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Abstract Fundamentals of nonlinear wave-particle interactions are studied
experimentally in a Hele-Shaw configuration with wave breaking and a dy-
namic bed. To design this configuration, we determine, mathematically, the
gap width which allows inertial flows to survive the viscous damping due to
the side walls. Damped wave sloshing experiments compared with simula-
tions confirm that width-averaged potential-flow models with linear momen-
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tum damping are adequately capturing the large scale nonlinear wave motion.
Subsequently, we show that the four types of wave breaking observed at real-
world beaches also emerge on Hele-Shaw laboratory beaches, albeit in ideal-
ized forms. Finally, an experimental parameter study is undertaken to quantify
the formation of quasi-steady beach morphologies due to nonlinear, breaking
waves: berm or dune, beach and bar formation are all classified. Our research
reveals that the Hele-Shaw beach configuration allows a wealth of experimen-
tal and modelling extensions, including benchmarking of forecast models used
in the coastal engineering practice, especially for shingle beaches.

Keywords Hele-Shaw cell · laboratory experiments · mathematical design ·
shingle beaches · potential flow and shallow water simulations

1 Introduction

1.1 A Slice of Beach

Natural beaches, including those partially enhanced or even completely man-
made, are defensive zones that protect large tracts of the world’s coastlines
against storm surges. This is especially the case in low-lying deltas such as
the western and northern parts of The Netherlands, with its combination of
a partially and totally reinforced coastline of beaches and dunes, and dikes.
The dynamics of the surf zone, concerning the wet zone from the beach to
the offshore line where the white capping of wave breaking starts, are very
important for understanding how beaches, berms and sand or shingle banks
form and erode. Good predictions of surf zone dynamics and the associated
particle transport can reveal where suppletion of particulate material will be
required to protect the coast, or where dredging is needed to keep navigational
channels into harbours open.

Coastal engineers and fluid dynamicists have made great progress in for-
mulating models for waves and currents, and particle transport in and around
the surf zone. This progress has provided the fundamentals for operational
forecast models such as Telemac, Delft-3D and Xbeach [22]. Current forecast
models are founded on decades of research on wave dynamics and beach ero-
sion, especially during storms [27; 20], on the formulation of the sediment and
bedload flux transport laws [29; 6; 9; 18], and on direct mathematical analy-
sis [14]. Despite great advances, the fundamental laws of how sand or gravel
particles are picked up, transported and deposited by breaking waves remain
relatively poorly understood at a fundamental level. This gap in knowledge
motivates the goal of the presented work: demonstrating how a novel, compact
Hele-Shaw beach configuration and laboratory experiment may shed new light
on wave breaking induced particle transport.

The wave breaking process is comprised of complicated two-phase hydro-
dynamics of water and air, and three-phase flows through its interaction with
suspended sediment and the particulate bottom. Due to the reduction of the
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Fig. 1 A schematic front and side view of the Hele-Shaw beach experiment is given. Key
parameters varied are the mean free water depth H0 − B0, initial bed thickness B0, and
wave-maker frequency fwm. Furthermore, lwm = 333mm lw = 212mm, tw = 20mm and
hw = 50mm. The wedge ensures that particles of the bed on the right remain separate from
the wave-maker region on the left.

degrees of freedom involved, the focus in the Hele-Shaw beach cell lies on wave-
particle interactions while the role of turbulence is greatly reduced. Practically,
we investigate the dynamics in a slice of beach: a thin vertical layer of water,
air and particle bottom. Hence, the dynamics is made nearly two-dimensional,
which effects the reduced role of turbulence as eddies only survice one to two
turn-around times. In nature, such a slice of beach would be a few sand or
gravel particles thin, tens of meters long and one to a few meters in depth.
Instead, this slice of natural beach is scaled down to table-top size, resulting
into a Hele-Shaw set-up of about one metre long, a few millimetres wide, and
about 30cm in height [4]. Given the relative particle size and the porosity of
the bed, this set-up is most closely related to shingle beaches. A sketch of
the set-up between two vertical glass plates with closed sides and bottom is
provided in Fig. 1. The Hele-Shaw beach is a novel adaptation of the classi-
cal set-up by Hele Shaw with single viscous fluid flow around solid obstacles
[15; 17]. In contrast to this classical case, the forcing we use is larger and
induces inertial flow with wave breaking and limited circulation in the ver-
tical place, cf. inertial flow effects in other work [24; 19; 26]. The dynamics
in this modified Hele-Shaw cell takes effectively place in a vertical plane such
that gravity is the restoring force permitting surface wave motion. The tank
is filled with nearly spherical, zeolite or glass particles and water, and is open
at the top. Instead of wind-driven waves or swell travelling onshore, the waves
are mechanically driven by a programmable wave-maker. Mostly an inverted
swinging pendulum but sometimes also a horizontally moving rod were used
as wave-maker. Only minor differences were observed. Next, we present pre-
cursory results showing that wave breaking and beach formation are present
within the Hele-Shaw beach cell.
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a) b)

c) d)

Fig. 2 Beach formation by breaking waves. a) The initial state is shown before the wave-
maker (not shown) starts. b) Waves move material from behind the wedge, c) such that over
time a beach with nearly constant slope forms on the right (note the spilling breaker). d)
The final quasi-steady state has a partially dry beach (note the surging breaker). Particle
bed in grey. Waves come from the left. Water line and wedge have been highlighted in blue.

1.2 Precursory Results and Goals

The principal drawback of the Hele-Shaw beach set-up is the proximity of the
glass plates because they can lead to heavy damping of the momentum due to
a Poiseuille-type lateral flow profile, dominated by viscous effects [15; 17; 24].
To assess these viscous effects, a mathematical analysis was made to enable
the design and testing [4; 5]. Hence, the minimal threshold gap width between
the glass plates is determined for which a breaking wave or bore can travel
to the other end of the tank. The analysis consists of averaging the Navier-
Stokes equations for suitable velocity profiles, yielding damped incompressible
Euler equations in two dimensions and damped shallow water equations in
one spatial dimension. Simulation of this shallow system allows us to calculate
an optimal gap width. Using a potential flow Ansatz, we further simplify our
damped Euler equations in two dimensions to damped water wave equations.
Numerical solutions of these water wave equations have been validated against
laboratory experiments of wave sloshing in the Hele-Shaw tank without par-
ticles. These address the question:

(i) to what extent is linear momentum damping the primary energy dissipa-
tion mechanism in the Hele-Shaw cell?

The primary advantage of the Hele-Shaw beach configuration is that ev-
erything becomes clearly visible: the dynamics of each particle and the free
surface motion can be traced in time but not at the same time with the set-up
used. Although the gap width can be adjusted to become a little over one to
a few particle diameters wide, we presently limit ourselves to a gap width of
circa 1.1 particle diameter. Particle beds investigated only involve on the order
of ten thousand particles.

Wave types classified in the coastal engineering and fluid dynamics lit-
erature [3; 23] include spilling, plunging, collapsing and surging breakers. In
the literature [3], a distinction of the four wave types above is based on the
Iribarren number. Our second goal is therefore to address the question:
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(ii) what breaker types do we observe in the Hele-Shaw cell?

The variety of wave breakers observed is intimately related to the evolving
bathymetry. While the wave motion favouring bed evolution in the experiment
occurs on frequencies of around 1Hz, bed evolution occurs on longer time scales
of minutes to an hour. In Fig. 2, an example of beach evolution is shown.
Although the set-up allows for a range of liquid densities, particles sizes, and
wave-maker frequencies to be varied, uniformly or non-uniformly, we limit the
investigation here to variation of three basic parameters: the monochromatic
wave-maker frequency fwm, the still water bed level B0 and the still water
level H0, for monodispersed nearly spherical particles, see also Fig. 1. The
final question we wish to address then becomes:

(iii) what stable quasi-steady beach morphologies are observed in the Hele-
Shaw beach as function of these three parameters?

The outline is as follows. In section 2, the mathematical design is presented.
The experimental set-up is explained in section 3. Wave sloshing experiments
are compared with simulations in section 4. Laboratory results on breaking
waves are disseminated in section 5. Quasi-steady beach morphologies are
analysed in detail in section 6. Finally, we conclude in section 7.

2 Mathematics of Experimental Design

The main goal of this section is to determine the threshold gap width for
which a broken wave can propagate from one end of the tank to the other.
Waves generated at one end of the tank usually break when they reach the
shallow region behind the wedge. The relevant dimensions concern a tank of
a half to one metre in length and with a still water depth H0 of about 0 to
10 centimetres. We simplify the Navier-Stokes equations of motion for a fixed
beach of gentle slope that remains dry onshore. First we scale the equations
given the anisotropy of lateral, zonal and depth scales of space and velocity, and
average them laterally assuming a Poiseuille-type flow profile across the gap.
Subsequently, the resulting planar, incompressible Euler equations are depth-
averaged, assuming hydrostatic balance to hold. The threshold gap width is
found by using simulations of the resulting shallow water equations for suitable
wave forcing.

2.1 Width and Depth Averaging

Our analysis begins with scaling the incompressible Navier-Stokes equations
for a homogeneous fluid with velocity field (u⇤, v⇤, w⇤) and pressure p⇤ as
functions of spatial coordinates (x⇤, y⇤, z⇤)T and time t⇤. Partial derivatives are
denoted by @t∗(·) = @(·)/@t⇤, @2

y∗(·) = @2(·)/@y⇤2, and so forth. Dimensional
coordinates and variables will be denoted with a superscript star. They are
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made non-dimensional as follows:

u? =Uu, v? = V v, w? = Ww, x? = Lx, y? = ly, z? = Dz, (1a)

t? =Tt, p? = P0p, (1b)

with zonal, lateral and vectical length and velocity scales L, l,D and U, V,W ,
respectively. The constant fluid density is ⇢0 = 998kg/m

3
, g = 9.8m/s

2
is the

Earth’s acceleration vector and ⌫ = 10−6m2/s the kinematic viscosity. The
time scale T ⇡ L/U ⇡ l/V ⇡ D/W , the pressure scale P0 = ⇢0U

2/(R✏2) with
a planar friction number R = Re/✏2 = UL/⌫ and the Reynolds number Re =
V l/⌫; the Froude number 1/Fr2 = gD/U2, and the aspect ratios ✏ = l/L ⌧ 1
and δ = D/L,

After scaling, the resulting non-dimensional equations become:

@tu+ u@xu+ v@yu+ w@zu =− 1

R✏2
@xp+

1

R

1

✏2
@2
yu+

1

R

(

@2
x +

1

δ2
@2
z

)

u (2a)

@tv + u@xv + v@yv + w@zv =− 1

R✏4
@yp+

1

R

1

✏2
@2
yv +

1

R

(

@2
x +

1

δ2
@2
z

)

v

(2b)

@tw + u@xw + v@yw + w@zw =− 1

R✏2 δ2
@zp−

1

Fr2δ2

+
1

R

1

✏2
@2
yw +

1

R

(

@2
x +

1

δ2
@2
z

)

w (2c)

@xu+ @yv + @zw =0. (2d)

The two tanks used are about 0.6m and 1m long; the typical length scale of
the phenomena generated is smaller, about L = 0.1m, in part also because the
wave-maker is placed at about 1/3rd of the tank’s length. Waves are generated
with a sinusoidally-driven wave-maker. An upper limit for U is as follows

U = 2⇡fwm✓wmlwm = O (0.1)m/s (3)

with wave-maker frequency fwm ⇡ 1.3Hz, wave-maker angle ✓wm ⇡ 20◦ =
1/9 rad and wave-maker arm lwm ⇡ 0.32m. The friction number R = 103 to
4⇥104 with ✏2 = 4⇥10−4 for U = 0.01 to 0.1m/s, L = 0.1m and l = 2⇥10−3m.
Hence, Reynolds number Re = 0.5 to 5. At leading order in ✏2, (2) yields p =
p(x, z, t) to be y–independent: only the viscous contribution in the y–direction
remains of importance in the zonal and vertical momentum equations. Hence,
the reduced equations consist of the underlined terms in (2). Next, we assume
a balance between pressure gradients and the remaining viscous terms, such
that dimensionally

u? = − 1

2⇢0⌫
@x?p?(l2 − y2?) and w? = − 1

2⇢0⌫
(@z?p? + ⇢0g) (l

2 − y2?). (4)

A comparison between the magnitude of the inertia terms over the pressure
gradient or viscous terms (e.g., [2; 24]), using hydrostatic balance to estimate
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the pressure gradient, yields

⇢0(u
2
? + w2

?)

L|rx?z?p?|
16l4|rx?z?p?|

⇢0⌫2L2
=
16l4g∆h

⌫2L2
⇠ 1 to 100. (5)

Consequently, inertial terms remain of importance, and there is no global
Hele-Shaw flow despite the narrowness of the set-up. This contrasts the purely
viscous balance in classical Hele-Shaw flow [15], but is similar to investigations
of Hele-Shaw cells with inertial effects, regarding sufficiently strongly, forced
Faraday free surface waves [26] or Kelvin-Helmholtz instability [24].

Pohlhausen and others [28; 26; 24] substitute the quadratic approximation

u = 3ū(l2 − y2)/(2 l2) and w = 3w̄(l2 − y2)/(2 l2) (6)

into the underlined part of (2) and then laterally average these equations,

using a width average ū =
R l

−l
u(x, y, z, t)dy/(2l), etc. We keep l as a place

holder, even though the dimensionless l = 1. Wilson and Duffy [33] showed
this approximation to be rather good in a similar yet different lubrication
application, in a comparison with a numerical solution of the Navier-Stokes
equations. Ansatz (6) is also a simple numerical discretization of u and w in
the y-direction. The width-averaging step is followed by neglecting (Reynolds)
stress terms. The resulting system in dimensional form reads

@tū+ γū@xū+ γw̄@zū =− 1

⇢0
@xP − 3⌫ū/l2, (7a)

@tw̄ + γū@xw̄ + γw̄@zw̄ =− 1

⇢0
@zP − g − 3⌫w̄/l2, (7b)

@xū+ @zw̄ =0, (7c)

with a y–independent pressure P = P (x, z, t) and γ = 6/5 for the quadratic
flow profile used. The kinematic free surface and bottom boundary conditions
at z = h(x, t)+b(x, t) and z = b(x, t) with water depth h = h(x, t) and bottom
height b = b(x, t) are as follows

@t(h+ b) + ū@x(h+ b)− w̄ =0 at z = h(x, t) + b(x, t), (8a)

@tb+ ū@xb− w̄ =0 at z = b(x, t). (8b)

Hydrostatic balance emerges in the limit δ ! 0 from (2), in non-dimensional
terms as @zp/(Re ✏2)+1/Fr2 = 0, or dimensionally as @z?P ?/⇢0+g = 0. Hence,
P (x, z, t) = ⇢0g

(

h(x, t) + b(x, t) − z
)

. After depth averaging and neglecting
(other Reynolds) stress terms, damped shallow water equations emerge

@t(h¯̄u) + @x
(

γh¯̄u2 + gh2/2
)

=− gh@xb+ (γ − 1)¯̄u@x(h¯̄u)− 3⌫h¯̄u/l2 (9a)

@th+ @x(h¯̄u) =0 (9b)

with h¯̄u(x, t) =
R h+b

b
ū(x, z, t)dz. These shallow water equations are aug-

mented with classical hydraulic jump and bore relations to allow for local dis-
continuities in depth and velocity, for the simpler case with γ = 1. These jump



8 Anthony Thornton et al.

Fig. 3 Our design is based on simulations of shallow-water bore propagation in the Hele-
Shaw cell: snapshots of depth-averaged velocity u(x, t), topography b(x, t) (black, fat line)
and free surface h(x, t) + b(x, t) (blue, normal line), for a gap width of 2 l = 2mm. On the
left, a wave-maker is modelled as a steep, moving wall with fixed ∂xb(x, t) < 0, to the right
of which the topography b(x) is fixed. a) t = 3.25T , b) t = 3.5T , c) t = 3.75T , and d)
t = 4.0T with period T = 1s.

relations model breaking waves with energy loss across the bore. Simulations
of (9) show that there is a threshold 2 l ⇡ 1.5mm for which the bores gener-
ated are strong enough to travel across the tank for wave frequencies between
0.5–1Hz. A sample simulation is provided in Fig. 3. For smaller gap widths
2l < 1.5mm, the bores generated die out too quickly due to the Newtonian
momentum damping in the width- and depth-averaged equations (9). Given
available and suitable zeolite particles with a diameter of d = 1.75± 0.05mm,
the gap width in the experimental design was finally chosen as 2l = 2mm.

3 Experimental Techniques

The primary Hele-Shaw cell consists of two parallel glass plates of length
960mm and a gap of width 2l = 2mm. It is partially filled with water to
a still-water depth of H0. The wave-maker at one end of the cell consists of a
vertical, double welding rod, moving between the glass plates. Each rod has
a diameter of 1.6mm. The wave-maker moves approximately back and forth
sinusoidally at a fixed amplitude. Three types of experiments are undertaken:
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Material Diameter (mm) Density (g/cm3) Porosity
Gamma Alumina 1.75 ± 0.1 2.08 ± 0.2∗ 0.53 ± 0.05
Spherical Glass 1.80 ± 0.1 2.515 ± 0.03 0

Table 1 Particle properties. ∗: Effective density with water-filled pores.

(i) short-time wave sloshing experiments without particles in which the free
surface motion is measured, (ii) short-time breaking wave experiments with a
movable bed, and (iii) long-time development of quasi-steady beach morpholo-
gies with a movable bed of Gamma Alumina particles, see Table 1.

In both the wave sloshing validations and the wave breaking experiments,
high speed cameras are used recording images from 500 to 1000 fps. The latter
experiments involve about 104 particles. In both cases, some red dye is added
to the water to increase the contrast between water and air. It has little dis-
cernible effect on the surface tension of water. The free-surface locations for
arbitrary wave shapes are extracted from the video frames, using codes devel-
oped in MATLAB. At the start of a measurement series the set-up is flushed
with clean MilliQ R© water to which in some cases surfactant was added. The
surface tension is therefore not quite the same in all measurements.

For the experiments on beach morphology, photographs are taken every 10s
because the time scales involved are longer. The experiments are continued till
a quasi-steady beach morphology emerges with little net variation over time.
This is assessed visually. An automated analysis is conducted a posteriori to
confirm or revoke this visual assessment. Snapshots from a typical measure-
ment were shown in Fig. 2, in which the bed evolved from a flat state to a
beach with a nearly constant slope. To analyse such beach formation, a parti-
cle tracking code has been developed in MATLAB, determining the location
of each particle. The horizontal x-direction is then divided into bins such that
the highest (connected) particle in each bin defines the bed profile. To start
each experiment a set procedure is followed. Particles are placed into the set-
up filled with water a day in advance, such that particle pores saturate with
water. The set-up is subsequently flushed with fresh MilliQ R© water, resulting
in a nearly constant surface tension. The beach is levelled manually and the
height B0 is measured. Subsequently, the set-up is drained and refilled with
clean MilliQ R© . The range in this fixed room temperature was 23.5 to 28.7◦C.
The properties of water change only slightly with temperature in this range,
and the influence on the results seems negligible. The beach morphology ex-
periments are presented in section 6. Further information can be found in Van
der Horn [16].

4 Validating Wave Sloshing Experiments

To assess the validity of the hydrodynamical model (7), we compared numer-
ical water wave solutions based on an exact reduction of (7) a posteriori with
simple damped wave experiments in our Hele-Shaw cell without particles. We



10 Anthony Thornton et al.

assume that the domain ⌦ consists of solid vertical walls at x = 0 and Lx, and
a fixed flat bottom at z = 0 together with a free surface at z = h(x, t). The next
step is to impose the velocity field to satisfy ū = (ū, w̄) = rφ ⌘ (@xφ, @zφ)
with velocity potential φ in (7). Consequently, the remaining (horizontal) vor-
ticity component @zū − @xw̄ = 0. Combined with the kinematic free surface
equation (8a) with b = 0, the incompressibility condition yields Laplace’s
equation with the dynamic and kinematic boundary conditions at z = h, i.e.,

@tφ+
1

2
γ|rφ|2 + g(h−H0) + 3⌫φ/l2 =0 at z = h (10a)

@th+ (@xφ)@xh− @zφ =0 at z = h (10b)

@2
xφ+ @2

zφ =0 in ⌦. (10c)

At x = 0 and L we have @xφ = 0, and at z = 0 we have @zφ = 0. These
are classical water wave equations [21] in the vertical plane with additional
damping of the velocity potential φs = φ(x, z = h, t) at z = h, cf. [26].

The first and last term in the dynamic boundary condition (10a) can be
combined in an integrating factor. For a large damping factor 3⌫/l2, potential
and kinetic energy will quickly damp out. The extension of Miles’ variational
principle [21] for water waves based on potential flow then becomes

0 =δ

Z T

t0

Z L

0

✓

φs@th− 1

2
g(h−H0)

2 −
Z γh

0

1

2
|rφ|2dz

◆

dxe3⌫t/l
2

dt (11)

with Neumann conditions at the solid walls and end-point conditions δh(x, t0) =
δh(x, T ) = 0. Variation of (11) with respect to φ in the interior and the con-

jugate variables {h, φse
3⌫t/l2} at z = h yields (10). Principle (11) implies that

a modified potential energy emerges as

P (t)e3⌫t/l
2 ⌘

Z L

0

1

2
γg(h−H0)

2dxe3⌫t/l
2

, (12)

instead of P (t) for stronger damping. Even though the kinetic plus potential

energy times e3⌫t/l
2

is not conserved, P (t)e3⌫t/l
2

oscillates around a positive
mean value at later times. Due to the damping, the nonlinear system linearizes
at later times, with an energy that is quadratic. Expressed in new variables
φ̃s = φs exp

(

3⌫t/(2l2)
)

, φ̃ = φ exp
(

3⌫t/(2l2)
)

and η = (h−H0) exp
(

3νt/(2l2)
)

,
the variational principle (11) and energy no longer have any explicit time de-
pendence anymore in this long-time limit. A detailed and analogous analysis
for the damped nonlinear oscillator that motivated us is found in Gagarina et
al. [12].

A straightforward comparison is now made between the potential flow
model arising from (10) and an experiment. In the numerical model based
on (11) (cf. [10; 11]), we start at rest with a linearly slanted free surface with
angle α, see Fig. 4a. Instead, in the experiment we start with a tank at rest
lifted upward with an angle α, see Fig. 4b, and lower it down quickly to a
horizontal level such as to obtain, approximately, the still profile in Fig. 4a.
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Fig. 4 Initial conditions are shown for a) the simulations starting at rest with a tilted free
surface, and b) for the experiments starting at rest with a tilted tank but horizontal free
surface.

Fig. 5 Free surface profiles in the a) wave sloshing experiment and b) a simulation are
shown at different times for a tank or free surface initially titled at α = 4.6o. Time is
rearranged such that the first minimum in P (t) coincides for both experiment and simulation.

Snapshots of the free surface are displayed in Fig. 5 for both a) measurements
and b) simulations for times 0, 250, . . . , 2000ms. These compare reasonably
well, and in both cases a wave reflects off the right wall around times 250 and
500ms. The small phase difference is removed by shifting the time profiles of
ρP (t) and ρP (t) exp (3νt/l2) such that the first zero crossings are lined up.
For five values of α, these results are shown in Fig. 6, where we aligned all
cases with the first zero crossing at t = 0. For the larger angles α = 6.1o

and α = 6.5o, our experimental approximation at the start is less satisfactory,
but for the other angles the match between the simulations (thin lines) and
experiments (thick noisy lines) is good for about one second or period. Within
two seconds, most energy has dissipated, but after one second, the compari-
son with the model is less good, see Fig. 6b. This discrepancy is presumably
due to the neglected three-dimensionality of the profile near the free-surface
boundary layer in combination with effects of surface tension. In summary, we
argue that for the driven flows investigated later, concerning scales much larger
than the gap width, linear momentum damping is a good leading-order model
approximation because new, long waves keep coming in. The modelling of the
fine-structure in breaking waves may require resolution of three-dimensional
free-surface boundary layers (cf. [30] in a related yet different free-surface prob-
lem on Faraday waves), the inclusion of other flow profiles, and damping of
the contact line [31] at the water-air-glass interface. In a Hele-Shaw problem
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on Kelvin-Helmholtz instability, Plouraboué and Hinch [24] show that the ve-
locity profiles start to deviate strongly from the parabolic profile for Reynolds
numbers of 10 to 30. As inertial effects become more dominant, it is clear that
more degrees of freedom in the lateral direction are required.
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Fig. 6 Potential energies (per unit width) a) ρP (t), and b) ρP (t) exp (3νt/l2), versus time
t. Profiles for different initial angles α = 4.0o, 4.2o, 5.4o, 6.1o, 6.5o are shown for the model
simulations (thin lines) and the laboratory experiments (thick, jagged lines).

5 Breaking Waves

Four types of breaking waves are described in the literature [13; 23]: spilling,
plunging, collapsing and surging breakers, see Table 2. These breaker types
can be categorized based on the Iribarren number [3], i.e.,

Ib = tanα/
p

Hb/Lb = Tw tanα/
p

2πHb/g (13)

with the wave period Tw, slope angle α, and breaker wave height Hb. The
wave length Lb = gT 2

w/(2π) is based on linear deep water waves, which does
seem striking for the shallow water waves considered. At real-world beaches
the ordering from spilling, plunging to collapsing to surging breakers is roughly
as follows: Ib < 0.4, 0.4 < Ib < 2.0, 2.0 < Ib < 3.3, and Ib > 3.3, respectively.
Qualitatively, this ordering ranges from steep waves on mild slopes for spilling
breakers, to shallow waves on steep slopes for surging breakers. The question
is how these wave breakers and corresponding Iribarren numbers on real world
beaches relate to those observed on Hele-Shaw beaches.

Two series of experiments will be analysed, one in the first 0.6m long Hele-
Shaw tank with zeolite particles, and one in the 0.96m tank with glass beads.
In both experimental series, all four wave types are to a greater or lesser extent
observed, with evidence for the collapsing breaker being the weakest.

In the second series of breaking wave experiments, the experimental pro-
cedure is as follows. The values of H0 and fwm were varied per experiment.
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Fig. 7 Top to bottom: still images from spilling, plunging, collapsing and surging breakers
(colour enhanced and reversed horizontally for consistency). First series.
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Type Description Occurrence in cell
Spilling Bubble-rich water appears at wave

crest, spills down front face, sometimes
proceeded by projected small jet

In our case bubbles collect at
the face, no new bubbles are
generated

Plunging Most of wave’s front face overturns and
a prominent jet falls near the base of
the wave, causing a large splash

Yes

Collapsing Lower portion of front face overturns
and behaves like a truncated breaker

The bottom part of the breaker
protrudes, but does not plunge

Surging No significant disturbance of the
smooth wave profile occurs except near
the moving shoreline

Yes

Table 2 Definition of the four wave breakers in the real world versus breakers in the
Hele-Shaw set-up.

In contrast to the first series, the beach was manually reordered by trial and
error into a shape favouring each type of breaker. The phenomenology for each
wave breaker will be discussed in the following four paragraphs, see Fig. 7 and
Table 2.

Spilling: In the Hele-Shaw cell, the spilling breaker is characterised by pre-
existing bubbles accumulating on the crest of the wave. Every cycle, the front
face of the wave becomes almost vertical without full breaking. For real-world
breakers, white water appears at the wave crest, indicating the presence of
many small bubbles, and spills down the front face, sometimes preceded by
the projection of a small jet. In contrast, neither bubbles creation is observed
at the interface when it is almost vertical, nor the creation of small jets.

Plunging: Snapshots of a plunging breaker are shown in Fig. 8. The wave
front overturns (second image) creating a jet near the base of the wave (third
image), which leads to a large splash (third and fourth image). The latter
splash entrains air that creates a bubble, rising to the surface (sixth image).
The dynamics in the set-up is a miniature version of a real-word plunging
breaker.

Collapsing: Free surface profiles of a typical collapsing breaker are shown
in Fig. 9. This breaker is characterised by splitting of the wave face into an
arrested upper part and protruded lower part, which occurs at times 75 to
125ms. We notice that the wave front is almost vertical just before the collapse
at around 50ms. The upper part of the wave is seen to move forward, and
upward to a certain point, after which its horizontal position remains nearly
constant. This may be caused by the two contact lines of the breaker at the
glass surfaces. Although the collapsing breaker does show truncation of the
practically vertical front face, the lower portion has not been observed to
plunge, in contrast to collapsing breakers in the real-world.

Surging: The behaviour of a typical surging breaker observed on the Hele-
Shaw beach is shown in Fig. 10. Hardly anything happens till the wave reaches
the shore at about 150ms. Then it suddenly overturns and runs up the shore
from 150 to 300ms, reaches its highest point, after which point it recedes back
(not shown). This surging breaker transports a lot of particulate matter in the
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Fig. 8 A sequence of images shows the evolution of a Hele-Shaw plunging breaker (colour
enhanced). Top to bottom: t = 0, 100, 150, 200, 250, 350ms. Initial water level H0 = (98 ±

1)mm. Wave-maker frequency fwm = 1.1Hz. Second series.

shallow water near the shore. The description of a surging breaker at real-world
beaches corresponds well with our observations.

5.1 Iribarren Number

Wave breaking in the first experimental series was filmed with a standard
video camera recording at 50fps during various stages of beach formation,
using the horizontally moving wave-maker. In contrast to the second series,
the bottom slope comprised of the zeolite or Gamma Alumina particles evolved
naturally due to the action of the waves. A manual determination using an
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Fig. 9 Free surface profiles for a collapsing breaker. Lines are spaced 25ms apart, denoted
in green at early and red at later stages. fwm = 0.9Hz. H0 = 95± 1mm.

Fig. 10 Waterfall plots are shown for a surging breaker, each 50ms apart. Orange lines
indicate the beach location. H0 = 95± 1mm. fwm = 0.90Hz. No surfactant is added.

onscreen ruler and protractor of the wave height H (trough to crest) and a
mean bottom slope α near wave breaking reveals the following1. A definite
beach slope is difficult to define clearly in the zone where the wave breaks or
starts to break. The corresponding estimated values α = 22, 27, 29, 26o of the
beach slope from surging, collapsing, plunging to spilling breakers, respectively,
are therefore prone to contain larger errors. The maximum wave heights Hb =
4.2, 4.0, 3.8, 6.0cm estimated are more accurate, as are the wave periods T =
1.1, 0.8, 0.8 and 0.8s, respectively. Rough estimates of the resulting Iribarren
numbers are Ib = 1.9, Ib = 1.7, Ib = 1.6 and Ib = 0.8 for surging, collapsing,
plunging and spilling breakers.

1 Source file golfbakonno2.avi contains surging, collapsing, plunging and spilling breakers
at 8, 133, 115 and 63s, respectively.
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All four types of breakers are observed on the Hele-Shaw beach. They lead
to a net particle transport and therefore evolution of the bathymetry. The
time scale of this evolution is longer, on the order of minutes to an hour,
than the time scale of the waves, which are on the order of one half to one-
and-a half second. As expected, changes in the bathymetry have a strong
effect on the wave dynamics, often leading to a change of breaker type. It is
clear from the still photos shown in Fig. 7 that the bathymetry is different
for each wave breaker. For the second series, it was not possible to extract
the bottom profiles and extract the respective Iribarren numbers, due to the
nature the measurements were set up. We observe that: (i) the surging breaker
occurs on a beach with two distinct angles; (ii) the collapsing breaker occurs
in a beach with a submerged sand-bar (the small elevation under the vertical
section of the wave profile); (iii) the plunging breaker is generated over a steep
shallow section of the beach, whereas (iv) the spilling breaker rolls over a
gently rising bathymetry. Note that these qualifications correspond roughly to
to real-world situations, in which surging breakers are often long, low waves
over steep bathymetry, while spilling breakers concern steep waves over mildly
sloping bathymetry.

Broadly speaking, the plunging breaker transports a great deal of mate-
rial onto the steep section of the beach; the collapsing breaker moves material
from the apex of the submerged sand bar onshore; the spilling breaker is mov-
ing material all along the length of the bathymetry; and, finally, the surging
breaker is moving material at the break in the bathymetric slope. The trend
seems to be that most material is entrained by the wave when the depth is
shallow and at locations where there is a change in shape of the bathymetry.
The estimated Iribarren numbers are smaller than in nature but their ordering
is appropriate.

6 Quasi-Steady Beach Morphologies

Our next step is to demonstrate systematically how beaches and berms in the
Hele-Shaw cell are formed by breaking waves. In total 80 measurements were
performed to cover the parameter space spanned by wave-maker frequency
fwm 2 [0.7, 1.3]Hz, and the initially quiescent bed and water levels B0 2
[5, 8]cm and W0 = H0 − B0 2 [1, 8]cm. All measurements were performed in
a semi-random order. This ensured that unforeseen variations of parameters
not varied purposely, did not coincide with a gradual variation of the three
parameters we did vary systematically. Since adding and removing particles to
and from the tank is a slow process, mainly due to the porosity of the Gamma
Alumina particles, measurements for each beach height B0 were performed
successively. The results obtained are reproducible for two reasons: the phase
diagram presented below shows a coherence that would otherwise be absent,
and a total of five measurements was successfully repeated.

Quasi-steady state beach morphologies emerge on a timescale of minutes to
an hour. On this timescale, the type of wave motion and wave breaking adjusts
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to the changing bed forms. Initially the bed is flat, except near the wedge, and
waves may not break. Once the water depth becomes shallower, wave breaking
either sets in or becomes more pronounced. In most cases, particles of the bed
keep moving during the monochromatic wave cycles, so the beach morphology
remains quasi-steady. The experiments are terminated when the state is judged
to be quasi-steady and an automated analysis is performed a posteriori.

This analysis, undertaken to establish whether the bed morphology is
quasi-steady, is as follows. The difference between the initial state and an
evolved state consists of a negative area of moved sediment and a positive
area of deposited sediment. These areas differ because the deposited area is
more compact by a few percent. An effective distance travelled by the sedi-
ment is represented by the distance between the centres of mass of these areas.
This distance evolves over time. The bed state is now described by the cubical
transport as the product of the (negative) sediment area times the effective
distance the sediment travelled. The time derivative thereof yields a cubical
transport rate, for which the wave-maker period Tper is used as the relevant
time unit. Finally, a bed is quasi-steady when this cubical transport rate falls
below a threshold of 100mm3/Tper. That rate corresponds roughly with three
bed particles transported over a distance of 1cm per wave-maker period.

An overview of the observed quasi-steady bed morphologies is presented
in Fig. 11 and Table 3, with for each morphology the initial quiescent and
final quasi-steady state of the bed. Although the transition between these
morphologies is smooth, a mathematical classification is based on the minimum
and maximum extrema of the (averaged) quasi-steady bed profile b = b(x). A
quasi-steady state is deemed (partially) dry if at least one onshore bed particle
has dry parts. A swash zone emerges when the bed is alternately immersed and
falls dry when the waves run up and down the beach. Due to the interaction
with the dynamic bed, some waves are slightly higher than others, even in the
quasi-steady phase, such that an extra particle can be swung up the berm or
beach. This particle at the top is nearly always (partially) dry if it lies freely
at the summit unsupported by the wall. When there is a maximum, it is thus
either dry or immersed, in the interior or at the boundary. A berm or dune
has a dry interior maximum or island, with water on either side (Fig. 11(a)).
A dune-beach has a dry interior maximum with land on the onshore side
(Fig. 11b). A submerged bar has a wet interior maximum (Fig. 11(c)). A dry
or wet (immersed) beach is a state with a boundary maximum (Fig. 11(d,e)).
When nearly no transport occurs because the water is too shallow (or too deep
after the wedge), the state is quasi-static (Fig. 11(f)). Finally, in a suction
state too many particles disappear over the wedge due to the wave-maker
(Fig. 11(g)), with a flat quasi-static part onshore and an interior or boundary
minimum near the wedge. This interference inhibits the wave-maker and then
the experiment is terminated.

All quasi-steady bed morphologies in the experiment are displayed in Fig. 12
based on the classification outlined above. The evolution of these morphologies
is as follows.
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Fig. 11 Quasi-steady bed morphologies and corresponding initial states leading to a clas-
sification based on the extrema identified: a minimum or maximum in the interior or the
boundary of the bed. Red lines indicate initial bathymetries and blue lines initial water
levels. The states are: a) dune/berm and b) dune-beach (dry interior maxima) and c) sub-
merged bar (wet/immersed interior maximum); d) dry and wet beach (boundary maxima);
e) quasi-static; and, f) one of suction (interior or boundary minimum with onshore quasi-
static part).
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SBM Definition Quantification

dry beach beach on onshore side dry maximum at boundary/wall
immersed
beach

beach on onshore side wet maximum at boundary/wall

dune/berm island formation dry interior maximum, water on ei-
ther side

dune-beach dry beach with dune dry interior maximum with dry land
beyond

immersed bar no dry bed parts wet interior maximum
quasi-static sediment transport small wet state
suction particles sucked to wave-maker interior/boundary minimum with

largely quasi-static bed

Table 3 A classification is given of steady bed morphologies (SBMs) in the Hele-Shaw cell.
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Typical berm or dune formation starts with an initial heap of newly-
transported sediment that is formed just behind the wedge (Fig. 13a)). Sub-
sequently, this particle mass starts moving towards the shore and grows, until
at some point it breaks through the free surface. Because the water depth is
shallow, it induces sufficiently heavy wave breaking, with corresponding dissi-
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a) b)

c) d)

Fig. 13 The formation of a quasi-steady: a) berm or dune B0 = 60mm, W0 = 10mm,
fwm = 0.7Hz; b) dune-beach B0 = 70mm, W0 = 30mm, fwm = 0.9Hz; c) bar B0 = 80mm,
W0 = 30mm, fwm = 1.1Hz; and, d) beach B0 = 60mm, W0 = 50mm, fwm = 1.0Hz.

pation of energy, that further onshore sediment transport is arrested. A berm
or dune is formed with wave breaking on its active shore and a calm lake on
the other side. Due to the porous structure of the bed, the water level of the
lake moves slightly up and down.

Beaches form when the initial water level is deeper (Fig. 13d)). The particle
accumulation generated early in the evolution travels to the wall, and keeps
growing until a maximum, stable beach angle is reached. Sometimes, the water
layer is shallow enough for the beach to emerge from the water, constituting
a (partially) dry beach. When the water layer is too deep, the beach stays
submerged and wet, because there are insufficient particles available to form
a stable dry beach.

A dune-beach appears as a transitional form between the beach and dune
regions of the parameter space. The bed evolves like the dry beach case, but
once it reaches the water surface it switches to a dune-like evolution, giving
a rising bed on the onshore side, leading to the formation of a sharp cliff
(Fig. 13b).

Suction states are clearly grouped in the part of parameter space where the
frequency is high and the water depth is low. During suction, strong offshore
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Fig. 14 Dune evolution is displayed as a three-dimensional space-time landscape. B0 =
60mm.

sediment transport occurs. Hence, the suction part of parameter space is sep-
arated from beach and dune states by the quasi-static and bar morphologies.

6.1 Bed Activity and Beach Angles

The free water layer depth, W0, proves to be the most dominant parameter to
determine the type of steady bed morphology. Dunes are observed at shallow
water depths W0 = 1cm, beaches at larger depths of about W0 = 5cm, and
hybrid dune-beaches at intermediate water layer depths of W0 = 3cm. Bed
dynamics is further determined by fwm and B0. When the initial bed height
B0 = 5cm, enough sediment is transported to form beaches in only a few
cases, while no dunes or dune-beaches are observed. Suction only occurs in
one case. For larger values of B0, dunes and dune-beaches are formed and
more beaches are created, but more instances of suction also occur. Hence,
bed activity increases with increasing B0. We note that the height 5cm of the
fixed wedge between wave-maker and bed correlates with the most pronounced
jump in bed activity. Concerning the wave-maker frequency, especially the
measurements with B0 = 5 and 7 cm suggest a slight optimum in bed transport
for fwm ⇡ 0.9Hz. We note that the observed bed morphologies are quite
reproducible: the phase diagram in Fig. 12 is coherent. It is clear that beaches,
both immersed and dry, are formed when the waves can reach the end of the
Hele-Shaw cell without dissipating their wave energy beforehand.

The net particle transport is largest for the berm, beach and bar states.
Based on inspection of the wave dynamics, the following is observed. Roughly
speaking, two types of particle dynamics can be distinguished, both appar-
ent in the transient phase towards the quasi-steady states and in these states.
Rolling and shearing motion of a few layers of particles occurs during wave
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motion under a single-valued, gently sloping free surface. Upslope motion ap-
pears to lead to more porous dynamic layers than downslope motion. When
the free surface is steeper or breaking, particles bounce and saltate in the wa-
ter column, during vigorous wave breaking occasionally across the entire water
column. For surging breakers this happens only near the water line in the swash
zone. The net transient or quasi-steady particle transport is a culmination or
continuation of this particle dynamics over many wave periods. How do these
observations relate to research on granular avalanches in fluids, and especially
in Hele-Shaw cells? Courrech du Pont et al. [7] investigate liquid-immersed
granular avalanches as function of Stokes number St and grain/fluid density
ratio r2. The Stokes number measures the grain inertia over viscous effects. It
is defined as St =

p

(ρs∆ρg sin θ)d3/2/(νρ018
p
2) with effective grain density

ρs ⇡ 1500kg/m3 (see Table 1), ∆ρ = ρs−ρ0 and slope θ. Hence, St ⇡ 5.0±0.5
for three estimates θ = 20o, 25o, 30o of slopes in our experiment. Cf. [7], the
difference between the angle of repose βr and critical angle βc is one to two
degrees with βr = 24o for low St < 10. Given the results in [7] and the values
of r =

p

ρs/ρ0 and St, our system straddles the boundary of the viscous and
inertial regimes, in which the particles either reach the Stokes velocity or the
inertial velocity, respectively. The Stokes velocity in our Hele-Shaw system is
0.75∆ρgd2 sin θ/(18νρ0) ⇡ 0.6m/s with the adjustment factor 0.75 from Lee et
al. [19] for the current Hele-Shaw cell of width 1.14d. (Wall effects are avoided
in Courrech du Pont et al. [7] because the tank width is larger than 15d.) In
contrast, Doppler et al. [8] investigate granular avalanches in still fluids and
upward water flow in a Hele-Shaw cell of width ⇠ 15d and 5d. Their continuum
models of the equilibrium flow quite succesfully predict the avalanche dynam-
ics using the shear stress with inertial number, the driving gravity force, side
wall friction, and extra fluid forces due to the water flow. Porosity is taken
constant at 0.55 and the thickness of the active particle layers is calculated
as part of the problem. Such an approach could be a fruitful starting point
for modelling the benign phases of the particle dynamics in our experiment
under the assumption of slow variations and local equilibirum flow. This ap-
proach can, however, probably not capture particle dynamics observed under
breaking waves and in the swash zone, and also the observable variations in
porosity under smooth wave motion are required. Doppler et al. [8] note that
upward flow tends to increase the pile stability while downward water flow
tends to decrease it. Albert et al. [1] also consider avalanching of (partially)
wet particles with liquid bridges. The slope angles they find are smaller than
those observed in the previous two studies, (perhaps due to wall effects) but
increase due to cohesive forces caused by liquid bridges. Completely immersed
slopes are thus less stable than slopes in the swash zone which are alternat-
ingly immersed and dry. Beach slopes in the swash zone are therefore steeper
than the fully immersed slopes of the beach. This difference in stability is used
in coastal engineering models [27]. We also observe this in the Hele-Shaw cell:
the slope in the dune-beach in Fig. 13b) clearly increases suddenly at the foot
of the cliff that appears to mark the start of the swash zone. While this is less
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visible in Fig. 13a), a sudden change of slopes between wet beach and cliff is
clearly visible for t > 20min in another berm case displayed in Fig. 14.

7 Conclusions and Discussion

We presented the mathematical design of a Hele-Shaw cell for the study of bed
dynamics by breaking waves. The design shows that damping can be controlled
by calculating the gap width of the cell such that driven nonlinear wave motion
survives across the tank, while greatly reducing the effects of turbulence and
yielding very tractable dynamics.

We showed that all types of real-world wave breakers were also observed on
the Hele-Shaw beaches, albeit in idealized forms due to the effects of surface
tension. Iribarren numbers were roughly estimated from one of the measure-
ment series, showing the right ordering but other (smaller) values than found
on real-world beaches. Finally, a comprehensive parameter study of quasi-
steady bed morphologies revealed definite trends in the parameters varied:
the levels of the initially flat bed and water at-rest, together with the wave-
maker frequency. We could thus identify distinct states at longer times in the
bed evolution, such as berms/dunes and beach-dunes, dry and immersed/wet
beaches, and bars.

More work is required to relate wave breaking to the bed shape underneath,
and to the Iribarren number. Further investigation to assess the role of the
wedge (used for technical reasons in the present study), the role of the length
and width of the tank, and the role of the wave-maker is also desirable. A
more elaborate video capturing system, such that the fast wave motion can
(intermittently) be recorded alongside the recording of the natural long-time
bed evolution, would be of value.

There are numerous and sensible variations to be made on the laboratory
work. These include study of Hele-Shaw beach dynamics under a systematic
increase of the gap width to a few particle diameters, and varying the material
properties, such as particle properties (size, shape, and density), liquid prop-
erties (alcohol-water mixtures), and the effects of glass coatings (to reduce
contact line effects).

We presented two preliminary models to enable and assess the mathemat-
ical design. Further research is required to extend these models to include the
multiphase dynamics observed in the Hele-Shaw cell, in a more or less detailed
or averaged manner. The advantage of the Hele-Shaw configuration remains
that the quasi-two-dimensional nature of the set-up in principle allows the for-
mulation, study and experimental validation of a hierarchy of models. These
can range from the Navier-Stokes equations with explicit particle dynamics
for brute-force calculations, to multiphase continuum models and their wave-,
width- and depth-averaged versions. Finally, our Hele-Shaw methodology ap-
pears useful for benchmarking current wave and sediment forecast models used
in coastal engineering [22].
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Our beach profiles are remarkably similar to those found in Powell’s report
[25] for shingle beaches in a 42 ⇥ 1.5 ⇥ 1.4m3 wave tank. The difference is
that our mean slope is with circa 1 : 3 about two times steeper than the one
in Powell [25]. This could possibly be attributed to the greatly diminished
long wave reflections caused by the side wall friction. Akin to shingle beaches,
beach porosity and porous flow play a visible role in our set-up. We studied
the building of berms and beaches from nearly flat ground states. This seems
to contrast with (most) larger scale laboratory and numerical studies in which
the bed dynamics and total bed transport from the onset lie closer to the
equilibrium profiles [32]. A comparison between models and data of Hele-
Shaw beach experiments could therefore potentially cover a broader range of
bed evolution by breaking waves.
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