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Doubly diffusive convection in a three-dimensional horizontally extended domain
with a square cross section in the vertical is considered. The fluid motion is driven
by horizontal temperature and concentration differences in the transverse direction.
When the buoyancy ratio N =−1 and the Rayleigh number is increased the conduction
state loses stability to a subcritical, almost two-dimensional roll structure localized
in the longitudinal direction. This structure exhibits abrupt growth in length near
a particular value of the Rayleigh number but does not snake. Prior to this filling
transition the structure becomes unstable to a secondary twist instability generating a
pair of stationary, spatially localized zigzag states. In contrast to the primary branch
these states snake as they grow in extent and eventually fill the whole domain. The
origin of the twist instability and the properties of the resulting localized structures
are investigated for both periodic and no-slip boundary conditions in the extended
direction. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4826978]

I. INTRODUCTION

The term doubly diffusive is used to refer to fluid systems where two competing fields diffuse
at different rates. As examples we mention the three-component fluid mixture studied by Welander1

and two-component convection in a horizontal layer with competing temperature and concentration
fields driven by imposed temperature and concentration differences.2 In such configurations doubly
diffusive effects may generate instabilities even when the mixture is stably stratified. When the
temperature is stabilizing (i.e., a hot fluid overlies a cold fluid) while the concentration is destabilizing
(i.e., the heavier component overlies the lighter one) the instability leads to a fingering instability in
which the sinking (respectively, rising) fingers carry the heavier (respectively, lighter) component
of the mixture. This instability plays an important role in ocean dynamics, particularly in equatorial
regions,3, 4 as well as in astrophysics.5, 6 On the other hand, when the concentration is stabilizing
while the temperature gradient is destabilizing, oscillatory or overstable dynamics are typically
observed, and these may lead to the formation of well-mixed diffusive layers. This type of instability
is also found in astrophysics7 and in oceanography,8 albeit at higher latitudes. Doubly diffusive
instabilities with misaligned gradients are common in solidification processes9 and the case of
horizontal gradients is considered representative.10–12 In the oceans the presence of icebergs may
incline dramatically both the temperature and concentration gradients, a situation that may be
idealized in the form of a vertical interface between the cold and pure water of the iceberg and the
warm and salty water of the ocean.13 The flow that results is referred to as natural doubly diffusive
convection.

Doubly diffusive convection is known to exhibit a great variety of behavior. A number of stud-
ies have examined the standing and traveling waves characteristic of the overstable regime and the
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FIG. 1. Bifurcation diagram based on Ref. 24 showing the L2 norm of stationary localized solutions u(x) of Eq. (1) in a
periodic domain of period 20π as a function of r when ν = 2. The localized structures are homoclinic orbits to the trivial
state u = 0 passing near a periodic state and lie on a pair of snaking branches.

associated chaotic oscillations.14–16 Recent work has focused on spatially localized convection first
observed by Ghorayeb and Mojtabi17 in natural doubly diffusive convection. Since then stationary
localized convection has been extensively studied in two-dimensional (2D) doubly diffusive con-
vection in a horizontal layer, both with Soret effect18–20 and without.21, 22 Solutions of this type,
hereafter referred to as convectons, may be viewed as homoclinic orbits in space connecting the
conduction state to itself and are associated with heteroclinic orbits or fronts connecting the con-
duction state to a periodic roll state and back again. These solutions have recently been computed
in natural three-dimensional (3D) doubly diffusive convection in a vertically extended cavity23 and
are accompanied by secondary instabilities leading to the twisting of some of the convection rolls,
an instability only allowed by the additional freedom provided by the third dimension. The present
paper examines the same system, but this time focusing on a horizontally extended cavity. The study
identifies both similarities and key differences between these two systems.

Localization phenomena are easier to apprehend using the cubic-quintic Swift–Hohenberg
(SH35) equation on the real line24

∂t u = ru − (1 + ∂2
xx )2u + νu3 − u5. (1)

Here u(x, t) is a scalar field, r is a bifurcation parameter, and ν is a real coefficient. With periodic
boundary conditions the equation is translation-invariant in x and spatially reversible with respect
to x → −x, u → ±u, and admits a trivial solution u ≡ 0. The equation has, moreover, variational
dynamics,

∂u

∂t
= −δF

δu
, (2)

with the free energy

F ≡ 1

L

∫ L

0

(
−1

2
ru2 + 1

2
[(1 + ∂2

xx )u]2 − 1

4
νu4 + 1

6
u6

)
dx, (3)

where L < ∞ is the imposed spatial period, implying that all solutions evolve towards stationary
states as t → ∞. The Swift–Hohenberg equation (1) contains homoclinic orbits to the trivial solution
u = 0 resembling those observed in doubly diffusive convection, i.e., consisting of a periodic roll
state embedded in a background homogeneous state. The localized solutions of the equation (like
those of the doubly diffusive problem) lie on a pair of intertwined branches corresponding to states
of even and odd parity. As one follows each branch the solution repeatedly adds new rolls at either
end, a process reflected in the “snaking” behavior of the two branches (Fig. 1), itself a consequence
of the pinning of the front connecting the trivial and periodic states to the periodic pattern behind it.
Details of this process are described in Refs. 25 and 26.



114102-3 Beaume, Knobloch, and Bergeon Phys. Fluids 25, 114102 (2013)

The symmetry u → −u plays an important role in the behavior of SH3524 and corresponds to
the reflection symmetry S� of the fluid equations as discussed below. To interpret the solutions of
SH35 in a fluid dynamical context the order parameter u is to be identified with the temperature
fluctuation or vertical velocity in the layer midplane.

The paper is organized as follows. In Sec. II we present the mathematical formulation of the
problem, followed in Sec. III by the results in the case of closed container boundary conditions.
Section IV reports on the differences observed when periodic boundary conditions are imposed in
the extended direction. The paper concludes with a brief discussion in Sec. V.

II. MATHEMATICAL FORMULATION

We consider a binary fluid placed within horizontal gradients of temperature and concentration.
These gradients are introduced via Dirichlet boundary conditions applied on opposite vertical walls
at y = 0, l. The rear wall at y = 0 is maintained at fixed temperature T∗ = Tr and concentration in the
heavier component C∗ = Cr while the front wall at y = l is maintained at temperature T∗ = Tr + �T
and concentration C∗ = Cr + �C, with �T > 0 and �C > 0. We nondimensionalize the equations
using l for lengths, �T for the temperature, �C for the concentration, and l2/κ for the time, where
l2 is the area of the square cross-section and κ is the thermal diffusivity. Cross-diffusion effects are
neglected. The Boussinesq approximation allows us to expand the fluid density about the reference
values Tr and Cr,

ρ(T ∗, C∗) = ρ0 + ρT (T ∗ − Tr ) + ρC (C∗ − Cr ), (4)

where ρ0 is the fluid density at the reference temperature Tr and concentration Cr, and
ρT < 0 and ρC > 0 denote the thermal and solutal “expansion” coefficients at Tr and Cr. De-
partures of the temperature and concentration from Tr and Cr generate buoyancy forces given by
FT = −ρT g(T ∗ − Tr )ẑ and FC = −ρC g(C∗ − Cr )ẑ, respectively. Here g is the gravitational ac-
celeration and ẑ denotes the unit vector in the vertical direction. We define the buoyancy ratio N,
quantifying the ratio of the two contributions to the buoyancy force, according to

N = ρC�C

ρT �T
. (5)

In the following we restrict our attention to the case N = −1, for which the thermal and solutal
forces compete but balance. This assumption yields a system with a trivial solution in which the
fluid is motionless and the temperature and concentration fields are linear. For other values of N the
trivial state is replaced by a large scale convection flow.

We describe the system using the Navier–Stokes equation for an incompressible flow
u ≡ ux̂ + vŷ + wẑ coupled to equations describing advection and diffusion of the temperature
and concentration fields. The nondimensionalized equations read

Pr−1[∂t u + (u · ∇)u] = −∇ p + Ra(T − C)ẑ + ∇2u, (6)

∇ · u = 0, (7)

∂t T + (u · ∇)T = ∇2T, (8)

∂t C + (u · ∇)C = τ∇2C, (9)

where p is the pressure and we have written T = (T∗ − Tr)/�T, C = (C∗ − Cr)/�C. Owing to
our choice of nondimensionalization, three nondimensional parameters are introduced, namely, the
Rayleigh number Ra, the Prandtl number Pr, and the (inverse) Lewis number τ :

Ra = g|ρT |�T l3

νκ
, Pr = ν

κ
, τ = D

κ
, (10)

where ν is the kinematic viscosity and D is the concentration diffusivity.



114102-4 Beaume, Knobloch, and Bergeon Phys. Fluids 25, 114102 (2013)

FIG. 2. Sketch of the horizontally extended domain. The boundary conditions on the square cross-section are no-slip, with
no-flux conditions for the temperature and concentration on the z-walls, T = C = 0 at y = 0 (section represented in light gray)
and T = C = 1 at y = 1 (section represented in dark gray). The boundary conditions on the x-walls may be either periodic or
no-slip/no-flux.

The fluid is confined within a domain of square cross-section, extended in the x̂ direction as
sketched in Fig. 2, and subject to the boundary conditions

at y = 0 : u = v = w = T = C = 0, (11)

at y = 1 : u = v = w = T − 1 = C − 1 = 0, (12)

at z = {0, 1} : u = v = w = ∂zT = ∂zC = 0. (13)

We use two sets of boundary conditions at x = 0, L, where L � 1 is the nondimensional length
of the enclosure in the horizontal direction, closed container boundary conditions (CCBC),

at x = {0, L} : u = v = w = ∂x T = ∂x C = 0, (14)

and periodic boundary conditions (PBC) at x = 0, L. In both cases, Eqs. (6)–(9) with the corresponding
boundary conditions admit a conduction solution (u, v, w, T, C) = (0, 0, 0, y, y). The symmetry
properties of the flow that results from the loss of stability of this state are found by setting 	 = T
− y and 
 = C − y. Since the buoyancy force lies in the vertical direction the system is equivariant
under the following reflections:

Sx : (x, y, z) → (L − x, y, z), (u, v, w,	,
) → (−u, v, w,	,
), (15)

S� : (x, y, z) → (x, 1 − y, 1 − z), (u, v, w,	,
) → −(−u, v, w,	,
). (16)

It follows that with closed container boundary conditions, the equations are D2-equivariant,27 with
D2 = {I, Sx , S�, Sc}, where I is the identity operator and Sc = Sx ◦ S� = S� ◦ Sx represents
centro-symmetry. With periodic boundary conditions, the system is also equivariant with respect to
continuous translations Tx in x modulo the period L. The system is now equivariant with respect
to a different symmetry group: O(2) × Z2, where O(2) = {I, Sx , Tx } and Z2 = {I, S�}.27 The
consequences of this change in symmetry are substantial and are discussed below.

The equations are solved for the same parameters as used in Ref. 23, viz., Pr = 1 and τ = 1/11. To
allow localized solutions to develop in the domain we choose a large aspect ratio domain, L = 21. We
compute bifurcation diagrams by finding stationary solutions of Eqs. (6)–(9) with the corresponding
boundary conditions using a continuation method based on a Newton solver as described in Mamun
and Tuckerman.28, 29 The time-stepping scheme used is described in Karniadakis et al.30 and the
spatial discretisation employs a spectral element method. Further details of the numerical method
can be found in Ref. 31. The calculations are carried out using 21 spectral elements each with
13 × 17 × 17 Gauss–Lobatto–Legendre nodes.

III. CLOSED CONTAINER

We now describe the bifurcation scenario obtained with closed container boundary conditions.
Owing to the confinement in the vertical direction, the first instability cannot develop as easily as in
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FIG. 3. Bifurcation diagram for CCBC showing the vicinity of the primary bifurcation from the conduction state,
Ra ≈ 1719, in terms of the kinetic energy E as a function of the Rayleigh number Ra. The bifurcation is transcritical
and generates two branches of solutions. Of these, the subcritical branch L0 contains localized states while the supercritical
branch consists of spatially extended states. The left (Ra ≈ 1649) and right (Ra ≈ 1771) panels show, respectively, the
isovalues of the vertical velocity w in the central cross-section on the subcritical and supercritical parts of the L0 branch, dark
(light) shading indicating positive (negative) velocity.

vertically extended domains.32 Thus the first bifurcation from the conduction state occurs at a larger
Rayleigh number, Ra ≈ 1719, a value similar to the 2D result Ra ≈ 1717.24.33 This bifurcation,
shown in Fig. 3, is transcritical and generates the (subcritical) branch L0 of localized solutions shown
in Fig. 4(a). Snapshots taken along L0 are shown in Fig. 5. The figure shows that the growth of the
instability leads to a single roll localized at the center of the domain. The no-slip boundary conditions
suppress the growth near x = 0, L and the resulting modulation increases rapidly with decreasing Ra
leading to a strongly localized state by the time Ra reaches Ra ≈ 746. By this point, the amplitude
of the convection has reached saturation and the structure begins to lengthen again. As a result, its
energy undergoes a rapid increase but no snaking takes place. This is because the structure between
the fronts on either side is spatially homogeneous – fronts cannot pin to a homogeneous state. Once
the structure almost fills the enclosure the growth phase terminates and the branch turns towards
larger values of Ra. Thus the localized states turn continuously into a spatially extended structure
of almost uniform amplitude except for the vicinity of the endwalls at x = 0, L. As described
by Mercader et al.18 this is a consequence of the no-slip boundary conditions imposed at the end
walls.

Supercritical secondary instabilities occur along the lower part of L0 at Ra ≈ 1224 and
Ra ≈ 1226 (bifurcations not shown). The marginal modes responsible for these instabilities both
break S� and hence create pitchforks. The resulting branches are labeled L−

0 and L+
0 in Fig. 4(b).

The former branch breaks Sc but remains Sx-symmetric while the latter breaks Sx but preserves Sc.
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FIG. 4. Bifurcation diagrams for CCBC showing the kinetic energy E as a function of the Rayleigh number Ra for (a) the
L0 branch and (b) the secondary branches L−

0 and L+
0 that bifurcate from L0 at Ra ≈ 1224 and Ra ≈ 1226, respectively.
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FIG. 5. Snapshots of localized states on the L0 branch. From bottom to top: representation of the marginal eigenmode and
of the solution at Ra ≈ 752, followed by the solutions at each of the three saddle-nodes, ending with the solution at Ra ≈ 851
along the upper part of the branch. The flow is represented using two isovalues of the y velocity, v = ±V , with V chosen
appropriately (light indicates v = −V < 0 while dark indicates v = V > 0). A different value of V is used for the marginal
eigenmode in the lowest panel.

Both L−
0 and L+

0 undergo snaking between Ra ≈ 1363 and Ra ≈ 1374 before turning supercritical
and hence are similar to the secondary snaking branches described in Ref. 23. Figure 6 shows the L0

solution at bifurcation (lowest panels) followed by the solutions L∓
0 at successive saddle-nodes in the

snaking region. Since the secondary instability takes place on the lower part of the L0 branch the bi-
furcating solutions take the form of a strongly localized but weak convective structure. This structure
consists of a single roll with upflow near the y = 1 wall and downflow near y = 0. With increasing
Ra, this roll splits. Along L−

0 the upflow region splits into two upflow regions separated by a region
of weak upflow while the downflow region remains essentially unchanged. At the same time the u
velocity builds up inside the virtually two-dimensional convective structure while v oscillates in x
(compare the middle panel of Fig. 7 with Fig. 5). The combination of these effects twists the primary
roll around the vertical axis by a finite angle by the time the system reaches the first saddle-node
(Fig. 4(b)) as represented in the second panel from bottom in Fig. 6(a). Thereafter the structure
nucleates twisted rolls on either side in the usual fashion and the structure grows until the enclosure
is filled (Fig. 6(a)). Thus all L−

0 states contain an even number of twisted rolls (Fig. 7) and the growth
of the structure is associated with front pinning and hence snaking. During this growth process the
axes of the cells remain horizontal but rotate about the vertical axis and this rotation alternates
from one roll to the next, generating a zigzag array of convection cells. Figure 7 reveals the twisted
character of the L−

0 solution in terms of the three velocity fields u, v, and w.
In contrast, the break-up process along the L+

0 branch leads instead to states with an odd number
of convection cells (Fig. 6(b)) but with a similar zigzag structure. Once the enclosure is filled (this
occurs with 18 cells on L−

0 and 17 cells on L+
0 ) both branches exit the snaking region and transform

continuously into larger amplitude branches of almost periodic states. However, all of these states
have very small energy relative to the corresponding states on the upper part of the L0 branch. Both
L−

0 and L+
0 branches are unstable.
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(a) (b)

FIG. 6. Snapshots of the localized states lying on (a) the L−
0 branch and (b) the L+

0 branch. From bottom to top: representation
of the solution at the branching point on L0 followed by the solutions at each subsequent saddle-node along the branch and
ending with a solution taken on the upper part of the snaking branch at Ra ≈ 1380. The flow is represented by two isovalues
of the z velocity, w = ±W , with W chosen appropriately (light indicates w = −W < 0 while dark indicates w = W > 0).

IV. PERIODIC DOMAIN

It is of interest to compare the above results with the corresponding results for periodic boundary
conditions in the x̂ direction. The change in the boundary condition preserves the conduction solution
but the corresponding primary instability now creates a strictly two-dimensional convection roll that
is invariant in the x̂ direction. This Tx-invariant solution does not break any of the symmetries of the
system and is, therefore, created through a transcritical bifurcation at Ra ≈ 1716.2. The bifurcation
generates a stable supercritical branch and a once unstable subcritical branch. We focus here on the
latter.

Figure 8 represents the bifurcation diagram for the subcritical branch and compares it to the
results from Sec. III. The subcritical branch of x-invariant states, called Hx, turns around at a saddle-
node at Ra ≈ 676 before extending to large energy at high Rayleigh numbers. Along this branch, a
Tx-breaking bifurcation occurs at small amplitude creating a branch Lx

0 of spatially modulated states.
As one moves away from the bifurcation point, the modulation strengthens, forming a pair of fronts
that localize the solution in space. The branch Lx

0 follows the same evolution as its analogue L0 in the
closed container case, growing in energy in the vicinity of Ra ≈ 746 (Fig. 8). At the lower end the
solutions consist of a single roll localized in the center of the domain. This roll expands continuously

u

v

w

FIG. 7. An L−
0 solution at Ra = 1364 in terms of the three velocity fields u, v, and w. In each panel the representation

uses equal and opposite contour values, the light (dark) color indicating negative (positive) velocity. For this solution the
maximum values of u, v, and w are umax ≈ 0.40, vmax ≈ 0.23, and wmax ≈ 0.62.
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FIG. 8. (a) Bifurcation diagram representing the kinetic energy E as a function of the Rayleigh number Ra along branch L0

(dashed line) for a closed container, and Hx and Lx
0 (solid lines) for a periodic container. The branch Hx bifurcates from the

conduction solution E = 0 and consists of solutions invariant in the x direction. The branch Lx
0 of localized states bifurcates

from Hx and is similar to the branch L0 in the closed container, but unlike L0 it terminates on Hx close to its saddle-node
instead of extending towards higher Rayleigh numbers. (b) From bottom to top: snapshot along Hx at Ra ≈ 1485 (lower part
of H x

0 ), at Ra ≈ 1462 (upper part of Hx) and along Lx
0 at Ra ≈ 685. Left slices represent isovalues of the vertical velocity w

in the plane x = L/2 while the right snapshots represent isosurfaces of opposite values of the y-velocity (dark: v > 0, light:
v < 0).

in the x direction as the branch grows in energy, much as the corresponding solutions in Fig. 5. Near
the top of the branch, the roll state has expanded to fill the domain and subsequent evolution depends
on the boundary conditions at x = 0, L. With no-slip boundary conditions, defects are present at either
boundary (Fig. 5) and L0 turns towards larger Rayleigh numbers and larger amplitudes. In contrast,
with periodic boundary conditions no defects are created (after all, the domain is translation-invariant
in the x direction) and L0 instead turns towards smaller Rayleigh numbers and terminates on the
two-dimensional state Hx close to its saddle-node. This is as expected since it is known that a branch
of spatially modulated states bifurcates from folds of spatially homogeneous states.34

It is noteworthy that the branch Lx
0 follows L0 very closely during its abrupt growth phase, i.e.,

while the solutions remain localized away from the boundaries (Fig. 8). With PBC the first tertiary
bifurcations from Lx

0 are located at Ra ≈ 1218 (Lx−
0 ) and Ra ≈ 1220 (Lx+

0 ) and these create branches
Lx∓

0 of twisted rolls (Fig. 9(a)). Like the corresponding bifurcations from L0 (at Ra ≈ 1224 (L−
0 ) and

Ra ≈ 1226 (L+
0 )) these branches consist of Sx-symmetric (respectively, Sc-symmetric) solutions and

track closely the corresponding solutions L−
0 (respectively, L+

0 ) with no-slip boundary conditions.
Once again this is a consequence of the localized nature of these solutions. However, differences
appear once the solutions have grown to fill the domain, i.e., near the top of the snaking regime. At
this point, the branches Lx∓

0 of localized twisted states exit the snaking region but instead of turning
into large amplitude states like L∓

0 , they turn towards smaller Rayleigh numbers and terminate
together at Ra ≈ 1269 on a new branch of spatially periodic states referred to as Px (Fig. 9(b)). These
states take the form of a zigzag array of 20 twisted rolls within the domain (Fig. 10) and bifurcate
from the branch of x-invariant states Hx at Ra ≈ 1211. This bifurcation breaks the x-invariance of the
solution by twisting the roll around the vertical axis and is a subcritical pitchfork of revolution since
it bifurcates backwards relative to the direction of increasing instability. The twist oscillates with x
with a wavelength determined by the instability, resulting in an array of 20 rolls, each twisted in the
opposite sense from its neighbors. The termination of the Lx∓

0 branches on Px corresponds to a local



114102-9 Beaume, Knobloch, and Bergeon Phys. Fluids 25, 114102 (2013)

0

 0.2

 0.4

 0.6

 1320  1340  1360  1380  1400  1420
0

 0.2

 0.4

 0.6

 1150  1200  1250  1300  1350  1400

L±
0

Lx±
0

Lx
0

Hx

P x

Lx±
0

(a) (b)

E

Ra

E

Ra
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0 .

bifurcation of the Px state leading to spatial modulation of the Px state on the scale of the domain
and agrees with the results of linear stability analysis of the Px state, viz., Ra ≈ 1269. However, the
Px state is unstable on either side of this termination point, owing to the presence of other unstable
eigenvalues.

V. DISCUSSION

We have computed in this paper two new types of convectons in natural doubly diffusive
convection. These solutions are present in a horizontally extended domain with a square cross-section
driven by imposed temperature and concentration differences in the horizontal. The first type is a
localized, almost two-dimensional structure bounded by a pair of fronts connecting the structure to
the conduction state, resembling a two-dimensional roll state with axis along the extended direction.
Since both states are spatially homogeneous in the extended direction no front pinning takes place
and snaking is, therefore, absent. States of this type expand abruptly in the extended direction near a
special point in parameter space corresponding to the formation of a pair of heteroclinic connections
between two different fixed points in a spatial dynamics view of the system.26 This point, variously
referred to as the nonsnaking35 or protosnaking36 point plays the role of a Maxwell point in systems,
like the Swift-Hohenberg equation (1), with gradient dynamics. If the spatial eigenvalues of one of
the fixed points are complex the resulting behavior may be termed collapsed snaking.37 Figure 11
shows an example of this type of behavior. The figure reveals the presence of a parameter value
at which the two coexisting homogeneous states have the same free energy F. As neither state is
associated with an intrinsic wavelength fronts between them can be placed in arbitrary positions
without changing the value of the functional F. Thus states of arbitrarily large size are all present at
a single value of the bifurcation parameter. The two-dimensional roll state computed here follows
the same behavior despite the absence of a free energy for the governing equations, and does so
until it reaches a size comparable to the domain size. When the boundaries are no-slip the localized

(b)

(a)

x

y

FIG. 10. Periodic solution Px at Ra ≈ 1600 consisting of a zigzag pattern of twisted rolls, visualized using two opposite
values of the z component of the velocity w. (a) A three-dimensional rendering. (b) Top view showing the twist from a better
angle.
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FIG. 11. Same as Fig. 1 but showing collapsed snaking in a 40π domain when ν = 3.75. The localized structures are fronts
connecting two distinct homogeneous states and lie on a branch that grows vertically as the nontrivial state u �= 0 invades the
domain.

state turns continuously into an extended domain-filling state with defect-like structure at the walls;
when periodic boundary conditions are used the defects are absent and the localized states instead
terminate on the branch of two-dimensional states. This is as expected since the no-slip boundaries
destroy the two-dimensional state.18, 20

The same process is repeated for the second type of convecton, the localized twisted states that
are produced in tertiary bifurcations from the two-dimensional localized states. Once again, with
no-slip boundary conditions the localized states change continuously into extended domain-filling
states once they reach the size of the domain, again with defects at the walls. In contrast, with periodic
boundary conditions these states instead turn towards smaller Rayleigh numbers and terminate on
a periodic state, this time the zigzag twisted roll state. Thus the main difference between these two
convecton types is the nonsnaking behavior of the first type and the snaking behavior of the second
type. Of course, the latter is the result of pinning of the fronts that bound the convecton to the spatial
structure in between and is a direct consequence of the twist instability – without a finite angle twist
no pinning would be present and no snaking would take place.

The presence of the tertiary twist instability should come as no surprise. Similar bifurcations
are present in a vertically extended domain23 and reflect the presence of a related three-dimensional
instability present in small domains with no-slip boundary conditions, as described in Ref. 31.
Figure 12 summarizes our results for periodic boundary conditions. The figure highlights an impor-
tant fact: the secondary twist bifurcation generating the periodic branch Px destabilizes the branch
Hx at lower Rayleigh numbers. As a result the Hx branch is (at least) three times unstable below this
bifurcation and since only two eigenvalues restabilize (one at the termination of Lx

0 and the other at
the fold) the Hx branch remains unstable to the twist mode even above the fold. In Ref. 31 this fact
was found to be responsible for the presence of temporal oscillations in a small aspect ratio domain
with no-slip boundaries everywhere. These oscillations may be chaotic and appear in the system as a
result of a global bifurcation. We have looked for similar behavior in the present system, using direct
numerical integration of the governing equations with periodic boundary conditions in the extended
dimension, but found none. We believe this to be the consequence of the small extent in the vertical
direction that constrains the dynamics and forces the solutions to evolve towards the stable solution
lying on the supercritical branch created at the primary instability. To our knowledge this is the
first example of a system exhibiting subcritical branches in which the trivial (conduction) solution
appears to be a global attractor all the way until the onset of the primary instability – although other
systems come close.38

There remains an important issue. As shown in Figs. 4(b) and 9(a) the tertiary snaking of the
twisted localized states in the PBC case coincides almost exactly with the secondary snaking with
no-slip boundary conditions. As already mentioned this is a consequence of the localization of the
structures away from the boundaries. However, the snaking structure is slightly inclined towards
lower Rayleigh numbers, and this inclination is the same for both sets of boundary conditions, thereby
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P x
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0
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0

FIG. 12. Sketch of the bifurcation scenario for periodic boundary conditions in the extended direction. A typical integral
quantity such as the kinetic energy is represented against the Rayleigh number. The bifurcation diagram has been stretched
for convenience and is not to scale. Representative solutions along Hx, Px, and Lx±

0 are shown in Figs. 8(b) and 10, and 6,
respectively, while those along Lx

0 resemble those in Fig. 5.

excluding boundary effects as a possible explanation. We believe instead that it is a consequence of
the weakly three-dimensional structure of the fronts at either end of the structure associated with
weak outward expulsion of concentration gradients. The flow in this region moves the concentration
around the axis of the domain alternately sampling fixed flux and fixed concentration boundary
conditions. The former enhances concentration pumping39 while the latter suppresses pumping.22

Residual concentration pumping is, therefore, likely to be present and its presence will reduce the
background concentration gradient sensed by the convecton. We expect this effect to be proportional
to the square of the amplitude of convection and hence linear in the Rayleigh number. In other words,
we predict a linear slant of the snaking structure towards lower Rayleigh numbers, independent of
the boundary conditions, as observed in the numerically generated bifurcation diagrams.

The physical parameters used in the present study are the same as in Ref. 23 and it is therefore
of interest to compare the two systems. The domain used in Ref. 23 has a square cross-section in the
horizontal and is extended in the vertical direction. In the aforementioned paper the authors found
convectons consisting of rolls with horizontal axes exhibiting localization in the vertical direction.
In some of these the roll axes are perpendicular to the lateral walls, but in others the axes are rotated
in the horizontal direction with the direction of rotation switching from roll to roll, forming a zigzag
structure. Solutions of the former type are organized into primary snaking branches while the latter
form secondary snaking branches. Thus the vertically extended system exhibits similar states to
those found here in the horizontally extended system. In both cases the novel localized structures are
present in a Rayleigh number interval straddling Ra ≈ 750 although the primary snake is replaced
here by a collapsed snake, a consequence of the near two-dimensionality of the convectons in this
regime. Of course, once fully three-dimensional instabilities set in, snaking occurs in the latter case
as well although it does so at larger values of the Rayleigh number. Based on these results we
anticipate a yet richer variety of localized structures in a horizontally extended cavity with a square
cross-section in the horizontal. This geometry will be the subject of future work.40
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