This is a repository copy of Short case report: Xq23 deletion involving PAK3 as a novel cause of developmental delay in a 6-year-old boy.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/109113/

Version: Accepted Version

Article:

https://doi.org/10.1097/MCD.0000000000000154

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Short case report: Xq23 deletion involving PAK3 as a novel cause of developmental delay in a 6-year-old boy
Ashley Cartwrighta, Kath Smitha and Meena Balasubramanianb

Clinical Dysmorphology 2016, 00:000–000
aSheffield Diagnostic Genetics Service and bSheffield Clinical Genetics Service, Sheffield Children’s NHS Foundation Trust, Sheffield, UK

List of key features
Heterozygous PAK3 deletion
Developmental delay
Dysmorphic features
Poor, inarticulate speech

Summary
The proband is a 6-year-old boy referred to the Clinical Genetics Service with learning difficulties, autistic spectrum disorder and intellectual disability with no significant family history. He was the third child of healthy, nonconsanguineous, White European parents. There are two healthy siblings who are fit and well. He was born following a normal pregnancy at term with a birth weight of 3.486 kg (50th centile) and there were no concerns immediately after birth. He was noted to be delayed with his development; he sat up at 14 months of age, walked at 20 months of age and was delayed with his speech. He currently attends a mainstream school, but receives full-time support and has been diagnosed with myopia and astigmatism. On examination, he was noted to have bilateral low-set ears, a bulbous tip to the nose and deep-set eyes with accessory nipples (Fig. 1). His growth parameters on presentation at 6 years of age were as follows: height 123.5 cm (91st centile) and weight 25 kg (91st centile), with a head circumference of 52 cm (25th centile).

Investigations
Array comparative genomic hybridization (aCGH) was performed as part of ongoing investigations to elucidate the cause for the proband’s learning difficulties. aCGH was performed on genomic DNA extracted from peripheral blood lymphocytes from the proband and mother.

Fig. 1
(a, b) The proband, aged 6 years, showing facial dysmorphism with bilateral low-set ears, a bulbous tip to the nose and deep-set eyes.
DNA was applied to a BlueGnome 60-mer oligoarray, printed in the 8×60K International Standard Cytogenomic Array Consortium configuration, according to the manufacturer’s instructions, with pooled DNA being used as a reference (Promega Corporation, Madison, Wisconsin, USA). Slides were scanned using a GenePix Personal 4100A scanner (Axon Instruments) and analysed using BlueGnome BlueFuse-Multi (version 3.0) analysis software (BlueGnome, an Illumina Company, Cambridge, UK).

Results from 60K aCGH showed a 90 kbp deletion of Xq23 involving basepairs 110 373 400–110 464 093 (genome assembly GRCh37). Analysis of the deletion found that the region encompassed part of the PAK3 gene (at least exons 4–15 NM_001128166.1) (Fig. 2). The mother’s arrayCGH showed normal chromosome analysis with no evidence of deletion at Xq23, confirming the deletion to be de novo in origin. This patient had been investigated previously for Fragile-X syndrome (negative).

Discussion

Small deletions of the X chromosome provide us with novel insights into the genetic basis of X-linked intellectual disability and correlation between the clinical phenotype and genotype. We report a child with a novel de novo Xq23 deletion involving the PAK3 gene, referred for clinical dysmorphism and developmental delay.

The PAK3 protein functions in regulating the actin cytoskeleton of cells and is also involved in neuronal stimulation and outgrowth in the foetal and adult brain (Ma et al., 2012). Nonsense, missense and splice site mutations within the PAK3 gene have all been previously associated with nonsyndromic X-linked mental retardation (Donnelly et al., 1996; des Portes et al., 1997; Allen et al., 1998; Bienvenu et al., 2000; Gedeon et al., 2003;
Pieppo et al., 2007; Rejeb et al., 2008; Magini et al., 2014). Analysis of these mutations suggested that they lead to the inactivation of PAK3 protein functionality, either through loss of catalytic enzyme activity or through nonsense mutations resulting in premature termination of protein product.

To date, this is the first case in which a large deletion within PAK3 has led to an intellectual disability phenotype. Interestingly, where the clinical phenotypes of the single nucleotide mutation families were available, comparison between them and the phenotype discussed shows a number of similarities, with facial dysmorphism, speech delay and learning/behavioural abnormalities all being present (Table 1). The phenotype of the patient reported here with the PAK3 deletion is very similar to that of patients reported with mutations in PAK3 with normal stature, a relatively small head or microcephaly, poor/absent speech and mild–moderate developmental delay, suggesting a possible role of haploinsufficiency causing the phenotype associated with mutations in PAK3.

Analysis of haploinsufficiency information for PAK3 yields a haploinsufficiency score of 5.06% (Huang et al., 2010). This finding suggests that inheritance of one normal PAK3 allele is insufficient to maintain normal protein function within the cell. Inheritance of a single normal allele can be through deletion of PAK3 or functional inactivation of the protein because of single nucleotide mutations as reported previously.

Given the findings here, we suggest that the developmental delay in this patient is a direct result of the deletion within PAK3 and believe that this is the first case to report an Xq23 deletion encompassing part of PAK3 associated with mental retardation. This finding provides further evidence for the Xq23 loci as X-linked mental retardation loci and that PAK3 may play an important role in normal development.

Acknowledgements

The authors thank the family for their participation in this report and for providing their informed consent to publish this case study.

Conflicts of interest

There are no conflicts of interest.

References

Table 1 Comparison of phenotypes and genotypes of previously reported PAK3 mutations

<table>
<thead>
<tr>
<th>Study participants</th>
<th>Language</th>
<th>Head size</th>
<th>Stature</th>
<th>Mentality retardation</th>
<th>Facial dysmorphia</th>
<th>PAK3 mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pieppo et al. (2007)</td>
<td>Poor, inarticulate speech (4)</td>
<td>Normal</td>
<td>Normal</td>
<td>Mild (2)</td>
<td>High palate</td>
<td>p.W446S</td>
</tr>
<tr>
<td>This study</td>
<td>–</td>
<td>Small</td>
<td>Normal</td>
<td>Relatively large</td>
<td>Bilateral low-set ears</td>
<td>Heterozygous deletion of part of PAK3</td>
</tr>
</tbody>
</table>

References

Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.
AUTHOR QUERY FORM

LIPPINCOTT

WILLIAMS AND WILKINS

JOURNAL NAME: MCD

ARTICLE NO: CD_D_16_00069

QUERIES AND / OR REMARKS

<table>
<thead>
<tr>
<th>QUERY NO.</th>
<th>Details Required</th>
<th>Author's Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Please provide the permission for Fig. [1] as the identity of the patient is revealed.</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>Please give address information for ‘Axon Instruments’: town, state (if applicable), and country.</td>
<td></td>
</tr>
</tbody>
</table>