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Nonlinear hydrodynamical evolution of eccentric Keplerian

discs in two dimensions: validation of secular theory

A. J. Barker⋆ and G. I. Ogilvie
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences,

Wilberforce Road, Cambridge CB3 0WA, UK

ABSTRACT

We perform global two-dimensional hydrodynamical simulations of Keplerian discs
with free eccentricity over thousands of orbital periods. Our aim is to determine the
validity of secular theory in describing the evolution of eccentric discs, and to explore
their nonlinear evolution for moderate eccentricities. Linear secular theory is found to
correctly predict the structure and precession rates of discs with small eccentricities.
However, discs with larger eccentricities (and eccentricity gradients) are observed to
precess faster (retrograde relative to the orbital motion), at a rate that depends on
their eccentricities (and eccentricity gradients). We derive analytically a nonlinear
secular theory for eccentric gas discs, which explains this result as a modification of
the pressure forces whenever eccentric orbits in a disc nearly intersect. This effect
could be particularly important for highly eccentric discs produced in tidal disruption
events, or for narrow gaseous rings; it might also play a role in causing some of the
variability in superhump binary systems. In two dimensions, the eccentricity of a
moderately eccentric disc is long-lived and persists throughout the duration of our
simulations. Eccentric modes are however weakly damped by their interaction with
non-axisymmetric spiral density waves (driven by the Papaloizou-Pringle instability,
which occurs in our idealised setup with solid walls), as well as numerical diffusion.

Key words: accretion, accretion discs – planetary systems – hydrodynamics – waves
– instabilities

1 INTRODUCTION

Eccentric gas discs are thought to arise in a number of as-
trophysical contexts. The orbital evolution of a newly born
planet due to its tidal interaction with the protoplanetary
disc is intricately coupled with the evolution of eccentric
motions within the disc. But the importance of this inter-
action in producing the eccentricities of observed exoplan-
ets is currently unclear (Papaloizou et al. 2001; Papaloizou
2002; Goldreich & Sari 2003; Kley & Dirksen 2006; D’Angelo
et al. 2006; Bitsch et al. 2013). Eccentric gas discs are also
thought to explain the superhump phenomenon in SU UMa-
type binary stars (Whitehurst 1988; Lubow 1991; Goodchild
& Ogilvie 2006; Smith et al. 2007) and the spectral variabil-
ity of rapidly rotating Be stars (Okazaki 1991; Papaloizou
et al. 1992; Ogilvie 2008). In addition, eccentric gas discs
are formed by the tidal disruption of stars or gaseous plan-
ets (Guillochon et al. 2011; Liu et al. 2013; Guillochon et al.
2014), and such a process might be responsible for the gas
cloud G2 near Sgr A* in the Galactic Centre (Guillochon
et al. 2014; Coughlin & Nixon 2015; Pfuhl et al. 2015). De-
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spite this wide range of applications, the nonlinear dynamics
of eccentric discs remains poorly understood.

In the Solar system, several of the rings of Saturn and
Uranus are observed to be elliptical, and a theory for nar-
row eccentric rings (with small eccentricities but arbitrary
eccentricity gradients) composed of weakly collisional par-
ticles has been developed (Borderies et al. 1983; Chiang &
Goldreich 2000). For small eccentricities, eccentric discs can
be described as slowly precessing one-armed density waves
(or shocks) (e.g. Okazaki 1991; Papaloizou et al. 1992; Lee
& Goodman 1999; Goodchild & Ogilvie 2006; Ogilvie 2008;
Saini et al. 2009). A particular solution for a global uni-
formly eccentric (and apsidally aligned) Keplerian disc has
also been studied by Statler (2001).

A general secular theory for three-dimensional eccentric
discs with arbitrary eccentricities and eccentricity gradients
has been developed (Ogilvie 2001), and we aim to explore
(and test using numerical simulations) some of its implica-
tions in this work. Secular theory describes dynamical pro-
cesses that occur on timescales that are much longer than
the orbital timescale. In the more familiar context of a sys-
tem of multiple planets around a star, the Keplerian orbit
of each planet is subject to perturbing forces that are pro-
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2 A. J. Barker & G. I. Ogilvie

portional to the planet-to-star mass ratio; secular theory ac-
counts for the long-term behaviour of eccentricity and incli-
nation resulting from the orbit-averaged perturbing forces.
For a thin gaseous disc around a star, however, pressure pro-
vides the most important departure from Keplerian orbital
motion, being of second order in the aspect ratio H/R of
the disc. Other subdominant forces, such as those due to
the self-gravity of the disc (Tremaine 2001) and viscous or
turbulent stresses (Ogilvie 2001), can also be important. In
this situation, secular theory describes the long-term evolu-
tion of eccentricity due to gas pressure (and other forces)
in thin discs, but neglects contributions that are of fourth
order or higher in H/R.

In recent work, we developed a local model of an ec-
centric disc (Ogilvie & Barker 2014), which is similar to the
shearing box that is commonly used to study the dynam-
ics of circular astrophysical discs (Goldreich & Lynden-Bell
1965; Hawley et al. 1995). We used this model to analyse
the vertical oscillatory flows that are driven by the variation
in the vertical gravity around a non-circular orbit (Ogilvie
& Barker 2014), and subsequently studied the local linear
stability of these discs and their vertical flows (Barker &
Ogilvie 2014). We found that eccentric discs are generically
unstable (in three dimensions), being subject to a small-scale
instability in which inertial waves are driven by a parametric
resonance. This instability is expected to lead to wave ac-
tivity or turbulence, and to damping of the disc eccentricity
and eccentricity gradients (Papaloizou 2005b), unless these
are maintained by external forcing (or additional instabili-
ties e.g. viscous overstability). Nonlinear simulations are re-
quired to determine the efficiency of this damping process so
that its importance in real discs can be quantified (e.g. con-
tinuing the work begun by Papaloizou 2005b, by taking into
account the vertical structure of the disc).

In this paper we study the nonlinear hydrodynamical
evolution of eccentric discs in two dimensions, deferring
three-dimensional simulations to future work. Our aim is
to determine the validity of linear secular theory (Ogilvie
2001; Papaloizou 2002; Ogilvie & Barker 2014) in describ-
ing the structure and precession rates of eccentric discs, as
well as to determine their two-dimensional nonlinear dynam-
ics. In the process, we will derive analytically, and compare
with simulations, a two-dimensional nonlinear secular the-
ory for isothermal eccentric discs that is valid for any eccen-
tricity and eccentricity gradient, for a thin untwisted disc
with non-intersecting orbits – this is a particular case of the
general theory of Ogilvie (2001) that is amenable to analyt-
ical study. In two dimensions, eccentric discs do not exhibit
the parametric instability or vertical oscillatory flows. How-
ever, a fundamental study of the two-dimensional nonlinear
dynamics of eccentric discs has not yet been undertaken.
We believe this to be worthwhile, in spite of the clear im-
portance of three-dimensional effects in reality, because the
two-dimensional dynamics that we will study are likely to
also play a role in three dimensions. In particular, the force
due to gas pressure, which tends to cause retrograde pre-
cession of these discs, can be captured in two dimensions.
These simulations also provide a necessary benchmark to al-
low comparison with future three-dimensional simulations.

We outline our intentionally simplified numerical setup
designed to study the dynamics of eccentric discs in § 2. We
derive analytically a nonlinear secular theory for untwisted

eccentric discs in two-dimensions in Appendix A. This the-
ory is explored, and its predictions for the shapes and preces-
sion rates of eccentric discs are compared with simulations,
in § 3. The long-term nonlinear evolution of eccentric discs
is presented in § 4, where we also analyse the background
instability that arises due to our idealised setup with rigid
walls in the absence of any free eccentricity. We then finish
with our conclusions.

2 SIMPLIFIED MODEL

2.1 Background disc

Our model consists of an eccentric (nearly) Keplerian disc in
a two-dimensional cylindrical domain as an initial condition.
We study its resulting nonlinear evolution using the PLUTO
code (Mignone et al. 2007), adopting cylindrical polar coor-
dinates (R, φ) with corresponding velocity components uR

and uφ. Our governing equations are

(∂t + u · ∇)u = − 1

Σ
∇p− GM

R2
eR, (1)

∂tΣ+∇ · (Σu) = 0. (2)

To allow us to more easily understand the outcome of our
simulations, we consider a power-law disc which is isother-
mal (where the pressure p = c2sΣ, and Σ is the total surface
density; with sound speed cs = const), with background disc
surface density,

Σb(R) = Σ0R
−σ, (3)

for the circular case, where σ will be varied. (We expect the
qualitative results of this paper to carry over to discs with
different thermodynamic behaviour, and those with a ra-
dially varying sound speed.) The axisymmetric basic state

of the disc has angular velocity Ω = Ω0R
−

3

2 (which does
not strictly apply when σ 6= 0 due to radial pressure gradi-
ents), where Ω0 is the Keplerian angular velocity at R = Ri,
and uφ = RΩ. Our disc occupies the full azimuthal extent1

φ ∈ [0, 2π), with radial extent R ∈ [Ri, Ro], on which the ra-
dial boundary conditions are “reflecting” conditions2. These
boundary conditions were chosen to confine the eccentric
disc for a well-defined study. While these are not appropri-
ate for all applications in which eccentric discs are thought
to arise, they may reasonably approximate the boundaries
of a disc that has been tidally truncated (e.g. Papaloizou
2005b). For example, our model might be relevant to nar-
row rings that may be produced by disc-planet interactions
that have formed multiple gaps. A reflecting edge may also
be appropriate to describe the inner edge of the disc, if
there is a sharp drop in the density there, or where discs
match onto the surfaces of central objects e.g. white dwarfs

1 Meaning that periodic boundary conditions are applied to all
quantities at φ = 0 and φ = 2π.
2 This means that the radial velocity in the ghost cells adjacent
to the domain has the same magnitude but the opposite sign to
that in the last grid cell inside the domain. The surface density in

the ghost cells is set to be the same as that in the last grid cell,
i.e. ∂RΣ = 0 at this location. This may lead to minor differences

with secular theory, where no boundary condition is imposed on
Σ.

c© 2016 RAS, MNRAS 000, 1–14



Eccentric discs 3

in Cataclysmic Variable systems. However, the aim of this
paper is not to focus on any particular application, but to
explore the fundamental dynamics of eccentric discs that
might have more general applicability. We choose units such
that Ω0 = Ri = Σ0 = 1, and vary the parameters cs (to
mimic a disc with aspect ratio H/R ∈ [0.025, 0.1]), σ and
Ro, in addition to the eccentricity of the disc, which we will
now describe.

2.2 Eccentric mode

We initialise an eccentric disc using nonlinear secular the-
ory (Appendix A). To do this we modify the velocity com-
ponents and surface density of the background disc so that
they describe an eccentric mode, to make the streamlines
elliptical. The eccentric mode is a global slowly precessing
density wave that satisfies the boundary conditions.

We define the complex eccentricity E(λ) = e(λ)eiω(λ),
where e and ω are the eccentricity and longitude of pericen-
tre. In secular theory, orbits are labelled using their semi-
latus rectum λ, related to cylindrical radius by

R(λ, φ) =
λ

1 + e(λ) cos (φ− ω(λ))
. (4)

In linear secular theory for a 2D isothermal disc,

2Σ
(

GMλ3)
1

2 ∂tE = ic2s
(

∂λ

(

Σλ3E′
)

+ λ2E∂λΣ
)

, (5)

where E′ ≡ ∂λE, and in this case R and λ are equivalent
(this can be transformed into the Schrödinger equation).
Eq. A10 is the equivalent equation in the nonlinear secu-
lar theory of Appendix A (in which care must be taken to
take into account the difference between R and λ, and the
resulting equation is a type of nonlinear Schrödinger equa-
tion). We seek solutions that precess at the rate ωp, such
that E ∝ eiωpt. Together with the boundary conditions

E(λi) = E(λo) = 0, (6)

appropriate for fixed circular boundaries, we obtain an
eigenvalue problem for the eigenvalue ωp and eigenfunction
E. We solve this problem using a shooting method (Press
et al. 1992), which works equally well for the solution of
Eq. A10 (which is a nonlinear equation for E and E′). This
method requires us to provide an initial guess for ωp and
E′(λi) to select the appropriate solution. To do this, we use
a combination of trial and error and the results of an in-
dependently coded solution to the linear problem using a
Chebyshev collocation method. In each case, we select the
fundamental eccentric mode, which has a single maximum in
the eccentricity. This is the slowest precessing mode with the
longest radial wavelength, which is chosen because it can be
simulated more accurately than any mode of shorter wave-
length. For the linear theory, we normalise the amplitude of
the resulting mode so that its maximum eccentricity is A. In
the nonlinear secular theory, its amplitude is determined by
E′(λi), which we choose so that the maximum eccentricity
is A (to within an accuracy of approximately 10−4).

A nonlinear eccentric mode cannot be exactly repre-
sented as a single Fourier mode with an azimuthal wavenum-
ber m = 1. However, we can obtain uR, uφ,Σ for the eccen-
tric Keplerian disc as follows. First, we obtain the velocity
components of the eccentric orbital motion at each grid point

(R, φ) using E(λ):

uR =

√

GM

λ
e(λ) sin(φ− ω(λ)), (7)

uφ =

√

GM

λ
(1 + e(λ) cos(φ− ω(λ))) , (8)

after we have converted points in λ, φ to R, φ (Murray &
Dermott 1999). We obtain the surface density by considering
mass conservation (Ogilvie & Barker 2014), by noting that
M/P = JΩΣ (see Appendix A for definitions). We assume
that the mass distribution in the disc is a power law in λ of
the form M(λ) = 2πλΣb(λ), so that

Σ = Σb(λ)

(

1− e(λ)2
) 3

2 (1 + e(λ) cos(φ− ω(λ))

1 + (e(λ)− λ∂λe(λ)) cos(φ− ω(λ)
, (9)

which is the natural extension of our cylindrical disc model.
We use Eqs. 7–9 as our initial conditions in PLUTO, noting
that there are errors O(c2s) because we have made the secular
(thin-disc) approximation (Ogilvie 2001). The eccentric disc
is exactly represented in nonlinear secular theory for any
eccentricity and eccentricity gradient. Note that we neglect
the radial pressure gradient which would slightly modify the
angular velocity profile when σ 6= 0.

We use a second-order Runge-Kutta time-stepping al-
gorithm, with linear interpolation within grid-cells. We
adopted the dimensionally-unsplit HLLC solver (which was
chosen because preliminary investigation found it to be more
robust than the Roe solver, and also much less diffusive than
the HLL solver). The eccentric mode is input into PLUTO
after appropriate interpolation to the grid used in the code.

3 PREDICTIONS AND VALIDATION OF

NONLINEAR SECULAR THEORY

In this section, we will illustrate the predictions of secu-
lar theory and compare them with the results of hydrody-
namical simulations. We will focus only on aspects that are
directly relevant for such a comparison, deferring a more
detailed discussion of the simulations to § 4.

3.1 Modification of pressure forces in nonlinear

theory

Linear secular theory (Eq. 5, together with boundary condi-
tions) predicts the structure and precession rate of eccentric
modes as a function of the disc properties. For the case of an
untwisted disc with Ro = λo = 2 and σ = 0, we have plot-
ted the fundamental eccentric mode E(λ) in the top panel
of Fig. 1. The amplitude is arbitrary, so this represents the
shape of the disc for any amplitude according to linear the-
ory. However, neighbouring orbits (for an untwisted disc)
intersect if
(

e− λe′
)2

> 1, (10)

which is observed to occur for this linear mode at R = Ri if
A & 0.143 (for Ro = 2; similarly this occurs when A & 0.18
for R0 = 3, and A & 0.24 for R0 = 10). This suggests that
secular theory will no longer apply to these discs, since or-
bital intersections will rapidly lead to eccentricity damping

c© 2016 RAS, MNRAS 000, 1–14
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Figure 1. Illustrative fundamental eccentric mode solutions e(λ)
in a domain with Ro = 2 and σ = 0 (and cs = 0.05) according to

linear secular theory (top) and nonlinear secular theory (middle).
The amplitude in the top panel is arbitrary. Middle: solutions with

A ≈ 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 and 0.332 have been plotted.
Bottom: orbital geometry in the x, y-plane for the eccentric mode
with A ≈ 0.332, showing orbits spaced equally in λ, which clearly
shows the compression and near-intersection of orbits in this case.

via shocks. However, this prediction is based on linear the-
ory.

Nonlinear secular theory (Eq. A10, together with the
boundary conditions) predicts the shape of the eccentric
mode to depend on its amplitude A, as we illustrate in the
middle panel of Fig. 1 for several amplitudes as indicated in
the caption. Inspection of the functional form of the terms
on the right hand side of Eq. A10 informs us why this is
the case: these terms increasingly differ from those in lin-

ear theory as the orbits approach an intersection, i.e. the
shape depends on the amplitude because pressure forces act
to minimise intersections. This also causes the precession of
the mode to differ from the predictions of linear theory, as
we will demonstrate in § 3.2.

With our adopted boundary conditions, nonlinear the-
ory predicts a maximum attainable amplitude for the eccen-
tricity, corresponding to the upper curve in the middle panel
of Fig. 1, which occurs when A ≈ 0.332. We have plotted the
orbital geometry for the eccentric disc with A ≈ 0.332, with
orbits spaced equally in λ, in the bottom panel of Fig. 8.
This shows clearly the compression and near-intersection of
orbits near the inner and outer boundaries for this mode, in
addition to the fact that it can no longer be described purely
as an m = 1 mode. The maximum value can be explained
simply by considering the (untwisted) eccentric mode which
is marginally intersecting, so that e − λe′ = ±1, that also
satisfies the boundary conditions that e(λi) = e(λo) = 0.
The solution is the piecewise linear profile

e =

{

λ
λi

− 1, if λ ∈ [λi, λm],

1− λ
λo

, if λ ∈ (λm, λo],
(11)

where

λm =
2

λ−1
i + λ−1

o

. (12)

The maximum eccentricity of this mode is

emax ≡ e(λm) =
λo − λi

λi + λo
, (13)

which explains our observation of a maximum eccentricity
for the fundamental eccentric mode in a domain with a given
size (in numerical calculations we observe emax(λo = 2) ≈
0.332, emax(λo = 3) ≈ 0.496 and emax(λo = 5) ≈ 0.66).
This solution is what we must obtain from geometrical con-
siderations simply because we force the eccentricity to van-
ish at the boundaries. However, this result depends on the
boundary conditions, since this limit would no longer ap-
ply if e′(λo) = 0, for example, and we would not obtain a
maximum eccentricity smaller than one.

3.2 Precession rates: validation of theory

According to linear theory, the eccentric mode precesses
slowly in a retrograde sense due to gas pressure. To see that
this must be the case, we can multiply Eq. 5 by E∗, seek
solutions E ∝ eiωpt and integrate over λ to obtain:

ωp =
c2s
∫ λo

λi

(

λ2|E|2∂λΣ− λ3Σ|E′|2
)

dλ

2
∫ λo

λi
(GMλ3)

1

2 Σ|E|2dλ
, (14)

with our chosen boundary conditions (Goodchild & Ogilvie
2006). This quantity is a negative real number if ∂λΣ 6 0,
i.e. σ > 0, indicating retrograde precession3.

3 If we were to model a real system by including additional effects
that make the potential non-Keplerian, such as rotational defor-
mation of the star (Papaloizou et al. 1992), presence of planets
within the disc (Papaloizou 2002) or the inclusion of self-gravity
(Tremaine 2001), in addition to three-dimensional gas pressure ef-
fects associated with vertical oscillatory flows (Ogilvie 2008), the
precession rate would be altered and could even become prograde.

c© 2016 RAS, MNRAS 000, 1–14
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cs Ro σ A NR ×Nφ P obs
p (±1) Ppred

p PNS,Lin,pred
p

0.05 2 0 0.005 200x256 287 278.33 286.01
0.05 2 0 0.01 200x256 287 278.11
0.05 2 0 0.025 200x256 284 276.56
0.05 2 0 0.05 200x256 280 271.03
0.05 2 0 0.075 200x256 272 262.07
0.05 2 0 0.1 200x256 261 249.78
0.05 2 0 0.125 200x256 248 234.35
0.05 2 0 0.15 200x256 230 216.00

0.05 3 0 0.01 300x256 744 726.78 742.22
0.05 3 0 0.1 300x256 718 700.20

0.05 3 0 0.2 300x256 645 621.45
0.05 3 0 0.25 300x256 589 562.74

0.05 3 0 0.3 300x256 518 490.66

0.05 5 0 0.01 500x256 1629 1592.91 1627.26
0.05 5 0 0.1 500x256 1608 1571.43
0.05 5 0 0.2 500x256 1546 1509.13
0.05 5 0 0.3 500x256 1446 1402.52
0.05 5 0 0.4 500x256 1267 1231.76

0.025 2 0 0.01 200x256 1123 1112.4 1121.47
0.075 2 0 0.01 200x256 133 143.39 130.99
0.1 2 0 0.01 200x256 77 69.53 76.44
0.05 2 1.5 0.01 200x256 277 271.05 279.46

0.05 2 3 0.01 200x256 257 251.87 260.58
0.05 2 5 0.01 200x256 224 215.68 224.52

0.05 2 0 0.05 800x1024 280 271.03

0.05 2 0 0.05 400x512 280 271.03
0.05 2 0 0.05 100x128 280 271.03

0.05 2 0 0.05 50x64 287 271.03

Table 1. Table of simulations used to validate nonlinear secular theory. In each case the precession is retrograde. The error bars for
P obs
p correspond with the time interval between output files used for this analysis. Ppred

p is the prediction from nonlinear secular theory

(Eq. A10) and PNS,Lin,pred
p is the (non-secular) prediction from solution of the two-dimensional linearised isothermal hydrodynamic

equations in Appendix B (we have entered the latter in the smallest A entry in the table for each case, but it should be remembered
that these results are based on a linear calculation). Simulations were run for at least one full precession period.

The precession rate depends on σ, Ro and cs, but is in-
dependent of the amplitude of the eccentric mode in linear
theory. However, we have shown that nonlinear secular the-
ory predicts the structure of the eccentric mode to be modi-
fied if the orbits are close to intersecting, so we might expect
ωp to depend on its amplitude also. We demonstrate that
this is indeed the case in the black solid lines in Fig. 2, where
we have plotted the precession period Pp = 2π

ωp
against the

amplitude of the eccentric mode for several calculations with
different Ro ∈ [2, 3, 5] and various A with σ = 0 and assum-
ing a thin disc with cs = 0.05. Gas pressure causes the mode
to precess faster, in a retrograde sense, as the eccentricity
and eccentricity gradients are increased. We obtain the lin-
ear prediction in the limit A → 0, with a departure that is
initially ∝ A2, before steepening for large A. The precession
period continues to shorten until A → emax, when Pp → 0,
so that the secular approximation is no longer valid. Nonlin-
ear secular theory therefore predicts its own breakdown for
large amplitudes, which occurs when the orbits in the disc
come close to intersecting.

In Fig. 2 we have also plotted the initial precession pe-
riod computed from hydrodynamical simulations (symbols
according to the legend) that were run for at least one full
precession period. A table of simulations used for this com-
parison, and those in the rest of this section, is given in
Table 1. We calculate the precession period by computing
the m = 1 component of the radial velocity (this quantity is

used to represent the power in both m = ±1),

û1(R, t) =
1

π

∫ 2π

0

uR(R, φ, t)e−iφdφ, (15)

from which the mean longitude of pericentre can be com-
puted from

〈ω(t)〉 = 1

Ro −Ri

∫ Ro

Ri

tan−1

(

− Im[û1(R, t)]

Re[û1(R, t)]

)

dR, (16)

which is approximately valid for the eccentric mode even
when A is not small. Since this mode precesses retrogradely,
〈ω〉 decreases cyclically from π to −π, and we calculate the
initial precession period by eye by checking at what time
〈ω〉 ≈ π after t = 0. The data used for this analysis is
output at each time unit in the simulation, giving errors of
±1 in the determination of Pobs, which we further verified
by visual inspection of uR(R, φ, t) at these time snapshots.
Simulations with A & 0.15 for Ro = 2 were not plotted,
since the eccentric mode underwent non-negligible damping
during a single precession period, as we will discuss further
in § 4. Fig. 2 shows that our results are in good agreement
with the nonlinear secular theory for each Ro considered.

To further validate the predictions of secular theory,
we have listed the observed and predicted values of Pp as
various disc (and simulation) parameters are varied in Ta-
ble 1. The variation of Pp with σ and cs is reasonably cap-
tured in each case. However, the departure from the pre-
dictions of secular theory increases as we increase cs: for

c© 2016 RAS, MNRAS 000, 1–14
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Figure 2. Precession period Pp versus peak eccentric mode am-
plitude A showing a comparison between nonlinear secular theory

(black solid lines) and the results of hydrodynamical simulations
in a domain Ro = 2, 3 and 5 (red crosses, light blue circles and
blue squares, respectively), cs = 0.05 and σ = 0. This demon-
strates that the eccentric mode precesses faster as its amplitude
is increased. We observe good agreement between simulations and
nonlinear secular theory as A and Ro are varied (with a departure
of approximately 3%). Note that secular theory predicts its own

breakdown for large amplitudes, as Pp → 0.

cs = [0.025, 0.05, 0.075, 0.1], the fractional error correspond-
ingly takes the approximate values [1, 3.2, 7.5, 10]%, indicat-
ing a roughly c2s dependence for this quantity, as expected
from secular theory (Ogilvie 2001; Ogilvie & Barker 2014).
To confirm that this departure indeed results from the par-
tial inaccuracy of the secular approximation, we have also
computed the precession frequency of an m = 1 linear eccen-
tric mode by solving the two-dimensional linearised isother-
mal (non-secular) hydrodynamic equations as outlined in
Appendix B, for the cases listed in the table. This accu-
rately matches the observed precession rates of our smallest
A simulations in each case. For thin discs with cs . 0.1, the
precession period predicted by secular theory matches the
observed values to within a few percent, typically tending
to predict slightly slower precession.

We have also computed the precession rate for a set of
calculations with A = 0.05 as the resolution is varied, as
indicated in Table 1. This indicates convergence is attained
for the precession period even at low resolutions such as
100×128, but a departure appears for even lower resolutions.
This suggests that simulations with typically-adopted reso-
lutions would be expected to capture the precession rates of
global eccentric modes, but may not accurately capture the
precession of shorter wavelength modes.

3.3 Summary

We have shown that the retrograde precession of eccentric
discs as a result of their gas pressure is enhanced for suf-
ficiently large eccentricities and eccentricity gradients. This

dependence of the precession rate on the eccentricity and its
gradient is a new result4 (though there was some numerical
evidence of this in Papaloizou 2005b), and occurs because
pressure forces are enhanced when the orbits come close to
intersecting. While the numerical results would change if
we were to adopt different boundary conditions, this gen-
eral behaviour is likely to be robust since it arises from the
functional form of the stress integrals (see Appendix A).

We have thoroughly validated the predictions of nonlin-
ear secular theory regarding the precession rates of eccentric
discs as various parameters are varied, in the regime where
ωp ≪ Ω. We find that the departure from secular theory
scales as O(c2s), typically being a few percent or smaller for
thin discs if ωp ≪ Ω (which we have shown to break down
at large amplitudes). We now turn to a more detailed anal-
ysis of our simulation results, focussing on the long-term
evolution of the eccentricity in two dimensions.

4 MORE DETAILED DISCUSSION OF

SIMULATION RESULTS

4.1 Background instability: nonlinear evolution of

the “Papaloizou-Pringle” instability

Our basic setup has rigid walls to confine an eccentric mode
and permit a well-defined study. However, it is well known
that a circular supersonic rotating shear flow in a container
with one or more rigid boundaries is unstable to the de-
velopment of non-axisymmetric instabilities (Papaloizou &
Pringle 1984, 1985; Goldreich & Narayan 1985; Goldreich
et al. 1986; Papaloizou & Pringle 1987; Kato 1987; Narayan
et al. 1987). These instabilities are driven either by Kelvin-
Helmholtz-type mechanisms (which require a potential vor-
ticity minimum, which is not the case in our problem), or
by over-reflection of spiral density waves from the corota-
tion region. While most of the original work on this prob-
lem focused on thick discs (referred to as “accretion tori”)
where this instability excites low azimuthal wavenumber
(m = O(1)) modes on a local orbital timescale, slower grow-
ing instabilities with high azimuthal wavenumbers (m ≫ 1)
have also been found to occur in thin Keplerian discs (Pa-
paloizou & Pringle 1987; Narayan et al. 1987; Hanawa 1987).
The nonlinear evolution of these instabilities has been stud-
ied by Godon (1998) (and earlier for thick “accretion tori”
by Hawley 1987), where they were observed to drive sub-
sonic wave activity in hydrodynamic discs.

The basic mechanism of instability in a thin nearly Ke-
plerian disc can be explained as follows. An outgoing spiral
density wave with frequency ωm and azimuthal wavenum-
ber m 6= 0 with a radial angular momentum flux I that
approaches its corotation region (the region where the wave
frequency satisfies ωm ≈ mΩ) is primarily reflected from its
inner Lindblad resonance (where ωm−mΩ = −κ, and κ ≈ Ω
is the epicyclic frequency), with the angular momentum flux
in the reflected wave beingR. However, this wave is also par-
tially transmitted through the corotation region (in which
it is evanescent), requiring an outgoing wave to be launched

4 We also note that a precession rate that depends on the eccen-
tricity gradient can be derived using the formalism of Borderies
et al. (1983) if this is applied to an isothermal gas.
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at the outer Lindblad resonance (where ωm−mΩ = κ) with
transmitted angular momentum flux T = I −R. In a Kep-
lerian disc, waves propagating inside corotation (ωm 6 mΩ)
carry a negative angular momentum flux (so that I < 0),
whereas those outside corotation (ωm > mΩ) carry a posi-
tive flux (so that T > 0). This means that R = I−T < I, so
that the reflected wave is amplified. If there is an inner im-
permeable boundary, the reflected wave will be completely
reflected once more so that it will re-enter the corotation
region, enabling further amplification at the expense of the
Keplerian flow. This mechanism of instability, which is due
to the “over-reflection” of waves from the corotation region,
also occurs if there is a rigid outer boundary, but does not
occur if both boundaries perfectly transmit wave energy, and
it can be eliminated with sufficient viscosity.

While our primary aim is to study the evolution of ec-
centric discs, this instability (which is an artifact of our
model) will drive subsonic wave activity that will interact
with the eccentric mode. Because of this, we briefly describe
the properties of this instability for a circular disc in this
section, before discussing the evolution of eccentric discs in
the next. In Figs. 3 and 4, we present calculations that show
the energy in the lowest ten azimuthal wavenumbers

Em(t) =

∫ Ro

Ri

1

2
|ûm(R, t)|2R dR, (17)

where

ûm(R, t) =
1

π

∫ 2π

0

uR(R, φ, t)e−imφdφ, (18)

which is defined so that it represents the power in the so-
lution with a given value of |m|, so that only m > 0 need
to be considered for this quantity. We compare three differ-
ent numerical resolutions NR × Nφ: 200 × 256 (labelled as
L), 400 × 512 (labelled as M) and 800 × 1024 (labelled as
H). Each simulation has Ro = 2, cs = 0.05, and is started
with random white noise perturbations to each component
of the velocity on the grid-scale5 with amplitude 10−5cs.
Since this instability preferentially excites high azimuthal
wavenumbers and there is no explicit viscosity in our sim-
ulations, we expect some dependence on resolution, though
we will show that the results for M and H appear to have
converged.

Fig. 3 illustrates that simulation L exhibits instability
with the excitation of m ∼ 5 propagating waves by t ∼ 2000,
but this initially saturates at low amplitude. At later times,
m ∼ 3 standing waves develop throughout the domain. We
illustrate the velocity field during these stages in Fig. 5 for
this simulation, in the early linear growth phase (top) and
during the later phase (bottom). The RMS radial velocity
driven by the instability, normalised by the sound speed,

〈u/cs〉 =
√

1

c2sπ(R2
o −R2

i )

∫ 2π

0

∫ Ro

Ri

u2
RR dR dφ, (19)

is plotted in Fig. 6 for all three simulations, along with the
efficiency of angular momentum transport

α =
1

c2sπ(R2
o −R2

i )

∫ 2π

0

∫ Ro

Ri

uR(uφ −RΩ)R dR dφ. (20)

5 No attempt is made to ensure that these are identical for each
resolution adopted.
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Figure 3. Energy in different azimuthal wavenumber components
of the solution (Em) for m ∈ [1, 10] as a function of time for
simulations in a domain with Ro = 2 with cs = 0.05 and σ = 0
for three different resolutions 200 × 256 (L), 400 × 512 (M) and
800× 1024 (H).
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Figure 4. Same as Fig. 3, but for simulations with Ro = 3 with
resolutions of 300× 256 (L) and 600× 512 (M).

During simulation L , the maximum RMS velocities attained
are very subsonic, with 〈u〉 ∼ 10−3−10−2cs, and the angular
momentum transport is weak, with α . 10−5.

Simulations M and H reach larger turbulent velocities of
〈u〉 ∼ 0.03cs and somewhat more efficient angular momen-
tum transport with α ∼ 10−4 (Fig. 6) – note that α = 10−4

implies tvisc =
R2

i

αcsH
= 1

αc2s
≈ 4× 106. The initial instability

in these simulations preferentially excites m ∼ 9 compo-
nents, with m ∼ 6 dominating at later times, which differs
from simulation L. However, the instability appears to be
well captured with the resolution adopted for simulation M,
since simulation H does not differ significantly. In addition,
results do not appear to be strongly dependent on the do-
main size, with simulations in a domain with Ro = 3 (where
resolutions L and M correspond with 300×256 and 600×512
grid-points, respectively) giving similar spectra at late times
(compare Fig. 3 with Fig. 4) and broadly comparable tur-
bulent velocities and angular momentum transport (Fig. 6)
– note that the initial turbulent stages are different, with
m ∼ 6 modes excited initially that remain dominant at late
times. (We have also checked that the outcome of the in-

Figure 5. Radial velocity uR in the linear growth phase (top;
propagating spiral waves are produced at inner boundary) and at
a later stage (bottom; global radial standing waves are shown) of
the instability in our lowest resolution simulation, illustrating the

non-axisymmetric waves generated by the instability.

stability does not depend significantly on σ, at least where
σ 6 1.5.)

The instability excites spiral density waves that sat-
urate with subsonic velocities and lead to weak but non-
negligible angular momentum transport. This instability
provides background wave activity which complicates the
analysis of eccentric modes in the next section. Depending
on the particular waves excited by this instability, their non-
linear interaction with the predominantly m = 1 eccentric
mode could either drain energy from, or transfer energy into,
this component. Hence, we would not expect secular theory
to be valid in the presence of a strong non-axisymmetric
component, given that it neglects wave-wave couplings.

Given that this instability is minimised for the resolu-
tion adopted for simulation L, we primarily focus on simu-
lations using this resolution in the next section, where we
turn to analyse the long-term evolution of eccentric discs.

4.2 Long-term nonlinear evolution of free

eccentric modes

As in § 3.2, we initialise the flow with an eccentric mode
with peak eccentricity amplitude A and study its nonlinear
evolution, focussing on its behaviour over many (50 − 70)
precession periods.

We begin by analysing the temporal evolution of the ec-
centric mode energy for various A in Fig. 7. We plot E1 (as
defined in Eq. 17), which approximately represents the en-
ergy in the eccentric mode even for moderate A, when m 6= 1
components are also present (see Fig. 8). The validity of sec-
ular theory is indicated by the lack of evolution in E1 dur-
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Figure 6. Top: RMS turbulent velocities normalised by cs
(〈u/cs〉), which are subsonic with ∼ 0.05cs. Bottom: angular
momentum transport α driven by the instability, which exhibits
mean values of α ∼ 10−5 − 10−4 for our configuration with rigid

boundaries.

ing the initial stages. The eccentric mode persists through-
out our simulations, but experiences two different kinds of
damping as the simulation progresses. Firstly, numerical dif-
fusion acts to damp the eccentric mode, which is particularly
pronounced for cases with higher A. Since the streamlines
are then highly concentrated (see e.g. the bottom panel of
Fig. 1), and there are strong eccentricity gradients, these
modes experience appreciable damping by numerical diffu-
sion on the grid-scale. However, this is only the most im-
portant damping mechanism during the initial stages when
A & 0.125. During later stages (i.e. after t & 1000), the dom-
inant damping mechanism is the interaction of the m = 1
eccentric mode with other non-axisymmetric waves that are
driven by the instability discussed in § 4.1. These waves are
excited in the absence of an eccentric mode, but interact
with the eccentric mode through nonlinear interactions to
generate additional non-axisymmetric components. In most
cases this interaction acts to damp the eccentric mode, but
it can also transfer energy into the eccentric mode in some
cases e.g. see A = 0.005 when t ∼ 2500.

In Fig. 8, we have plotted the temporal evolution of Em

for m ∈ [1, 10] to illustrate the growth of m 6= 1 components
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Figure 7. Energy in the eccentric mode E1 (technically the en-
ergy in the |m| = 1 components of the flow) as a function of time
for a set of simulations with Ro = 2, cs = 0.05, σ = 0 for varying
A (each with a resolution of 200× 256). The simulation is run for
approximately 70 linear precession periods and shows that the
eccentric mode persists throughout the duration of these simula-
tions. It does, however, experience gradual amplitude-dependent
damping.

of the solution. The top left panel repeats our results when
A = 0 (Fig. 3) to provide a point of reference. The remaining
panels show the same quantity for several different values of
A. When A = 0.005, background instability occurs at ap-
proximately the same time as the A = 0 case, preferentially
exciting similar modes (together with those with azimuthal
wavenumbers that differ by 1), and the m 6= 1 components
of the solution saturate with similar energies (∼ 10−7). The
m = 1 component does not undergo significant damping un-
til t ∼ 2500, after the background instability has set in. This
supports our interpretation that this damping of the eccen-
tric mode is due to its interaction with non-axisymmetric
waves driven by the background instability, and not due to
a separate instability of the eccentric mode itself.

In Fig. 9, we have plotted the same quantity but for a
set of simulations that have double the radial and azimuthal
resolution (starting with simulation M of § 4.1). The eccen-
tric mode evolves similarly in these cases as in the lower
resolution simulations in Fig. 8. However, the background
instability is excited earlier in the simulations with small
A, which leads to slightly different long-term quantitative
evolution for the eccentric mode amplitude (in fact there is
slightly more efficient damping in some of these simulations
compared with those with the lower resolution, demonstrat-
ing that the amplitude decay is not primarily due to numer-
ical diffusion).

As A is increased, this instability occurs sooner in the
simulation, presumably because there is more energy in
m 6= 1 components of the solution at t = 0. However, with
the exception of the m = 2 component (which arises pri-
marily to describe the eccentric mode itself when A & 0.05),
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Figure 8. Energy in different azimuthal wavenumber components
of the solution (Em) for m ∈ [1, 10] as a function of time for

several different amplitudes A for a set of simulations with 200×
256 grid points. The instability that occurs in the absence of
an eccentric mode also occurs when A 6= 0, which excites non-
axisymmetric waves that subsequently interact with the eccentric
mode, generally leading to damping. However, the eccentric mode
itself does not appear to be subject to separate instabilities in two
dimensions.

other non-axisymmetric components typically saturate with
similar power to the A = 0 case. In all simulations, there
is an amplitude- and time-dependent damping (or transient
growth, as briefly observed at t ≈ 2000 in the A = 0.005
simulation in Fig. 8) of the eccentric mode due to its in-
teraction with waves driven by the background instability.
However, our interpretation, which is guided by Figs. 8 and
9, is that the eccentric mode does not appear to be subject
to additional instabilities due to the presence of a nonzero
eccentricity (at least in two dimensions), only to the finite-A
modification of the instability that occurs when A = 0 due
to our adoption of rigid walls.

In Fig. 10, we plot |û1(R)| at t = 0 (solid black lines)
and t = 20000 (red dashed lines; marking the end of each
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Figure 9. Same as Fig. 8 except for a set of simulations with

400× 512 grid points.

1 1.5 2
0

0.002

0.004

0.006

0.008

0.01

û
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û
1

R

 

 

t = 0
t = 20000

(b) A = 0.05

1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

û
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Figure 10. Magnitude of the radial velocity in the m = 1 com-
ponent of the solution (|û1|) as a function of R at the beginning
of the simulation (black solid lines; taken from nonlinear secular
theory) and at t = 20000 (red dashed lines; representing the end
of our simulations). This illustrates the damping of the eccentric
mode, and also that its shape remains similar to that predicted
by secular theory.
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Figure 11. Longitude of pericentre ω as a function of R for simu-
lations at times t = [0, 30, 60, 90, 120, 150, 180, 210, 230, 260, 290].
This illustrates that the eccentric disc remains approximately un-
twisted during one precession period, though slight twists can
develop.

simulation), which shows the damping of the eccentric mode.
In addition, this demonstrates that the eccentric mode re-
mains coherent, persisting throughout the duration of these
simulations in a form that is similar to the initial conditions.
The similarity in the mode shape at these two times sup-
ports the validity of secular theory in describing the shapes
of these modes.

Our initial disc model is untwisted, but we do not con-
strain it to remain so. In Fig. 11, we show ω(R) for A = 0.01
and A = 0.1, for times t ∈ [0, 300] (slightly more than Pp)
spaced in intervals of 30 time units. At t = 0, the disc
is untwisted with ω = π, but slight twists develop dur-
ing the course of the simulation, preferentially near to the
outer boundary. However, the disc remains approximately
untwisted as it evolves throughout these simulations with
a net twist that is small even when A = 0.1 (smaller than
0.5 rads). It is possible that numerical damping, which is
likely to act in a similar way to a shear viscosity (Ogilvie
2001), could be responsible for this twist in the outer re-
gions (where the grid cells are largest), thereby preventing
the disc from remaining entirely untwisted (also, if the ini-
tial conditions are not exact nonlinear solutions, some twist
would be expected to develop). Alternatively, since e → 0
as R → 2, the phase of the complex eccentricity becomes
undefined at this location, so we might expect the twist at
this location to be arbitrary.

Finally, we analyse the decay rate of the eccentric mode,
which we plot in Fig. 12 for several simulations, showing the
effects of varying the resolution. This picture is not clear-cut
because the background instability is stronger for the higher
resolution case. This illustrates that eccentric modes in two
dimensions persist for a very long time, even in the presence
of amplitude-dependent wave-wave interactions and numer-
ical damping.

4.3 Summary

In this section we have presented the results of nonlinear
hydrodynamical simulations designed to study the long-
term evolution of eccentric discs in two dimensions. Eccen-
tric discs remain coherent and do not appear to be sub-
ject to instabilities as a result of their free eccentricity in
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Figure 12. Decay rate of maximum and mean eccentricity in

the eccentric mode Ė/E, as a function of A at resolutions of
200× 256 and 400× 512. The error bars represent the maximum
and minimum damping rates observed in these simulations. The
red lines are plotted for reference, and have approximate slopes
of −2 × 10−4 and −5 × 10−4, respectively. Note that Ė/E ≈
−5 × 10−5 corresponds with a damping time of approximately
2× 104.

two dimensions, and would presumably persist forever if
there was no background instability. They are, however,
damped (typically) by their nonlinear interaction with non-
axisymmetric spiral density waves – these waves are driven
by a background (“Papaloizou-Pringle”) instability in our
setup with rigid walls6. In real discs there are various mech-
anisms that could produce such an incoherent ensemble of
non-axisymmetric waves e.g. additional sources of turbu-
lence such as magneto-rotational instability (e.g. Heinemann
& Papaloizou 2009a,b), gravitational instability (e.g. Pa-
paloizou & Savonije 1991; Laughlin & Rozyczka 1996), con-
vection (e.g. Mamatsashvili & Rice 2011), or possibly the
tidal interaction between multiple proto-planets and the
disc.

Previous simulations of eccentric modes by Papaloizou
(2005b) used linear secular theory to construct the initial
conditions. This enhances the damping of the eccentric mode
due to the generation of shocks at the inner boundary of the
domain, since we have observed the linear mode to cause
orbital intersections if A is sufficiently large. On the other
hand, the modes that we have input using nonlinear sec-
ular theory do not experience such strong shock-induced
damping, as indicated in Fig. 7. These modes do experi-
ence amplitude-dependent damping by numerical diffusion,
which can be particularly strong for large A cases, where
the orbits are closer to intersecting. But in our simulations
the most important damping mechanism is the interaction
of the eccentric mode with other non-axisymmetric waves.

6 This instability also occurs (with a similar growth rate) with
free boundaries, and we would expect its nonlinear evolution to be
only weakly dependent on the boundary conditions, unless wave
reflection from the boundaries is inhibited.
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5 CONCLUSIONS

In this paper we have studied fundamental aspects of eccen-
tric gas discs that should have general applicability. We have
derived analytically a nonlinear secular theory for isothermal
two-dimensional untwisted eccentric Keplerian discs (valid
for arbitrary eccentricities and eccentricity gradients for
which neighbouring orbits do not intersect; Appendix A),
and verified its predictions with idealised hydrodynamical
simulations using the PLUTO code. Linear secular theory is
found to accurately describe the structures and precession
rates of eccentric discs with small eccentricities (and eccen-
tricity gradients), which precess in a retrograde sense due to
gas pressure. Discs with larger eccentricities (and eccentric-
ity gradients) are observed to precess at a faster rate, which
we have explained as a modification of the pressure forces,
and resulting disc structure to prevent orbital intersections,
that occurs when the orbits in a disc nearly intersect.

The nonlinear modification of the pressure forces might
be particularly important for the highly eccentric discs pro-
duced in tidal disruption events (Guillochon et al. 2011; Liu
et al. 2013; Guillochon et al. 2014; Coughlin & Nixon 2015),
or for narrow eccentric gas rings (cf. Borderies et al. 1983,
which was applied to planetary rings). Another potential
application is to the period excess in superhump binary sys-
tems, which is thought to be explained due to the precession
of an eccentric gaseous disc (Whitehurst 1988; Lubow 1991;
Murray 2000; Goodchild & Ogilvie 2006; Smith et al. 2007).
However, there is observational evidence of temporal vari-
ability of the period excess (Mason et al. 2008; Nakata et al.
2014), which may in part be caused by evolution of the pres-
sure forces due to the varying eccentricity and eccentricity
gradients in the disc. It would be worthwhile to apply nonlin-
ear secular theory to this problem (e.g. extending Goodchild
& Ogilvie 2006) in order to explore this possibility further.

Eccentric discs do not appear to exhibit hydrodynamic
instability as a result of their free eccentricity in two di-
mensions, and we would expect them to essentially persist
forever in our simulations except for their interaction with
non-axisymmetric spiral density waves excited by a back-
ground (Papaloizou-Pringle) instability (which arises in our
setup with rigid walls), in addition to numerical viscosity.
Presumably the eccentricity would be damped on the disc
(turbulent) viscous timescale, but our simulations are not
run for this duration (the viscous timescale is very long be-
cause the background instability transports angular momen-
tum only weakly). Eccentricity can also be affected by non-
adiabatic thermal processes, not considered in this paper.
Indeed, (Statler 2001) has argued that a uniform eccentric-
ity is preferred because the surface density of the disc is then
constant around each orbit. However, even in this case the
fluid undergoes periodic compression because of the varia-
tion of vertical gravity around the elliptical orbit (which is
not captured in two dimensions).

Our observation that gas discs with free eccentricities
can remain eccentric for thousands of orbital periods (Fig. 7)
is potentially important regarding the interpretation of ob-
served large-scale asymmetries in gas discs. In particular,
the presence of such asymmetries is often used to infer
the presence of perturbing planets (e.g. Regály et al. 2014;
Hashimoto et al. 2015; Pinilla et al. 2015). However, since we
have shown that eccentric modes can be long-lived features,

there are alternative mechanisms in addition to perturbing
planets that can induce free eccentricity, e.g. gravitational
instabilities in the gas disc during the pre-main sequence
phase (Adams et al. 1989).

However, it should be noted that any conclusions re-
garding the longevity of disc eccentricities are based on two-
dimensional simulations with only a weak background in-
stability. In three dimensions eccentric discs are subject to a
parametric instability that excites small-scale inertial waves
(Papaloizou 2005a; Barker & Ogilvie 2014). This is expected
to lead to enhanced damping of the disc eccentricity and ec-
centricity gradients (Papaloizou 2005b), but further work
adopting a realistic vertical disc structure is required to de-
termine its nonlinear outcome. The simulations presented in
this paper provide a starting point to allow us to undertake
such calculations.
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APPENDIX A: NONLINEAR SECULAR

THEORY OF ECCENTRIC DISCS

In this section we derive analytically a nonlinear secular the-
ory for eccentric discs in two dimensions utilising the local
model of Ogilvie & Barker (2014), for the case of an un-
twisted isothermal disc in which λω′ = 0, i.e. the orbits
are aligned (for which nonlinear pressure effects are likely
to be minimised). While the formalism can be extended to
the case of a twisted disc including viscosity, and to discs
with different thermodynamic behaviour (Ogilvie 2001), we
do not believe it to be possible to derive the corresponding
nonlinear theory analytically in terms of algebraic functions
(particularly the stress integrals) except for this special case.
We denote cos θ by c and sin θ by s to simplify the expres-
sions below, where the θ = φ − ω(λ), is the true anomaly.
At each λ, the reference orbit is Keplerian, so

R = λ (1 + ec)−1 , (A1)

and the angular velocity of the orbital motion is

Ω =

√

GM

λ3
(1 + ec)2 . (A2)

The orbital period for a fluid element with this orbit is

P =

∫ 2π

0

Ω−1dθ = 2π

√

λ3

GM
(1− e2)−

3

2 , (A3)

and its specific angular momentum is ℓ =
√
GMλ.

The evolution of the mass, angular momentum and ec-
centricity of the eccentric disc are governed by the following
stress-integrals, which we evaluate for a general untwisted
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eccentric disc with non-intersecting orbits:
∫∫

JR2Tλφdφ dz = 0, (A4)

∫∫

JR2Tλφeiφdφ dz =
ic2se

(

e2 − 1
)

λM
(λe′)2

(

e2 − eλe′ − 1

+
√

(e2 − 1) ((e− λe′)2 − 1)

)

,(A5)

∫∫

JRλT
λλeiφdφ dz =

c2s
(

1− e2
)3/2 M

(λe′)2

(

(

e+ λe′ − e3
)

√
1− e2

−
(

e+ λe′ + e2λe′ − e3
)

√

1− (e− λe′)2

)

, (A6)

∫∫

JR2Tφφeiφdφ dz = c2seM, (A7)

where T ij = −pgij and J = RRλ. In each case the integrals
are over the full extent of the disc in φ and z. We have
defined Rλ ≡ ∂λR and Rφ ≡ ∂φR, so that the relevant
components of the metric tensor are

gλλ =
R2 +R2

φ

R2R2
λ

, gλφ = − Rφ

R2Rλ
, gφφ =

1

R2
. (A8)

The one-dimensional mass density is

M =

∫∫

JΣdφ. (A9)

The mass and angular momentum do not evolve since
the first integral above vanishes, which results from us ne-
glecting shear viscosity. The complex eccentricity evolves ac-
cording to

ℓM∂tE =

∫∫

(

2eiφ∂λ(JR
2Tλφ)− iλ eiφ∂λ(JRλT

λλ)

−i eiφJR2Tφφ − JR2

λ
eiφTλφ

)

dφ dz, (A10)

which is a type of nonlinear Schrödinger differential equation
(that is second order in λ).

For general initial conditions, the time-evolution will
produce a twist in the disc, but it is possible to seek modal
solutions that remain untwisted. In this case, inputting the
stress integrals above leads to an equation for the evolution
of the complex eccentricity for any eccentricity and eccen-
tricity gradient for an untwisted disc, as long as the orbits
do not intersect. The final form of this equation after sub-
stituting the stress integrals is too complicated to be worth
writing down in closed form here. It can, however, be com-
puted in Mathematica and exported to text format for input
in our Matlab scripts that are used to solve Eq. A10.

We seek modes E ∝ eiωpt that precess slowly at the rate
ωp, so that Eq. A10 is converted to an eigenvalue problem
of the form

ωpe = f(λ, e, e′, e′′), (A11)

subject to appropriate boundary conditions, where f is in
general a nonlinear function of its arguments.

The behaviour of the stress integrals for large e, e′ is
straightforward to understand. As the orbits become closer
to intersecting ((e − λe′)2 → 1) or e → 1 or (λe′)2 → 1,
strong pressure forces arise, which modify the eccentricity

profile so that the orbits do not intersect. An interesting
result of these forces is that they modify the global preces-
sion rate of the mode throughout the disc so that it pre-
cesses more rapidly in a retrograde sense as the orbits be-
come closer to intersecting, even if this near intersection only
occurs in a small region of the disc. We note that the for-
malism of Borderies et al. (1983) for narrow eccentric rings
(with small eccentricities but arbitrary eccentricity gradi-
ents) applied to an isothermal gas also predicts a precession
rate (their Eq.13) that depends on the eccentricity gradient,
and which diverges in the limit of intersecting orbits. This
is consistent with our results.

The 2D isothermal model is a simplification of a real-
istic 3D eccentric disc. The isothermal case (with adiabatic
index of 1) is the most compressible 2D model that we can
consider, where the pressure increase for a given stream-
line convergence is minimised (over less compressible mod-
els with adiabatic indices larger than 1). However, in 3D the
disc can also expand vertically, which may somewhat allevi-
ate this pressure increase. However the qualitative behaviour
of the 2D isothermal model is likely to carry over to more
realistic models.

APPENDIX B: LINEAR NON-SECULAR

THEORY IN 2D

As listed in Table 1, we solve the eigenvalue problem for the
full (non-secular) isothermal hydrodynamical equations in
two dimensions to compute the precession frequency of the
fundamental m = 1 linear eccentric mode, to allow compar-
ison with simulations and secular theory. We assume linear
perturbations u′

R, u
′

φ,Σ
′ ∝ ei(φ−ωpt), which satisfy

−iω̂u′

R = 2Ωu′

φ − c2s
Σb

∂RΣ
′ +

c2sΣ
′

Σ2
b

∂RΣb, (B1)

−iω̂u′

φ = − (2Ω +R∂RΩ)u
′

R − ic2s
R

Σ′, (B2)

−iω̂Σ′ = −Σb

(

u′

R

R
+ ∂Ru

′

R

)

− u′

R∂RΣb −
iΣb

R
u′

φ,(B3)

where ω̂ = ωp−Ω, subject to the BCs that u′

R = 0 at R = Ri

and R = Ro. In this case

Ω = Ω0R
−

3

2

(

1− σc2s
Ω2

0

R

)
1

2

, (B4)

where we have taken into account the radial pressure gra-
dient in full. This is solved using a Chebyshev collocation
method (adopting 101 points in radius, which we find to
be more than sufficient to compute the fundamental mode),
which converts the problem to a standard eigenvalue prob-
lem that can be solved (for which we use a QZ method) to
compute the precession frequency ωp.
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