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Photosystem II (PSII) is a key component of photosynthesis, the
process of converting sunlight into the chemical energy of life. In
plant cells, it forms a unique oligomeric macrostructure in
membranes of the chloroplasts1. Several light-harvesting antenna
complexes are organized precisely in the PSII macrostructure—
the major trimeric complexes (LHCII)2 that bind 70% of PSII
chlorophyll and three minor monomeric complexes3—which
together form PSII supercomplexes4–6. The antenna complexes
are essential for collecting sunlight and regulating photosyn-

thesis7–9, but the relationship between these functions and their
molecular architecture is unresolved. Here we report that anti-
sense Arabidopsis plants lacking the proteins that form LHCII
trimers10 have PSII supercomplexes with almost identical abun-
dance and structure to those found in wild-type plants. The place
of LHCII is taken by a normally minor and monomeric complex,
CP26, which is synthesized in large amounts and organized into
trimers. Trimerization is clearly not a specific attribute of LHCII.
Our results highlight the importance of the PSII macrostructure:
in the absence of one of its main components, another protein is
recruited to allow it to assemble and function.

The central unit of PSII is the core complex, in which light is used
to oxidize water to molecular oxygen, to reduce plastoquinone and
to generate a transmembrane proton gradient11,12. In plants, each
core dimer binds two copies of the minor, monomeric light-
harvesting proteins CP29, CP26 and CP24 (the Lhcb4, Lhcb5 and
Lhcb6 gene products, respectively) and two–four LHCII trimers
(made up from the Lhcb1, Lhcb2 and Lhcb3 gene products) to form a
PSII supercomplex13,14. Additional LHCII trimers have been located
in membrane domains deficient in PSII supercomplexes, although
they still can be involved in efficient light-harvesting13. These
trimers consist of the Lhcb1 and Lhcb2 gene products3, and can
partition, depending on the phosphorylation state of LHCII,
between the grana and stromal thylakoids to transfer energy to
PSII and PSI, respectively15,16.

This model for PSII macrostructure suggests that each light-
harvesting protein has a unique position and role, but little is known
about the structure–function relationships involved. In addition,
the possibility cannot be excluded that there is some redundancy

Figure 1 PSII membrane composition. a, c, Western blots of PSII membranes (a) and

supercomplexes (c) prepared from wild-type (WT) and asLhcb2 (As) plants. Gels were

probed with antibodies specific for the proteins indicated on the left. Sample loading was

done on an equal chlorophyll basis. b, d, Results of densitometric analysis of the western

blots of PSII membranes (b) and supercomplexes (d). Values are normalized to the amount

of PsbA and are the means ^ s.e.m. of four replicate gels.
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among these similar light-harvesting proteins17. We have taken a
genetic approach to investigating these complexes. Expression of a
full-length Lhcb2 antisense construct in Arabidopsis thaliana
abolishes the expression of both Lhcb2 and Lhcb1, owing to stretches
of identical nucleotide sequences in these two genes10. The plants
(called asLhcb2) are almost completely devoid of the two main
proteins of trimeric LHCII, Lhcb1 and Lhcb2 (ref. 10). Western blot
analysis of PSII membranes prepared from wild-type and asLhcb2
plants showed that Lhcb1 is completely absent and the amount of
Lhcb2 is less than 5% of that found in wild type (Fig. 1a). When
normalized to the amount of the PSII core protein PsbA, the
quantities of Lhcb3, Lhcb4 and Lhcb6 were constant or less than
twofold higher, whereas the amount of Lhcb5, the apoprotein of
CP26, increased by more than sixfold (Fig. 1b).

The absorption spectra showed a strong reduction in the
chlorophyll b band at 650 nm in the antisense membranes
(Fig. 2a, curves 1 and 2), which is consistent with the measured
chlorophyll a/b ratio of 4.3, as compared with 3.3 in the wild type,
and is explained by the depletion of LHCII and the increase in
CP26 (CP26 has a considerably higher chlorophyll a/b ratio than
has LHCII18). The similarity between the fluorescence excitation
spectrum and the absorption spectrum in both membranes (Fig.
2a, dotted lines) shows that the extra CP26 functions as an efficient
light-harvesting antenna for PSII. Together with the identical
photosynthetic activity of the wild-type and antisense plants10,
this indicates that PSII activity is the same in the wild-type and
antisense plants.

Chromatographic analysis of detergent-solubilized PSII mem-
branes19 gave unexpected results. Fraction II, containing PSII super-

complexes, was still present in the antisense plants (Fig. 2b) but was
highly enriched in CP26, containing over three times more Lhcb5
than present in the wild-type fraction (Fig. 1c, d). The quantity of
Lhcb3 was also higher, whereas that of Lhcb4 and Lhcb6 was
unchanged. These data indicate that the missing Lhcb1 and Lhcb2
in the supercomplex are replaced by CP26, which prompts an

Figure 2 PSII membrane spectra. a, Absorption spectra of PSII membranes (curves 1 and

2) and gel-filtration fraction V (curves 3 and 4) prepared from wild-type (curves 1 and 3)

and asLhcb2 (curves 2 and 4) plants. Dotted spectra show a fragment of the excitation

spectrum of PSII fluorescence emission (685 nm) for the PSII membrane samples.

b, Gel-filtration elution profiles of solubilized PSII membranes from wild-type (1) and

asLhcb2 (2) samples, detected at 670 nm. The main fractions contain PSII

supercomplexes (II), PSI (III), PSII cores (IV), trimeric light-harvesting complexes (V)

and monomeric light-harvesting complexes (VI). Curves 3 and 4 show the elution

profiles of purified LHCII trimers and a monomeric LHC fraction. c, Western blots of

fraction V prepared from wild-type (WT) and asLhcb2 (As) plants. Details are as described

in Fig. 1.

Figure 3 Average projections of the PSII complexes from Arabidopsis Lhcb2 plants. a, An

Arabidopsis C2S2M2 supercomplex
19 obtained previously, depicting the S- and M-LHCII

trimers (blue), the monomeric complexes (green) and the detergent shell (yellow).

b–d, Antisense Lhcb2 plants; e–g, wild-type plants. b, Average of 510 C2S2 projections;

c, average of 290 C2S2M projections; d, average of 411 C2S2M2 projections; e, average

of 300 C2S2 projections; f, average of 948 C2S2M projections; g, average of 218 C2S2M2

projections.
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intriguing question: can CP26 assemble itself into a trimeric form to
mimic the LHCII trimer? In fact, the gel-filtration separation
procedure showed that a trimeric fraction (Fig. 2b, fraction V)
was still present in the antisense plants, although its concentration
was strongly reduced. Western blot analysis of this trimer showed
that it contained only CP26 and Lhcb3 (Fig. 2c), whereas the wild-
type fraction V contained almost exclusively Lhcb2 and Lhcb1, with
some Lhcb3 (but at a much lower amount than in the antisense
plant), as expected (refs 3, 7, and Fig. 2c).
The absorption spectra of the wild-type and antisense trimers

were also clearly different (Fig. 2a (curves 3 and 4)), with reduced
absorption at 650 nm from chlorophyll b in the antisense trimer.
We calculated the chlorophyll a/b ratio of the wild-type trimer to
be 1.4 as expected2,3, but this ratio increased to 1.90–1.95 in the
antisense plant. This higher ratio is explained by the chlorophyll
a/b ratios of CP26 (2.0)18, which we confirmed to be the same in
the CP26 from both wild-type and antisense plants, and Lhcb3
(1.75)20. The ability to assemble into trimers in vivo was pre-
viously thought to be specific for Lhcb1 and Lhcb2. Clearly, this is
not so.
Of all the other Lhc genes, Lhcb5 bears the strongest sequence

similarity to Lhcb1 and Lhcb2 (ref. 17), greater than 40%, as
compared with roughly 30% or less for the other Lhc genes. Lhcb5
is the only gene that clusters with the Lhcb1–Lhcb3 genes17. In
addition, a WYXXXR motif near the amino terminus of Lhcb1,
which is necessary for LHCII trimerization21, is conserved in Lhcb5,
the apoprotein of CP26, but not in the apoproteins of CP29 and
CP24. But another LHCII trimerization domain near the carboxy
terminus (Trp 222)22 is not found in Lhcb5, which could explain the
reduced efficiency of trimerization for CP26.
We also analysed the isolated supercomplex population by

electron microscopy and image analysis. The same three main
classes of supercomplex4 were found in both asLhcb2 (Fig. 3b–d)
and wild-type (Fig. 3e–g) samples. Clearly, there are trimers lacking
Lhcb1 and Lhcb2 that are assembled into the supercomplex in the
antisense plants and, within the 2-nm resolution of the negative
staining, are identical to those found in the wild type. Notably, the
abundance of supercomplexes was about the same in both samples.
Thus, they cannot arise from the residual Lhcb2 present in the
antisense plants and cannot be due to Lhcb3, because the amount of
this protein is not increased.
To find out how the supercomplexes are organized in the

thylakoid membrane, electron microscopy was carried out on
grana membrane fragments13,19. Ordered arrays of PSII supercom-
plexes were found in both wild-type and antisense plants (Fig. 4a, b).

The frequency of occurrence of these arrays was judged to be about
the same and, notably, the structural features were almost identical.
Both images show arrays of PSII supercomplexes (Fig. 4b, red
outline)19. In each one, rows of PSII cores (bright areas) are
separated by areas of trimers, despite the absence in the antisense
plants of themain proteins that are known to form LHCII trimers in
the wild-type plants. The spacing between the rows is slightly
reduced in the antisense plants, suggesting a slightly different
packing of the complexes. Notably, also in the membranes from
the antisense plants, the contours of the trimers are clearly apparent
(Fig. 4a, arrows). Again, within the resolution of the technique,
these trimers appear to be identical to those seen in the wild type.

These data show that the PSII supercomplexes have a precise
molecular design inwhich trimers enable a normal supercomplex to
be assembled and allow its correct organization in the thylakoid
membrane. The observations that ordered arrays of PSII are formed
in the antisense plants and that other proteins have been recruited to
allow this formation show the importance of this feature of
macromolecular organization of PSII. The plants attempt to com-
pensate for the absence of LHCII by synthesizing more CP26 and
assembling it into trimers, which then function as a PSII antenna
and enable a normal macro-organization to be attained, including
their grana structure10. This organization is essential for the high
efficiency of energy usage in photosynthesis, because it allows
energy exchange between PSII cores and energy migration over a
large domain of chlorophyll molecules23.

Because the wild-type supercomplex contains two CP26 copies
for each dimeric PSII core complex, we estimate from the western
blot analysis that the supercomplex from the antisense plants
contains at least four additional copies of CP26 and up to two
additional copies of Lhcb3. Thus, there is sufficient CP26 and Lhcb3
to form at least two trimers, thereby explaining how the structure of
the complex can be virtually identical to the wild-type even though
Lhcb1 and Lhcb2 are absent. In the PSII membranes, in which there
is a sixfold increase in CP26, we estimate the presence of two further
CP26-containing trimers, explaining the presence of C2S2M2

supercomplexes.
The compensatory replacement of LHCII by CP26 does not give

rise to a PSII unit of identical structure and function. There are small
differences in the packing of the supercomplexes in the grana
membrane but, more notably, the extra LHCII trimers per PSII
not present in the supercomplex inwild-type plants13 are apparently
not replaced by CP26 in the antisense plants. Thus, there is a
reduction in the total content of light-harvesting pigments. In
addition, CP26 does not have the capacity to be phosphorylated,

Figure 4 Final result of image analysis of two-dimensional crystalline PSII complexes from

Arabidopsis wild-type and Lhcb2 antisense plants. a, Sum of 600 aligned crystal

fragments from Arabidopsis Lhcb2 antisense plant with the unit cell (24.0 £ 21.8 nm)

and two trimers (arrows) indicated. b, Sum of 450 aligned crystal fragments from

Arabidopsis wild-type with the unit cell (25.6 £ 21.4 nm) and an outline of the fitting of

the C2S2M2 supercomplex (red line) indicated. Scale bar, 10 nm.
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and therefore the antisense plants cannot carry out state tran-
sitions10, a regulatory process that balances the excitation of the
two photosystems and requires LHCII phosphorylation15,16. These
two differences almost certainly account for the phenotype of these
plants, the reduced fitness in the field10 and the failure to grow
normally under conditions of very low irradiance (J. Andersson and
S. Jansson, unpublished data). Although there is some apparent
redundancy between the similar Lhcb proteins, each one has specific
features that confer its unique role in PSII structure and function.
Lhcb1 and Lhcb2 are designed to form the essential trimeric
building blocks of the supercomplex, where they form the major
part of the PSII antenna, but they also provide the vital flexibility
needed to regulate excitation distribution between the photosys-
tems. When Lhcb1 and Lhcb2 are missing, CP26 can substitute but
not completely. This explains why normally the precision of the
composition of the supercomplexes is maintained absolutely in
spite of this potential redundancy.

Do other membrane protein complexes show similar features? In
cyanobacterial photosynthetic membranes, the CP43 0 protein,
which closely resembles the PSII core protein CP43, is synthesized
under certain stress conditions and forms an oligomeric ring-like
structure around PSI24,25. Thus, there are hitherto unrecognized
features of the structure of macromolecular membrane protein
complexes: the same or similar proteins may adopt different
structural and functional roles in different or even the same
complexes; and complexes that have the same overall structure
may contain different proteins resulting in different functions. A

Methods

Plant growth

Arabidopsis thaliana cv. Columbia plants were grown in growth chambers with an 8-h
photoperiod and 200 mmol quantam22 s21 for 8 weeks as described26. The asLhcb2 line
used shows almost total absence of the Lhcb1 and Lhcb2 gene products10.

Sample preparation and analysis

PSII membranes were prepared as previously described27, but with somemodifications. In
brief, leaves were homogenized three times for 5 s in a medium containing 20mMTricine-
NaOH, pH 8.4, 0.45M sorbitol, 10mM EDTA and 0.1% bovine serum albumin. After
pelleting and washing in 0.3M sorbitol, 20mM Tricine NaOH, pH 7.6, 5mM MgCl2,
chloroplasts were osmotically shocked for 30 s with 5mM MgCl2, pH 7.6. Pelleted
thylakoids were incubated in stacking medium (5mM MgCl2, 15mM NaCl and 2mM
MES, pH 6.3) for 1 h, after which we treated themwith 2.5% Triton X-100 at a chlorophyll
concentration of 3mgml21. The PSII membranes were sedimented at 30,000g for 30min,
resuspended in buffer containing 20mM Bis-Tris (pH 6.5) and 5mM MgCl2, and
solubilized with 0.4% n-dodecyl-a-D-maltoside at a chlorophyll concentration of
1.4mgml21. Large fragments were removed by centrifugation for 3min at 9,000 r.p.m.
and the supernatant was filtered promptly through a 0.45-mmfilter. Finally, the sample was
subjected to gel-filtration chromatography using a Superdex 200 HR 10/30 column in an
Amersham-Pharmacia Åcta Purifier system using the same buffer and similar conditions
as before19. We prepared purified trimeric LHCII and monomeric LHC from spinach PSII
membranes28.

Spectroscopic analysis

Low-temperature spectroscopy was done using an OptistatDN LN-2 cooled bath cryostat
(Oxford Instruments). Samples were diluted in a medium containing 70% glycerol (w/v),
20mM HEPES buffer, pH 7.8, 5mM MgCl2 and 0.33M sorbitol. The chlorophyll
concentration for absorption was 4 mM and for the fluorescence excitation measurements
was 1 mM. A poly(methyl metacrylate) PMMA 1-cm cuvette was used for all experiments.
Absorption measurements were carried out using a Cary 500 UV-Vis-NIR
spectrophotometer and corrected fluorescence exciation spectra were recorded using a
SPEX FluoroLog FL3-22 spectrofluorimeter.

Electrophoresis and western blot analysis

Protein samples were solubilized and separated by 15% denaturing SDS–PAGE essentially
as described29. Roughly equal amounts of chlorophyll were loaded, about 2 mg per lane for
PSII membranes and 0.5 mg for isolated supercomplexes and trimers. Proteins were
transferred to Hybond-P PVDF membrane (Amersham Pharmacia) in a Mini-Trans-Blot
transfer cell (Bio-Rad) at 30mA for 12 h. Membranes were detected with specific
antibodies against the proteins Lhcb1–Lhcb6 (ref. 30) and PsbA (a gift fromP. Nixon). The
primary antibody was detected by a horseradish peroxidase (HRP)-labelled secondary
antibody using an ECL Plus kit (Amersham Pharmacia). Chemiluminesence was detected
on Hyperfilm ECL (Amersham Pharmacia) photographic film. We developed the films
for 20min, dried and digitized them in 256-bit greyscale at a resolution of 600 d.p.i.
using an Umax Powerlook III high-resolution scanner set in transmission mode.
(Films were developed for 0.5–60min and densities were found to be linear over the

first 40min for each antibody.) A standard Kodak photographic 21 step tablet (OD
0.05–3.05) was used to calibrate the scanner each time an image was scanned. We
processed images using the 1D software package of the Image Master Suite (Amersham
Pharmacia). Individual lanes and bands were detected automatically by the software,
and background for each lane was subtracted using the rolling disc option to give the
final band density. For the antibodies against Lhcb1, Lhcb2 and Lhcb5, linear
densitometric responses were found in the range of 0.5–10 mg of chlorophyll per lane for
PSII membranes.

Electron microscopy

After chromatography, fractions were immediately prepared for electron microscopy.
Samples were negatively stained using the dropletmethodwith 2%uranyl acetate andwere
prepared on glow discharge carbon-coated copper grids as described4. The membrane
fragments and supercomplexes were analysed by a similar method to that used for
preparations from spinach and the wild-type Arabidopsis plants13,19. The samples were
imaged in a Philips CM10 electron microscope at £ 52,000 magnification. Electron
micrographs were digitized with a Kodak Eikonix Model 1412 CCD (charge-coupled
device) camera. Single-particle projections were extracted from negatives and analysed
with IMAGIC software (Image Science Software GmbH) and Groningen Image Processing
(‘GRIP’) software (Groningen University Software)13,19.
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Acetylation1,2, phosphorylation3 and methylation4 of the amino-
terminal tails of histones are thought to be involved in the
regulation of chromatin structure and function5–7. With just
one exception8,9, the enzymes identified in the methylation of
specific lysine residues on histones (histone methyltransferases)
belong to the SET family10. The high-resolution crystal structure
of a ternary complex of human SET7/9 with a histone peptide and
cofactor reveals that the peptide substrate and cofactor bind on
opposite surfaces of the enzyme. The target lysine accesses the
active site of the enzyme and the S-adenosyl-L-methionine
(AdoMet) cofactor by inserting its side chain into a narrow
channel that runs through the enzyme, connecting the two
surfaces. Here we show from the structure and from solution
studies that SET7/9, unlike most other SET proteins, is exclu-
sively a mono-methylase. The structure indicates the molecular
basis of the specificity of the enzyme for the histone target, and
allows us to propose a model for the methylation reaction that
accounts for the role of many of the residues that are invariant
across the SET family.
Many SET proteins have now been characterized biochemically

and several have been the subject of X-ray structure analysis: SET7/9
from human11 and its complex with the product S-adenosyl-L-
homocysteine (AdoHcy)12; Dim-5 fromNeurospora crassa6; Rubisco
large subunit methyltransferase (LSMT) from pea with AdoHcy13;
and Clr4 from Schizosaccharomyces pombe14. SET proteins can be
classified according to the lysine residues that they target on
histones H3, H4 and H2A4, and it is apparent that methylation at
these different sites gives rise to distinct biological effects. An
additional level of complexity is that lysine residues may be
mono-, di- or tri-methylated and that these distinct species lead

to different signalling events. For example, in Saccharomyces cere-
visiae, although di-methylation of Lys 4 on histone H3 is present at
both active and inactive euchromatic genes, tri-methylation is
linked exclusively to active genes15.

NMR studies (see Supplementary Information) indicated that a
histone peptide containing mono-methylated Lys 4 was better
ordered in complex with SET7/9 than unmodified peptide. We
therefore used the products of the normal histonemethyltransferase
(HMT) reaction for crystallization experiments (methylated lysine
peptide and AdoHcy). In our previous studies11 we obtained useful
SET7/9 crystals only from constructs lacking the small carboxy-
terminal segment, which is, nevertheless, essential for the catalytic
activity of the enzyme. Here, we have used a catalytically active
construct that contains the complete C-terminal segment. We
obtained well-ordered crystals of the ternary complex of SET7/9
that diffracted to at least 1.7 Å spacing, and the structure was readily
solved by molecular replacement. The C-terminal segment, the
AdoHcy cofactor and most of the substrate peptide are well defined
in the electron density maps, as are all the important residues
around the active site. The overall structure of the ternary complex

Figure 1 Structure of the SET7/9 ternary complex. a, Two orthogonal views of the SET7/9

ternary complex in ribbons representation. The N-terminal domain is coloured pink, the

SET domain is blue and the C-terminal segment is grey. The H3 peptide is indicated in

green, with the side chain of methylated Lys 4 shown. The S-adenosyl-L-homocysteine

(AdoHcy) cofactor is coloured yellow. The secondary structure elements are labelled

according to our earlier structure. Two small turns of the 310 helix are also labelled. b, Two

views of the SET domain are shown in a surface representation coloured according to

electrostatic potential (the two views are related by a twofold rotation about a vertical axis).

The left panel shows AdoHcy coloured yellow; the right panel shows the H3 peptide

coloured green. The inset panel shows a close-up view of the lysine access channel

containing the methyl lysine side chain as viewed from the S-adenosyl-L-methionine

(AdoMet)-binding site.
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