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Heavy-tailed distributions of meme popularity occur naturally in a model of meme diffusion on social
networks. Competition between multiple memes for the limited resource of user attention is identified as
the mechanism that poises the system at criticality. The popularity growth of each meme is described by a
critical branching process, and asymptotic analysis predicts power-law distributions of popularity with very
heavy tails (exponent α < 2, unlike preferential-attachment models), similar to those seen in empirical data.
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When people select from multiple items of roughly equal
value, some items quickly become extremely popular,
while other items are chosen by relatively few people
[1]. The probability PnðtÞ that a random item has been
selected n times by time t is often observed to have a heavy-
tailed distribution (n is called the popularity of the item at
time t). In examples where the items are baby names [2],
apps on Facebook [3], retweeted URLs or hashtags on
Twitter [4–6], or video views on YouTube [7], the popular-
ity distribution is found to scale approximately as a power
law Pn ∼ n−α over several decades. The exponent α in all
these examples is less than two, and typically has a value
close to 1.5. This range of α values is notably distinct from
those obtainable from cumulative-advantage or preferen-
tial-attachment models of the Yule-Simon type—as used to
describe power-law degree distributions of networks, for
example [8–11]—which give α ≥ 2. Interestingly, the value
α ¼ 1.5 is also found for the power-law distribution of
avalanche sizes in self-organized criticality (SOC) models
[12,13], suggesting the possibility that the heavy-tailed
distributions of popularity in the examples above are due to
the systems being somehow poised at criticality.
In this Letter, we present an analytically tractable model

of selection behavior, based on simplifying the model of
Weng et al. [14] for the spreading of memes on a social
network. We show that, in certain limits, the system is
automatically poised at criticality—in the sense that meme
popularities are described by a critical branching process
[15]—and that the criticality can be ascribed to the
competition between memes for the limited resource of
user attention. We dub this mechanism “competition-
induced criticality” (CIC) and investigate the impact of
the social network topology (degree distribution) and the
age of the memes upon the distribution of meme popular-
ities. We show that CIC gives rise to heavy-tailed distri-
butions very similar to the distributions of avalanche sizes
in SOC models [16,17], even though our competition
mechanism is quite different from the sandpile paradigm
of SOC. This Letter may, therefore, be of interest in other

areas where SOC-like critical phenomena have been
observed in experiments or simulations, such as economic
models of competing firms [18,19], the evolution and
extinction of competing species [20–22], and neural activ-
ity in the brain [23,24].
For clarity, we will phrase the model in terms of

meme diffusion as in [14], but the same understanding of
the basic mechanism—and the analytical techniques for
time-dependent distributions—can also be applied to other
models, including the random-copying popularitymodels of
[2,25,26]. The role of competition among items for limited
resources has been examined frommany viewpoints: see, for
example, [27–29] and also related work on competing
diseases [30–32]. The distribution of popularity increments
(number of selections of an item in a small time interval) in
Moran-type models has been obtained analytically [26];
however, our focus is on the (time-dependent) distributions
of popularity accumulated over long time scales.
We consider a model of a directed social network, like

Twitter, where nodes represent users; there are N nodes and
we will take the limit N → ∞ in our analysis. A randomly
chosen user has k followers (i.e., out-degree k, note we use
the convention that network edges are directed from nodes
to their followers) with probability pk. Each node has a
screen, which holds the meme of current interest to that
node (see Fig. 1). For simplicity, we assume, here, that each
screen has capacity for only one meme, though this case is
easily extended [33]. During each time step (with time
increment Δt ¼ 1=N), one node is chosen at random. With
probability μ, the selected node innovates, i.e., generates a
brand-new meme, that appears on its screen, and is tweeted
(broadcast) to all the node’s followers. Otherwise (with
probability 1 − μ), the selected node (re)tweets the meme
currently on its screen (if there is one) to all its followers,
and the screen is unchanged. If there is no meme on the
node’s screen, nothing happens. When a meme m is
tweeted, the popularity of meme m is incremented by 1
and the memes currently on the followers’ screens are
overwritten by meme m.
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Two memes; initially no competition.—As a first exami-
nation of the model’s dynamics, we consider just two
memes (called red and blue), each of which is initially
present on a small number of screens, with every other
screen being empty, and with no innovation (μ ¼ 0).
A simple mean-field analysis of this two-meme case gives
some useful insight. We assume all nodes have z followers,
and follow z others, where z is the mean out-degree

P
kkpk

of the network. Let rðtÞ be the fraction of screens occupied
by the red meme at time t, with bðtÞ the corresponding
fraction of blue-meme screens. Since nodes are selected at
random to tweet, the expected popularity (i.e., the cumu-
lative number of tweets up to time t) for the red meme,
nrðtÞ, is related to rðtÞ by dnr=dt ¼ rðtÞ, with a similar
relation for the blue meme. Under the mean-field assump-
tions, a deterministic approximation for rðtÞ and bðtÞ is
given by the solution of the pair of equations

dr
dt

¼−zbrþ zrð1− rÞ; db
dt

¼−zbrþ zbð1−bÞ: (1)

The first term on the right-hand side of the first equation,
for example, accounts for a decrease in the number of red-
meme screens due to memes being overwritten by blue-
tweeting nodes. This occurs when a blue meme is tweeted
[with probability bðtÞ in a given time step], and affects a
fraction rðtÞ of the z followers of the tweeting node, giving
the term −zbr. The second term describes the growth of
red memes due to a red meme tweeting [with probability
rðtÞ] to nonred followers, the expected number of which
is z½1 − rðtÞ�.
Equations (1) can be solved analytically: the fraction

of nonempty screens is iðtÞ ¼ rðtÞ þ bðtÞ, with ið0Þ ≪ 1,
and its dynamics obey the logistic differential equation
di=dt ¼ zið1 − iÞ, which is precisely the mean-field
approximation for the infected population fraction in a
susceptible-infected epidemic model. When rðtÞ and bðtÞ
are both very small, the solutions show exponential growth
in screen occupation and, hence, in the accumulated tweets
(i.e., popularities) nrðtÞ and nbðtÞ—see Fig. 2(a)—similar
to early-stage growth of independent diseases [34].
The exponential growth continues until iðtÞ is of order 1,
by which time most screens show either the red or the
blue meme. When rðtÞ þ bðtÞ ¼ 1, the right-hand sides of
Eqs. (1) are both zero. This means that—under the mean-
field assumptions that give this deterministic limit—the
numbers of screens showing each meme remain constant
thereafter, and so the popularities nrðtÞ and nbðtÞ grow
linearly in time, as in Fig. 2(b). This balance is a dynamic
one, as the two memes continue to compete for the resource
of screen space, but the rate of growth for each meme is
precisely equal to the rate of loss due to being overwritten
by the other meme. Thus, the linear growth in popularity is
induced by the competition between memes, in contrast to
the exponential growth at earlier times [Fig. 2(a)] when the
memes were not competing for the same resources [7,29].
The mean-field approximation used above ignores finite-

N effects, which cause stochastic fluctuations in the
number of screens about the mean values rðtÞ and bðtÞ.
In the long-time limit, it is these fluctuations that eventually
lead to one meme becoming extinct, with the other filling

FIG. 1 (color online). Schematic of the model. Time runs
horizontally and nodes of the network are listed vertically; the
screen color of each node indicates the meme it currently holds.
At time t1, node 1 retweets (RT) the blue meme to its followers
(nodes 2 and 3).At time t2, node 1’s screen is overwritten by the red
meme, whichwas tweeted by one of the nodes followed by node 1.
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FIG. 2 (color online). Popularities nrðtÞ and nbðtÞ of red and blue memes in a single realization, starting from ten screens each.
Note the different time scales in each figure, and the fact that the vertical scale in (a) is logarithmic. The inset boxes in (b) and (c) show
the area of the previous figures.
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all screens [as in Fig. 2(c)]. Stochastic fluctuations are also
important at early times, when there are only very few
screens showing either meme. In order to model the
important role of stochastic fluctuations, and also to examine
how the results presented here extend to cases with very
many memes, we next consider a heavily competitive
environment containing multiple memes.
Multiple competing memes.—Now, suppose that there are

no empty screens in the network—so we are in the highly
competitive regime—and the innovation probability μ may
be nonzero. Competition between memes for the limited
resource of user attention (i.e., screen space) leads naturally
to some memes becoming extremely popular, while others
are only moderately popular, or are ignored. We show that
the model produces fat-tailed distributions of popularity,
which are power-law distributions in the limit μ → 0. This
is explained using a branching process description of the
model, where the competitive environment causes each
meme to follow a critical branching process (for which
power-law distributions are expected [16,27]).
The branching process description is strictly valid only

when the number of screens occupied by a single meme
is a small fraction of N, but we note that this is the case
for long epochs of time in a competitive environment
with many memes. We assume here that all nodes follow
(approximately) z other nodes, so the in-degree distribution is
homogeneous, but we consider heterogeneous distributions
of out-degrees. Before examining the details of the branching
process, it is worth highlighting the source of criticality in
the model when μ ¼ 0. In a single time step Δt, a tweeting
node creates (or “gives birth to”) an average of zΔt new
copies of the meme on its screen by overwriting the screens
of its followers. However, each screen can be overwritten by
another meme (causing “death” of the overwritten meme)
with probability zΔt, and so the birth and death rates of
memes are, on average, exactly balanced, giving a critical
branching process. This balance between births and deaths
remains critical when themodel is enhanced in several ways,
includingmodifying the rules so that nodes retweet any given
meme at most once, see Sec. S5 of [33].

Next, we give details of the branching process description
of the model. We denote the distribution of popularities at
age a by qnðaÞ: this is the probability that a meme has been
tweetedn timeswhen its age isa (i.e., at a time tb þ a, where
tb is the birth time of the meme). This distribution can be
represented via its probability generating function (PGF)
[35,36] Hða; xÞ, defined by Hða; xÞ≡P∞

n¼1 qnðaÞxn.
The network topology is described by the PGF for the out-
degree distribution: fðxÞ≡P∞

k¼0pkxk. The mean degree
is z ¼ f0ð1Þ and we assume all nodes have in-degree z.
To calculate qnðaÞ, we first findHða; xÞ and then employ

an inversion technique based on fast Fourier transforms
(FFTs) [31,37,38]. It proves convenient to introduce
Gða; xÞ, defined as the PGF for the excess popularity
distribution at age a of memes that originate from a single
randomly chosen screen (the root of the tree). The tweet
event that creates the root is not counted by G: this event
increases the popularity of the meme by 1, and places the
meme upon the root screen and the screens of all followers
of the root node. Consequently, the PGF for the popularity
of age-amemes is given byHða; xÞ ¼ xGða; xÞfðGða; xÞÞ.
In Sec. S1 of [33], we derive the following ordinary
differential equation for Gða; xÞ, parametrized by x:

∂G
∂a ¼ zþ μ − ðzþ 1ÞGþ ð1 − μÞxGfðGÞ: (2)

This equation is easily solved using standard numerical
methods, starting from the initial condition Gð0; xÞ ¼ 1.
Some analysis is also possible [33]: the mean popularity
∂H=∂xða; 1Þ, for example, grows linearly with age until a
is of the order 1=μðzþ 1Þ; thereafter, it saturates at a value
of 1=μ. By expanding Gða; xÞ as a Taylor series about
x ¼ 0, the probabilities qnðaÞ for low n may be determined
explicitly. The popularity distribution for larger values of n
are determined in a computationally efficient manner using
FFTs [31,37,38]: our implementation (Sec. S2 of [33])
determines probabilities qn for n values up to several
thousand, shown as black curves in Fig. 3 [39]. The colored
symbols are the results of stochastic simulations of the
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FIG. 3 (color online). Complementary cumulative distribution functions (CCDFs)—the fraction of memes with popularity ≥ n—for
numerical simulations, compared with the theory of Eq. (2). Dashed lines correspond to CCDFs for power law popularity distributions
Pn ∝ n−α. (a) pk ¼ δk;10, N ¼ 105, μ ¼ 0. (b) pk ∝ k−γ for k ≥ 4 with γ ¼ 2.5 (mean degree z ¼ 10:6), N ¼ 106, μ ¼ 0.01. (c) Twitter
network of the Spanish 15M movement [40,41], N ¼ 87, 559, z ¼ 69, μ ¼ 0.05.
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model, giving popularity distributions for memes at various
ages a. The match between theory and simulation is very
good. Figure 3(a) shows the popularity distributions on
networks where each node has exactly z ¼ 10 followers,
while Fig. 3(b) is for a network where the number of
followers (out-degree of a node) has a power-law distri-
bution: pk ∝ k−γ for k ≥ 4, with γ ¼ 2.5 (and pk ¼ 0 for
k < 4). In both cases, the k followers of a given node are
assigned at random, so the in-degree distributions are
Poisson.
The observed power-law popularity distributions can be

understood using the long-time (or “old-age”, a → ∞)
asymptotics of the branching process, found by analyzing
the limiting solutions of Eq. (2) in the complex x plane
(Sec. S3 of [33]); we summarize the main results as
follows. If the out-degree distribution pk has a finite second
moment [i.e., if f00ð1Þ < ∞], then the a → ∞ limit of
the popularity distribution has the asymptotic form
qnð∞Þ ∼ An−ð3=2Þe−ðn=κÞ as n → ∞, where κ ¼ 2½f00ð1Þ þ
2z�=μ2ðzþ 1Þ2 and A ¼ ðzþ 1Þ½2πff00ð1Þ þ 2zg�−ð1=2Þ.
This formula shows that the popularity distribution is
of power-law form n−3=2, up to an exponential cutoff at
n ≈ κ. However, the cutoff size κ limits to infinity as the
innovation rate μ goes to zero, and κ can be large even for
nonzero μ if the second moment of the distribution pk is
large [since f00ð1Þ ¼ P

kkðk − 1Þpk].
If pk ∝ k−γ for large k with 2 < γ < 3, then f00ð1Þ is

infinite, and a different asymptotic analysis is required.
In this case, we find, similar to [16], that as n → ∞,

qnð∞Þ ∼
�
Bn−ðγ=γ−1Þ if μ ¼ 0 ;
Cn−γ if μ > 0;

(3)

with prefactors B and C given in [33]. Thus in the zero-
innovation limit, the popularity distribution has a power-
law exponent γ=ðγ − 1Þ that is smaller than the exponent γ
of the out-degree distribution.
Figure 3(c) compares theory and simulation results for

the model on the real Twitter network of [40,41]. The theory
matches the simulation results rather well, despite the fact
that this network is not treelike—indeed, 44% of links
are reciprocal links—and does not have a homogeneous
in-degree distribution, as assumed in the derivation of the
theory. The accuracy of results from tree-based theories
applied to real-world networks has been noted previously
[42] and is examined further for thismodel in Sec. S4 of [33].
Conclusions.—We have used a simple model of meme

diffusion to illustrate the phenomenon of competition-
induced criticality. It is straightforward to generalize the
basic model and the derivation of Eq. (2)—for example, by
(i) increasing the capacity of screens to c > 1 memes,
(ii) allowing followers to reject a meme tweeted to them
with some probability so it does not appear on their screen,
or (iii) permitting nodes to retweet a meme at most once—
and to show that the CIC property is retained in the more

general cases [33]. Despite their simplicity, we believe that
the understanding of such analytically tractable models
provides important insights on the origin of regularities
observed in empirical data. For instance, our model does
not include fat-tailed distributions of in-degrees, user
activity levels, or response times [4,14,43]—these will
be added in future work—but it can, nevertheless, produce
fat-tailed popularity distributions.
We have also shown that the CIC model produces

avalanches of popularity whose sizes have the same steady-
state distributions as those found in sandpile models of
self-organized criticality [16]. This is intriguing because the
CIC mechanism is quite distinct from the sandpile para-
digm: nodes do not have thresholds for triggering ava-
lanches, for example, and the CIC popularity avalanches
evolve on the same time scale as the general dynamics.
We speculate that competition for limited resources may,
therefore, play an important role in many other application
areas where SOC-like phenomena have been identified in
experiments or numerical simulations [18–24].

This Letter was partially funded by Science Foundation
Ireland (Grants No. 11/PI/1026 and No. 09/SRC/E1780),
the Engineering and Physical Sciences Research Council
(MOLTEN, Grant No. EP/I016058/1) and by the FET-
Proactive project PLEXMATH. We thank Peter Fennell for
assistance with Fig. 3(c) and acknowledge helpful discus-
sions with D. Cellai, S. Melnik, M. A. Porter, J-P Onnela,
and F. Reed-Tsochas. We acknowledge the SFI/HEA Irish
Centre for High-End Computing (ICHEC) for the provision
of computational facilities, and the COSNET Lab for
publishing the 15M dataset.

*james.gleeson@ul.ie
[1] R. A. Bentley, M. Earls, and M. J. O’Brien, I’ll Have What

She’s Having: Mapping Social Behavior (MIT Press,
Cambridge, MA, 2011).

[2] R. A. Bentley, M.W. Hahn, and S. J. Shennan, Proc. R. Soc.
B 271, 1443 (2004).

[3] J.-P. Onnela and F. Reed-Tsochas, Proc. Natl. Acad. Sci.
U.S.A. 107, 18375 (2010).

[4] K. Lerman, R.Ghosh, and T. Surachawala, arXiv:1202.3162.
[5] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts, in

Proceedings of the Fourth ACM International Conference
on Web Search and Data Mining (ACM, New York, 2011),
pp. 65–74.

[6] R. Baños, J. Borge-Holthoefer, and Y. Moreno,
arXiv:1303.4629.

[7] G. Szabo andB. A.Huberman,Commun.ACM53, 80 (2010).
[8] S. Redner, Eur. Phys. J. B 4, 131 (1998).
[9] M. E. J. Newman, Contemp. Phys. 46, 323 (2005).

[10] M. V. Simkin and V. P. Roychowdhury, Phys. Rep. 502, 1
(2011).

[11] A. L. Barabási and R. Albert, Science 286, 509 (1999).
[12] S. Zapperi, K. B. Lauritsen, and H. E. Stanley, Phys. Rev.

Lett. 75, 4071 (1995).

PRL 112, 048701 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 JANUARY 2014

048701-4

http://dx.doi.org/10.1098/rspb.2004.2746
http://dx.doi.org/10.1098/rspb.2004.2746
http://dx.doi.org/10.1073/pnas.0914572107
http://dx.doi.org/10.1073/pnas.0914572107
http://arXiv.org/abs/1202.3162
http://arXiv.org/abs/1303.4629
http://dx.doi.org/10.1145/1787234.1787254
http://dx.doi.org/10.1007/s100510050359
http://dx.doi.org/10.1080/00107510500052444
http://dx.doi.org/10.1016/j.physrep.2010.12.004
http://dx.doi.org/10.1016/j.physrep.2010.12.004
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1103/PhysRevLett.75.4071
http://dx.doi.org/10.1103/PhysRevLett.75.4071


[13] P. Bak, How Nature Works: The Science of Self-Organized
Criticality (Springer, New York, 1999).

[14] L. Weng, A. Flammini, A. Vespignani, and F. Menczer,
Sci. Rep. 2, 335 (2012).

[15] T. E. Harris, The Theory of Branching Processes (Dover,
New York, 2002).

[16] K. I. Goh, D. S. Lee, B. Kahng, and D. Kim, Phys. Rev. Lett.
91, 148701 (2003).

[17] P.-A. Noël, C. D. Brummitt, and R. M. D’Souza, Phys. Rev.
Lett. 111, 078701 (2013).

[18] R. E. Krider and C. B. Weinberg, Geogr. Anal. 29, 16
(1997).

[19] A. Arenas, A. Díaz-Guilera, C. J. Pérez, and F. Vega-
Redondo, J. Econ. Dyn. Control 26, 2115 (2002).

[20] J. Sprott, Phys. Lett. A 325, 329 (2004).
[21] M. E. J. Newman, Proc. R. Soc. B 263, 1605 (1996).
[22] R. V. Solé and S. C. Manrubia, Phys. Rev. E 54, R42

(1996).
[23] A. Haimovici, E. Tagliazucchi, P. Balenzuela, and D. R.

Chialvo, Phys. Rev. Lett. 110, 178101 (2013).
[24] M. Rubinov, O. Sporns, J.-P. Thivierge, and M. Breakspear,

PLoS Comput. Biol. 7, e1002038 (2011).
[25] R. A. Bentley, P. Ormerod, and M. Batty, Behav. Ecol.

Sociobiol. 65, 537 (2011).
[26] T. S. Evans and A. D. K. Plato, Phys. Rev. E 75, 056101

(2007).
[27] C. Adami and J. Chu, Phys. Rev. E 66, 011907 (2002).
[28] M. Beguerisse Díaz, M. A. Porter, and J.-P. Onnela, Chaos

20, 043101 (2010).

[29] F. L. Forgerini, N. Crokidakis, S. N. Dorogovtsev, and
J. F. F. Mendes, International Journal of Complex Systems
in Science 1, 141 (2011).

[30] B. Karrer and M. E. J. Newman, Phys. Rev. E 84, 036106
(2011).

[31] P.-A. Noël, A. Allard, L. Hébert-Dufresne, V. Marceau, and
L. J. Dubé, Phys. Rev. E 85, 031118 (2012).

[32] J. C. Miller, Phys. Rev. E 87 060801(R) (2013).
[33] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.112.048701 for details
of mathematical derivations and extensions of the model.

[34] A. Barrat, M. Barthelemy, and A. Vespignani, Dynamical
Processes on Complex Networks (Cambridge University
Press, Cambridge, England, 2008).

[35] H. S.Wilf,Generatingfunctionology (A.K. Peters,Wellesley,
MA, 2006).

[36] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev.
E 64, 026118 (2001).

[37] J. K. Cavers, IMA J. Appl. Math. 22, 275 (1978).
[38] M. Marder, Phys. Rev. E 75, 066103 (2007).
[39] Octave/Matlab codes for solving Eq. (2) and inverting

the generating functions are available for download from
http://www.ul.ie/sdcs/people/kevin‑osullivan.

[40] J. Borge-Holthoefer et al., PLoS One 6, e23883 (2011).
[41] S. González-Bailón, J. Borge-Holthoefer, A. Rivero, and

Y. Moreno, Sci. Rep. 1, 197 (2011).
[42] J. P. Gleeson, S. Melnik, J. A. Ward, M. A. Porter, and

P. J. Mucha, Phys. Rev. E 85, 026106 (2012).
[43] J. L. Iribarren and E. Moro, Phys. Rev. E 84, 046116 (2011).

PRL 112, 048701 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 JANUARY 2014

048701-5

http://dx.doi.org/10.1038/srep00335
http://dx.doi.org/10.1103/PhysRevLett.91.148701
http://dx.doi.org/10.1103/PhysRevLett.91.148701
http://dx.doi.org/10.1103/PhysRevLett.111.078701
http://dx.doi.org/10.1103/PhysRevLett.111.078701
http://dx.doi.org/10.1111/j.1538-4632.1997.tb00943.x
http://dx.doi.org/10.1111/j.1538-4632.1997.tb00943.x
http://dx.doi.org/10.1016/S0165-1889(01)00025-2
http://dx.doi.org/10.1016/j.physleta.2004.03.079
http://dx.doi.org/10.1098/rspb.1996.0235
http://dx.doi.org/10.1103/PhysRevE.54.R42
http://dx.doi.org/10.1103/PhysRevE.54.R42
http://dx.doi.org/10.1103/PhysRevLett.110.178101
http://dx.doi.org/10.1371/journal.pcbi.1002038
http://dx.doi.org/10.1007/s00265-010-1102-1
http://dx.doi.org/10.1007/s00265-010-1102-1
http://dx.doi.org/10.1103/PhysRevE.75.056101
http://dx.doi.org/10.1103/PhysRevE.75.056101
http://dx.doi.org/10.1103/PhysRevE.66.011907
http://dx.doi.org/10.1063/1.3475411
http://dx.doi.org/10.1063/1.3475411
http://dx.doi.org/10.1103/PhysRevE.84.036106
http://dx.doi.org/10.1103/PhysRevE.84.036106
http://dx.doi.org/10.1103/PhysRevE.85.031118
http://dx.doi.org/10.1103/PhysRevE.87.060801
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.048701
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.048701
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.048701
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.048701
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.048701
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.048701
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.048701
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1093/imamat/22.3.275
http://dx.doi.org/10.1103/PhysRevE.75.066103
http://www.ul.ie/sdcs/people/kevin-osullivan
http://www.ul.ie/sdcs/people/kevin-osullivan
http://www.ul.ie/sdcs/people/kevin-osullivan
http://dx.doi.org/10.1371/journal.pone.0023883
http://dx.doi.org/10.1038/srep00197
http://dx.doi.org/10.1103/PhysRevE.85.026106
http://dx.doi.org/10.1103/PhysRevE.84.046116

