>-0.05</td>
</tr>
</tbody>
</table>

Decreased in PAH vs HC

<table>
<thead>
<tr>
<th>Compound</th>
<th>Tryptophan</th>
<th>Histidine</th>
<th>1-linoleoyl-GPC (18:2)</th>
<th>1-dihomo-linoleoyl-GPC (20:2)*</th>
<th>behenoxy sphingomyelin (d18:1/22:0)*</th>
<th>4-androsten-3beta,17beta-diol disulfate (1)</th>
<th>4-androsten-3beta,17beta-diol monosulfate (1)</th>
<th>androsterone sulfate</th>
<th>pregn steroid monosulfate*</th>
<th>X - 23749</th>
<th>arginine</th>
<th>homoarginine</th>
</tr>
</thead>
<tbody>
<tr>
<td>pro-hydroxy-pro</td>
<td>-0.03</td>
<td>0.00</td>
<td>-0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.08</td>
<td>-0.04</td>
<td>-0.05</td>
<td>-0.05</td>
</tr>
</tbody>
</table>

Supplementary Materials
Table S1. Metabolites distinguishing pulmonary arterial hypertension (PAH) from healthy (HC) and disease controls (DC). 97 metabolites that are significantly different between PAH and healthy controls in 3 cohorts (p<7.3e-5) are shown. Mean values are given and the data is scaled to the healthy control group. Significance from linear regression is shown (p value), and for metabolites with p>0.05 in PAH HC linear regression, the significant confounder is shown. Significance is also shown for Mann Whitney U test between PAH treatment naïve patients versus all HC, and PAH bone morphogenetic protein type 2 receptor (BMPR2) mutation carriers versus patients with no BMPR2 mutation. GPC, glycerophosphocholine. *probable metabolite identity, but unconfirmed (see methods).
Table S2. (below) Survival analysis.

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Metabolic Pathway</th>
<th>Discovery Hazard Ratio</th>
<th>Discovery Sig</th>
<th>Validation Hazard Ratio</th>
<th>Validation Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-acetylalanine</td>
<td>Alanine and Aspartate</td>
<td>2.02 (1.22-3.36)</td>
<td>6.43E-03</td>
<td>2.08 (1.12-3.86)</td>
<td>2.04E-02</td>
</tr>
<tr>
<td>pimeloylcarnitine/3-methyladipoylcarnitine</td>
<td>Fatty Acid (Acyl Carnitine)</td>
<td>2.16 (1.28-3.66)</td>
<td>4.03E-03</td>
<td>2.52 (1.24-5.10)</td>
<td>1.04E-02</td>
</tr>
<tr>
<td>1-methylimidazoleacetate</td>
<td>Histidine</td>
<td>2.26 (1.37-3.73)</td>
<td>1.43E-03</td>
<td>1.74 (1.03-2.93)</td>
<td>3.93E-02</td>
</tr>
<tr>
<td>N-acetylmethionine</td>
<td>Methionine, Cysteine, SAM and Taurine</td>
<td>2.36 (1.41-3.96)</td>
<td>1.16E-03</td>
<td>2.29 (1.18-4.43)</td>
<td>1.44E-02</td>
</tr>
<tr>
<td>N-formylmethionine</td>
<td>Methionine, Cysteine, SAM and Taurine</td>
<td>1.79 (1.20-2.68)</td>
<td>4.50E-03</td>
<td>1.98 (1.20-3.25)</td>
<td>7.15E-03</td>
</tr>
<tr>
<td>4-acetamidobutanoate</td>
<td>Polyamine</td>
<td>2.20 (1.45-3.35)</td>
<td>2.19E-04</td>
<td>2.02 (1.30-3.14)</td>
<td>1.83E-03</td>
</tr>
<tr>
<td>N-acetylputrescine</td>
<td>Polyamine</td>
<td>1.74 (1.04-2.91)</td>
<td>3.54E-02</td>
<td>2.92 (1.51-5.66)</td>
<td>1.50E-03</td>
</tr>
<tr>
<td>N1-methylinosine</td>
<td>Purine , (Hypo)Xanthine/Inosine</td>
<td>2.82 (1.74-4.57)</td>
<td>2.42E-05</td>
<td>1.73 (1.09-2.77)</td>
<td>2.11E-02</td>
</tr>
<tr>
<td>urate</td>
<td>Purine , (Hypo)Xanthine/Inosine</td>
<td>1.61 (1.06-2.42)</td>
<td>2.43E-02</td>
<td>2.14 (1.26-3.64)</td>
<td>4.73E-03</td>
</tr>
<tr>
<td>N6-succinyladenosine</td>
<td>Purine , Adenine</td>
<td>3.89 (1.40-10.82)</td>
<td>9.18E-03</td>
<td>8.31 (1.94-35.54)</td>
<td>4.29E-03</td>
</tr>
<tr>
<td>N6-carbamoylthreonyladenosine</td>
<td>Purine , Adenine</td>
<td>3.10 (1.60-6.00)</td>
<td>8.04E-04</td>
<td>2.08 (1.08-4.00)</td>
<td>2.81E-02</td>
</tr>
<tr>
<td>N1-methyladenosine</td>
<td>Purine , Adenine</td>
<td>1.94 (1.25-3.01)</td>
<td>2.92E-03</td>
<td>1.93 (1.12-3.32)</td>
<td>1.75E-02</td>
</tr>
<tr>
<td>N2,N2-dimethylguanosine</td>
<td>Purine , Guanine</td>
<td>2.53 (1.57-4.08)</td>
<td>1.35E-04</td>
<td>1.86 (1.14-3.03)</td>
<td>1.25E-02</td>
</tr>
<tr>
<td>pseudouridine</td>
<td>Pyrimidine , Uracil</td>
<td>1.78 (1.07-2.94)</td>
<td>2.54E-02</td>
<td>2.75 (1.48-5.12)</td>
<td>1.45E-03</td>
</tr>
<tr>
<td>X - 24020</td>
<td>Unknown</td>
<td>2.47 (1.42-4.30)</td>
<td>1.36E-03</td>
<td>1.84 (1.00-3.39)</td>
<td>4.94E-02</td>
</tr>
<tr>
<td>X - 24513</td>
<td>Unknown</td>
<td>2.34 (1.28-4.29)</td>
<td>5.92E-03</td>
<td>2.18 (1.11-4.29)</td>
<td>2.34E-02</td>
</tr>
<tr>
<td>X - 12472</td>
<td>Unknown</td>
<td>2.24 (1.44-3.47)</td>
<td>3.11E-04</td>
<td>1.57 (1.00-2.46)</td>
<td>4.97E-02</td>
</tr>
<tr>
<td>X - 12739</td>
<td>Unknown</td>
<td>2.07 (1.41-3.04)</td>
<td>2.07E-04</td>
<td>1.56 (1.06-2.28)</td>
<td>2.28E-02</td>
</tr>
<tr>
<td>X - 24527</td>
<td>Unknown</td>
<td>1.85 (1.38-2.48)</td>
<td>4.09E-05</td>
<td>1.43 (1.03-1.99)</td>
<td>3.12E-02</td>
</tr>
<tr>
<td>X - 12688</td>
<td>Unknown</td>
<td>1.81 (1.23-2.68)</td>
<td>2.83E-03</td>
<td>2.02 (1.27-3.19)</td>
<td>2.80E-03</td>
</tr>
<tr>
<td>X - 24728</td>
<td>Unknown</td>
<td>1.70 (1.09-2.64)</td>
<td>1.96E-02</td>
<td>2.04 (1.09-3.79)</td>
<td>2.50E-02</td>
</tr>
<tr>
<td>X - 15503</td>
<td>Unknown</td>
<td>1.67 (1.11-2.52)</td>
<td>1.38E-02</td>
<td>1.51 (1.03-2.22)</td>
<td>3.48E-02</td>
</tr>
<tr>
<td>X - 11564</td>
<td>Unknown</td>
<td>1.62 (1.10-2.38)</td>
<td>1.49E-02</td>
<td>1.60 (1.03-2.47)</td>
<td>3.51E-02</td>
</tr>
</tbody>
</table>

Higher value indicates mortality. Independent of established prognostic markers.
Supplementary Materials

<table>
<thead>
<tr>
<th>Compound Description</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-earcosapentenoyl-GPE (20:5)*</td>
<td>0.60 (0.43-0.84)</td>
<td>2.65E-03</td>
<td>0.62 (0.39-1.00)</td>
<td>4.98E-02</td>
</tr>
<tr>
<td>1-earcosapentenoyl-GPC (20:5)*</td>
<td>0.47 (0.31-0.73)</td>
<td>6.30E-04</td>
<td>0.50 (0.31-0.82)</td>
<td>6.05E-03</td>
</tr>
<tr>
<td>1-linoleoyl-2-docosahexaenoyl-GPC (18:2/22:6)*</td>
<td>0.64 (0.46-0.89)</td>
<td>7.40E-03</td>
<td>0.65 (0.47-0.91)</td>
<td>1.27E-02</td>
</tr>
<tr>
<td>1-oleoyl-2-docosapentaenoyl-GPC (18:1/22:5n6)*</td>
<td>0.64 (0.47-0.87)</td>
<td>4.11E-03</td>
<td>0.62 (0.43-0.90)</td>
<td>1.06E-02</td>
</tr>
<tr>
<td>1-myristoyl-2-arachidonoyl-GPC (14:0/20:4)*</td>
<td>0.57 (0.39-0.83)</td>
<td>3.68E-03</td>
<td>0.68 (0.48-0.96)</td>
<td>2.66E-02</td>
</tr>
<tr>
<td>phosphatidylcholine (18:0/20:5, 16:0/22:5n6)*</td>
<td>0.54 (0.37-0.77)</td>
<td>7.30E-04</td>
<td>0.42 (0.25-0.72)</td>
<td>1.44E-03</td>
</tr>
<tr>
<td>1-palmitoyl-2-eicosapentaenoyl-GPC (16:0/20:5)*</td>
<td>0.53 (0.37-0.75)</td>
<td>4.11E-04</td>
<td>0.43 (0.26-0.74)</td>
<td>1.96E-03</td>
</tr>
<tr>
<td>1-linoleoyl-2-eicosapentaenoyl-GPC (18:2/20:5)*</td>
<td>0.48 (0.33-0.70)</td>
<td>1.38E-04</td>
<td>0.60 (0.41-0.88)</td>
<td>8.59E-03</td>
</tr>
<tr>
<td>1-myristoyl-2-docosahexaenoyl-GPC (14:0/22:6)*</td>
<td>0.47 (0.31-0.72)</td>
<td>4.84E-04</td>
<td>0.49 (0.29-0.81)</td>
<td>5.62E-03</td>
</tr>
<tr>
<td>Steroid (DHEA-S)</td>
<td>0.71 (0.52-0.97)</td>
<td>3.19E-02</td>
<td>0.55 (0.33-0.91)</td>
<td>2.06E-02</td>
</tr>
<tr>
<td>X - 24041</td>
<td>0.46 (0.29-0.72)</td>
<td>6.88E-04</td>
<td>0.61 (0.38-0.99)</td>
<td>4.45E-02</td>
</tr>
</tbody>
</table>

Higher value indicates mortality.

Compound Description	Fatty Acid, Dicarboxylate	1.53 (1.09-2.14)	1.40E-02	1.67 (1.16-2.41)	5.58E-03
N-acetyltaurine	Methionine, Cysteine, SAM and Taurine	1.97 (1.16-3.35)	1.19E-02	2.24 (1.13-4.43)	2.05E-02
3-hydroxy-3-methylglutarate	Mevalonate	1.68 (1.03-2.74)	3.78E-02	2.08 (1.02-4.23)	4.40E-02
vanillylmandelate (VMA)	Phenylalanine and Tyrosine	1.48 (1.06-2.06)	2.02E-02	1.58 (1.06-2.34)	2.38E-02
N-acetyl-beta-alanine	Pyrimidine, Uracil	1.54 (1.08-2.21)	1.80E-02	1.65 (1.18-2.32)	3.65E-03
fumarate	TCA Cycle	1.70 (1.00-2.88)	4.97E-02	2.57 (1.09-6.06)	3.09E-02
N2,N2-diacetylornithine	Urea cycle; Arginine and Proline	2.15 (1.27-3.63)	4.37E-03	2.15 (1.13-4.09)	1.95E-02

Lower value indicates mortality.

Compound Description	Value 1	Value 2	Value 3	Value 4
valine	0.66 (0.49-0.89)	6.80E-03	0.68 (0.48-0.95)	2.21E-02
1-docosahexaenoyl-GPE (22:6)*	0.68 (0.49-0.94)	1.86E-02	0.54 (0.34-0.85)	8.27E-03
1-dihomo-linolenoyl-GPC (20:3n3 or 6)*	0.57 (0.41-0.79)	7.43E-04	0.71 (0.53-0.96)	2.82E-02
1-docosahexaenoyl-GPC (22:6)*	0.54 (0.35-0.81)	3.17E-03	0.57 (0.35-0.93)	2.32E-02
phosphatidylcholine (16:0/22:5n3, 18:1/20:4)*	0.68 (0.48-0.96)	2.64E-02	0.59 (0.36-0.98)	4.16E-02
1-stearoyl-2-docosahexaenoyl-GPE (18:0/22:6)*	0.64 (0.47-0.88)	5.99E-03	0.52 (0.32-0.85)	8.73E-03
1-palmitoleoyl-2-docosahexaenoyl-GPC (16:1/22:6)*	0.62 (0.43-0.90)	1.09E-02	0.50 (0.28-0.88)	1.67E-02
Table S2. Survival analysis in PAH. 62 metabolites significantly different between PAH survivors and non-survivors in discovery and validation1 cohorts (p<0.05) are shown. Hazard ratio and significance (Sig) is shown from Cox regression analysis. Hazard ratios shown are for 1 standard deviation change in each metabolite for ease of comparison. Metabolites which are also independent of established prognostic markers in the discovery cohort are also shown. *probable metabolite identity, but unconfirmed (see methods). GPC, glycerophosphocholine; GPE, glycerophosphoethanolamine.
Table S3. Pathway enrichment analysis results.

Pathways analysed and enrichment p-values are given, as well as metabolites within each pathway and significance values from tests used to select metabolites considered to be disease-associated. HC v PAH, significance of PAH on metabolite levels after controlling for potential confounders by linear regression; Prognosis, weakest significance of metabolite association with survival by Cox analysis in discovery or validation cohorts. *probable metabolite identity, but unconfirmed (see methods).
Table S4. ROC analysis of serial metabolite measurements. Area under the curve values for the association between metabolite level changes (i.e. sample 1 subtracted from sample 2) and survival during follow-up are shown for significantly associated metabolites. *probable metabolite identity, but unconfirmed (see methods).
Table S5. Demographics and circulating factor levels in subjects used for angiogenin study.

Mean +/- standard deviation is shown for continuous variables.

Fig. S1. Metabolite levels in BMRP2 mutation carriers. (A) Average metabolite levels in PAH BMPR2 mutation carriers, non-carriers and control subjects for 20 metabolites found to significantly distinguish PAH and both healthy and disease controls, independent of potential confounders. (B) Correlation of average metabolite levels in BMPR2 mutation carriers and non-carriers relative to controls for 53 metabolites that distinguish PAH from healthy controls, independent of potential confounders.
confounders. Values plotted are z-scores calculated based on mean and standard deviation of all healthy volunteers in study - negative values indicate metabolites at lower levels in patients versus healthy controls and positive values indicate higher levels of metabolites in patients. *probable metabolite identity, but unconfirmed (see methods).

Fig. S2– Survival analysis of PAH patients. (A) Receiver operating characteristic (ROC) curve for N2,N2-dimethylguanosine in the discovery cohort at 3 years of follow-up. The optimal cut-off for high/low risk levels of N2,N2-dimethylguanosine was derived from this for B&C. Kaplan Meier survival estimates in PAH patients in the discovery (B) and first validation (C) cohorts.
Fig. S3. Dehydroisoandrosterone-sulphate (DHEA-S). Plasma DHEA-S levels in the discovery cohort are shown for healthy controls (HC) and PAH (19-70) with (A) separation by gender and (B) against age.

Supplementary References

