This is a repository copy of *Pilot Studies in clinical research*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/109013/

Version: Accepted Version

Article:

https://doi.org/10.1177/0962280216651022

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
A well designed pilot study is important in the evaluation of therapies. In this special issue, different aspects of pilot trials are reviewed in different research settings to practically illustrate the methodological issues with these studies.

One of the objectives of a pilot trial is to assess the feasibility of undertaking a large definitive assessment of efficacy. This is true for all pilot trials and Wilson and colleagues describes the challenges of undertaking pilot trials of complex interventions. They highlight how the ideas developed for Phase II drug development could be extended to the assessment of complex interventions. In particular they considered how the efficacy of complex interventions could be assessed in the context of current early phase feasibility or pilot studies.

In oncology the assessment of a new treatment in a Phase II trial includes an assessment of whether there are sufficient signs of effectiveness to justify being tested in a phase III trial. Wason and Jaki highlight how there are a large number of recent methodological developments that have aimed to improve phase early phase oncology trials and they describe novel approaches that they believe should be considered as alternatives to traditional designs.

Hee and colleagues highlight how pilot studies are often done to serve a variety of purposes with little consensus on their design. The reviewed the literature on methods for pilot studies that are based on the use of Bayesian decision theory and undertook a systematic reviewing methodology to identify relevant published work in the area. Bayesian decision approaches are appealing as they can help to inform decisions at the end of the pilot trial. Decisions such as whether there has been sufficient has been discharged to enable to the start of the definitive trial. Hee and colleagues contend that Bayesian decision-theoretic approaches to be appropriate for the design of pilot due to their role in informing decisions regarding further future clinical research.

All trials need a sample size justification. Not all trials need a sample size calculation. This is particularly true for pilot trials. Cluster randomised trials are a common study design in health services research. Eldridge and colleagues highlight the issues in estimating the sample size for a cluster pilot trial. They undertake simulations to provide the distribution of the expected number of clusters for the main trial under different assumptions and conclude that pilot studies will usually be too small to estimate parameters required for estimating a sample size for a main cluster randomised trial with sufficient precision.

For individually randomised trials a pilot sample size is usually recommended in terms of a flat rule of thumb. Whitehead and colleagues discuss how when the outcome is continuous, the sample size estimation requires an accurate estimate of the standard deviation of the outcome measure and
how a pilot trial can be used to get an estimate of this. They describe how an external pilot trial sample size can be chosen in order to minimise the sample size of the overall clinical trial programme - the pilot and the main trial added together - and propose stepped rules of thumb for pilot sample sizes.

In summary, this special issue covers many concerns with pilot trials from assessing health technologies to drug trials and from cluster trials to individually randomised trials with many practical recommendations.

17. Whitehead AL, Julious SA, Cooper CL and Campbell MJ. Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Statistical Methods in Medical Research 2015 doi: 10.1177/0962280215588241