
This is a repository copy of Analysing anaphoric ambiguity in natural language 
requirements.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/108938/

Version: Accepted Version

Article:

Yang, H., de Roeck, A., Gervasi, V. et al. (2 more authors) (2011) Analysing anaphoric 
ambiguity in natural language requirements. Requirements Engineering, 16 (3). pp. 
163-189. ISSN 0947-3602 

https://doi.org/10.1007/s00766-011-0119-y

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1 

Analysing Anaphoric Ambiguity in Natural 

Language Requirements 

Hui Yang • Anne de Roeck • Vincenzo Gervasi • Alistair Willis • Bashar Nuseibeh 
 
 

Abstract: Many requirements documents are written in natural language (NL). However, with the 

flexibility of NL comes the risk of introducing unwanted ambiguities in the requirements and 

misunderstandings between stakeholders. In this paper, we describe an automated approach to 

identify potentially nocuous ambiguity, which occurs when text is interpreted differently by 

different readers. We concentrate on anaphoric ambiguity, which occurs when readers may 

disagree on how pronouns should be interpreted. 

We describe a number of heuristics, each of which captures information that may lead a reader to 

favour a particular interpretation of the text. We use these heuristics to build a classifier, which in 

turn predicts the degree to which particular interpretations are preferred. We collected multiple 

human judgements on the interpretation of requirements exhibiting anaphoric ambiguity, and show 

how the distribution of these judgements can be used to assess whether a particular instance of 

ambiguity is nocuous. Given a requirements document written in natural language, our approach 

can identify sentences which contain anaphoric ambiguity, and use the classifier to alert the 

requirements writer of text that runs the risk of misinterpretation. 

We report on a series of experiments that we conducted to evaluate the performance of the 

automated system we developed to support our approach. The results show that the system 

achieves high recall with a consistent improvement on baseline precision subject to some 

ambiguity tolerance levels, allowing us to explore and highlight realistic and potentially 

problematic ambiguities in actual requirements documents. 

Keywords: nocuous ambiguity; natural language requirements; anaphoric ambiguity; noun-

phrase coreference resolution; antecedent preference heuristics; human judgements; machine 

learning 



2 

1. Introduction 

In industrial practice, the vast majority of requirements documents are written in natural language 

(NL) [3], and so run the risk of being ambiguous. Ambiguity is a phenomenon inherent in natural 

language, and occurs when a linguistic expression may be understood in two or more different 

ways. Ambiguity has often been considered a potentially harmful attribute of requirements [6], 

since ambiguity in the requirements can potentially lead to specifications which do not accurately 

describe the desired behaviour of the system to be developed. For example, if the customer’s 

interpretation of the requirements is not the same as that of the system’s developers and testers, 

then the system might not be accepted after customer validation. Similarly, if a user manual is 

written based on a different interpretation of the requirements from that of the developers, the 

system runs the risk of being erroneously documented. 

Berry and his colleagues [3] illustrated the ambiguity phenomenon in requirements 

documents, and, following common practice in linguistics, classified them into four main 

categories, depending on whether the source of the ambiguity lies at the level of words (lexical 

ambiguity), syntax (syntactic ambiguity), semantic interpretation (semantic ambiguity), or the 

interaction between interpretation and context (pragmatic ambiguity). Previous work on ambiguity 

in RE mainly focused on the first three ambiguity types, and attempted to address the problem 

from at least two perspectives.  

• Providing users with a restricted NL [6, 13], tool [19], or handbook [1, 3, 4, 30] to assist 

with writing less ambiguously. 

• Detecting ambiguity by examining the text using lexical, syntactic, or semantic 

information, or with the help of quality metrics [23, 24, 28, 32, 34]. 

However, these attempts at solving the problems introduced by the use of natural language in 

requirements run the risk of failing to retain the benefits. These include the universality of natural 

language as a medium of communication, and the fact that the very same ambiguity can be 

usefully exploited to convey multiple acceptable meanings, to leave leeway for future negotiations, 

or to avoid over-constraining the problem at too early a point in the development cycle [17]. 

Our approach to ambiguity analysis in NL requirements therefore differs from earlier work. 

We aim to help requirements analysts to focus on identifying only those instances of ambiguity 

that are likely to lead to misunderstandings between stakeholders (because different stakeholders 

select different interpretations), while discounting those that are unlikely to cause 

misunderstandings (because all stakeholders choose the same interpretation). The analyst can then 

perform a more careful analysis of the situation (an analysis that is better left to human 

judgement), and decide whether more elicitation is needed, or whether the form in which the 

requirement is expressed needs to be made more precise – or possibly, formalized
1
. For example: 

 

E1. Another feature of GRASS is its ability to use raster, or cell, data. 

                                                

1
 As with programming, requirements are inherently an ill-conditioned problem; small changes in their interpretation can 

lead to hugely differently behaviour of the developed systems. We do not address here the issue of estimating the effect of 

different interpretations caused by ambiguity. 



3 

E2. Table data is dumped into a delimited text file, which is sent to the remote site where it is 

loaded into the destination database.  

 

Note that both of these examples are ambiguous, because there are multiple ways of choosing a 

referent for the pronoun. In our studies of these examples described later in the paper, 12 out of 13 

readers interpreted the pronoun ‘its’ in example (E1) as referring to ‘GRASS’. In practice, this 

means that this text is unlikely to lead to misunderstandings between stakeholders and the 

ambiguity is therefore innocuous. However, almost half of readers interpreted the pronoun ‘it’ in 

example (E2) as ‘Table data’, while the other half interpreted it as ‘a delimited text file’. This 

suggests a higher risk that different readers will interpret the text in different ways, and so lead to 

miscommunication in the development process. The ambiguity is therefore nocuous. It implies that 

not all cases of anaphoric ambiguity are potentially harmful. 

Ambiguity is therefore not a property just of a text, but a conjoint property of the text and of 

the interpretations held by a group of readers of that text [9, 54]. As a consequence, any ambiguity 

presented in a requirement can be innocuous in a certain context (for example, if domain 

knowledge shared between customers, analysts and programmers lead them all to prefer the same 

interpretation) and nocuous in others (for example, when the same text is forwarded to a translator 

who is in charge of translating the user manual to a different language, and who has little 

knowledge of the particular domain). The objective of our research is thus to develop an 

automated technique that can classify ambiguities in NL requirements as nocuous or innocuous for 

a general audience, to vary the sensitivity of the analysis depending on the readership, and to 

inform the analyst of the potentially dangerous cases. 

To bring all potentially ambiguous text to the attention of the analyst would not be very 

efficient, as innocuous cases do not carry a high risk of misunderstanding. In contrast, bringing 

only the likely nocuous cases to the attention of the analyst is much more valuable, as it allows the 

analyst to concentrate on rephrasing those examples which run the risk of being misunderstood at a 

later stage in the development cycle. The work in this paper builds on Yang et al. [56] which 

investigates the linguistic factors that contribute to the preference for particular readings, and 

demonstrates that the distinction between nocuous and innocuous ambiguity can be characterized 

precisely, and can be implemented in a computational model. The approach builds on previous 

work applied to requirements documents [9, 54, 57], which focused on coordination ambiguity 

shown in example E3 below:  

 

E3.  They support a typing system for architectural components and connectors. 

 

In the example (E3), the coordination construction ‘architectural components and connectors’ can 

be bracketed as ‘[architectural [components and connectors]]’ or as ‘[architectural components] 

and [connectors]. We developed a set of heuristics to automatically predict whether a coordination 

ambiguity may be misinterpreted given an ambiguity threshold (which indicates the degree of 

nocuous ambiguity that can be tolerated for a given domain of application). For example, we may 

wish to tolerate less ambiguity in high risk domains, where failure carries a higher cost, and insist 

that all requirements be formulated in utterly precise (even formal) terms, at the expense of ease of 

expression. In contrast, in lower risk domains we might be prepared to accept more ambiguity as 



4 

long as that encourages creativity in inventing requirements, for example when adopting a rapid-

prototyping process so that any misunderstanding can be corrected early anyway. 

In this paper, we investigate anaphoric ambiguity exemplified by use of pronouns such as ‘it’, 

‘them’ and ‘their’. These are common in requirements documents and have been noted as being 

problematic to analyse because contextual dependencies have to be taken into account [3]. There 

may be several items in the context to which a pronoun might refer, and those items might be 

spread over several previous sentences.  

Our goal is therefore to develop an architecture of an automated system to support 

requirements writing, by incorporating nocuity detection into the requirements workflow. At the 

centre of such an architecture is a classifier which can determine automatically whether an 

instance of anaphoric ambiguity is nocuous or innocuous. We develop the classifier using 

instances of anaphoric ambiguity extracted from a collection of requirements documents. For each 

instance, a set of human judgements are used to classify the ambiguity as nocuous or innocuous. A 

classifier is then trained on the linguistic features of the text and the distribution of judgements to 

identify instances of nocuous ambiguity in new cases. The classifier is then integrated with 

functional modules to extract ambiguous anaphora instances from full-text documents and use the 

context to identify those instances which display nocuous ambiguity.  

In the work described in this paper, we followed the general methodology for automatic 

identification of nocuous ambiguity presented in Yang et al. [56]. We implement, refine and 

extend the preliminary model of ambiguity described in Yang et al. [58] by presenting an overall 

system architecture which consists of four major functional modules. This includes two new 

functional modules: Text Preprocessing and Ambiguous Instance Detection, which include a noun-

phrase (NP) coreference resolution engine.  Moreover, we explore more antecedent preference 

heuristics to further refine and improve the antecedent classifier. We conduct a new set of 

experiments, and report our experimental results to illustrate and evaluate the extended ambiguity 

model.     

The remainder of the paper is organized as follows. Section 2 provides some background on 

anaphoric ambiguity, with relevant anaphora examples. Section 3 describes an overall system 

architecture for automatic detection of nocuous ambiguities. In Section 4 we give details about the 

identification of anaphoric ambiguity instances and the extraction of associated antecedent 

candidate with the help of a noun-phrase coreference resolution engine. Section 5 discusses the 

building of antecedent classifier, which is underpinned by three main components, antecedent 

preference heuristics, human judgments and machine learning. In Section 6, we introduce the 

procedure for automatic judgment of nocuous ambiguities. Our experimental setup and results are 

reported in Section 7, and Section 8 addresses potential threats to validity. Section 9 reflects on 

related work, and is followed by our conclusions and plans for future work. 



5 

2. Anaphoric ambiguity 

2.1 Nocuous Anaphoric Ambiguity 

An anaphor
2
 is a linguistic expression which refers to a preceding utterance in text. Similarly, a 

cataphor refers to an expression which occurs further on in the text. For example
3
, 

 

E4: A prototype exists and it will be examined for reuse. (‘it’ is an anaphor which refers to ‘a 

prototype’) 

E5: If they are valid, these parameters will be stored in the data processing subsystem. (‘they’ is a 

cataphor which refers to ‘these parameters’)  

 

Compared with anaphora, cataphoras are relatively uncommon in natural language documents, 

and we have found very few instances in the requirements documents that we are working with. In 

this paper, we are concerned with anaphora only. Specifically, we focus on anaphoric references 

through three common-used pronoun types in requirements documents: 3rd personal pronouns 

(e.g., it, they, them), possessive pronouns (e.g., their, its) and prepositional pronouns (e.g., under 

it). The reason to concentrate on these three kinds of pronouns is that: (a) we found them to be 

widespread in requirements documents; for example, in our collected dataset that consisted of 11 

requirements documents with a total of 26, 829 sentences, 1642 (about 6.12%) sentences contained 

at least one 3rd personal or possessive pronouns; (b) Due to the high cost in human judgment 

collection, we were limited in the number of instances on which we could collect human 

judgments. To make sure that each pronoun type has enough cases for machine learning, we 

decide to first focus on commonly used personal and possessive pronouns, and then extend our 

research to other kinds of pronouns, such as demonstrative pronouns (e.g., this, these), indefinite 

pronouns (e.g., each, some), in the future work. We selected a set of 200 anaphoric instances for 

the research described in this paper.    

The expression to which an anaphor refers is called its antecedent. Antecedents for personal 

pronoun anaphora are nouns or noun phrases (NPs) found elsewhere in the text, usually preceding 

the anaphor itself. In (E4), the pronoun ‘it’ is an anaphor and ‘A prototype’ is the antecedent NP. 

The interpretation of (E4) states that the prototype will be examined for reuse. The intuition is that 

the anaphor is a placeholder for the antecedent that has been mentioned previously. 

Anaphoric ambiguity occurs when the text offers two or more potential antecedent candidates 

either in the same sentence or in a preceding one, as in example (E6). 

 

E6. The procedure shall convert the 24 bit image to an 8 bit image, then display it in a dynamic 

window. 

 

In this case, either of the three underlined NPs could be legitimate antecedents for the anaphor: a 

procedure that displays the 24 bit image would meet the requirement, as would one that displays 

                                                

2
 Plural: anaphora 

3
 Our examples are adapted (in many cases abbreviated) from our collection of requirements documents. We render 

anaphora in bold and underline antecedent candidates.  



6 

the 8 bit image. It is possible for different stakeholders to commit, legitimately, to different, 

incompatible readings of the same requirement. The requirement can be signed off by all 

stakeholders, and yet the developer could produce a system displaying, for example, the 8 bit 

image - which would not satisfy the customer's intention of having the 24 bit image displayed 

instead. The final result of this sort of misunderstanding is then the delivery of a system that does 

not satisfy the customer.  

Now consider examples (E7) and (E8), both of which have more than one antecedent 

candidate for the anaphor ‘it’. 

 

E7. The MANUAL schema models the system behavior when it  is in manual override mode. 

E8. A prototype exists for this process and it will be examined for reuse. 

 

We asked 13 people with software engineering backgrounds to identify which NP they 

thought the anaphor referred to in (E7). 7 committed to “the MANUAL schema”, whereas 6 chose 

‘the system behavior’. Hence, we consider the instance (E7) as a typical nocuous ambiguity case 

for study. In contrast, for (E8), all judges agreed that ‘a prototype’ is the antecedent. This 

illustrates the difference between nocuous and innocuous ambiguity. Both (E7) and (E8) contained 

more than one possible antecedent, but in the case of (E7) the interpretations of stakeholders 

significantly diverged, whereas all stakeholders committed to the same antecedent in (E8). We 

identify (E7) as a case of nocuous anaphoric ambiguity and (E8) as a case of innocuous anaphoric 

ambiguity. 

These examples illustrate three further points: 

1. Merely identifying the presence of all potential anaphoric ambiguity in requirements 

documents (as suggested, among others, by Gnesi et al. [18], where this feature is called 

‘implicity’) is not an effective approach, due to the high number of false positives. It is 

almost always the case that there exist multiple possible antecedents for the anaphor, but 

readers will often agree on the same interpretation of the text (as illustrated in example 

(E8)). The point is to identify those cases where readers may disagree. 

2. The traditional computational approach to ambiguity, of trying to automatically 

determining the correct antecedent (‘disambiguation’) is inappropriate since stakeholders 

would still hold incompatible interpretations. 

3. The problem with example (E7) is that different users may interpret the text differently; 

finding a most likely interpretation would be of no help as part of the development 

process. No individual stakeholder can be aware of whether other stakeholders hold 

different interpretations from his or her own. Therefore, our approach is to alert users to 

where nocuous ambiguities might occur. 

2.2 Human Judgments 

We define an ambiguity as nocuous if it gives rise to diverging interpretations. We concur with 

Wasow et al. [53] who suggests that ambiguity is always a product of multiple denotations to a 

linguistic expression that the interpreter assigns to, and thus is a subjective phenomenon. From this 

perspective, modeling interpretations requires access to human judgments, which we capture by 



7 

surveying participants. Given a linguistic expression, we ask human judges for their interpretations 

of it. We use this information to decide whether, given some ambiguity threshold, a particular 

instance is to be seen as innocuous or nocuous depending on the degree of dissent between the 

judges. 

2.2.1 The Building of the Dataset 

Anaphora instances in requirements documents. We collected a set of 11 requirements 

documents from RE@UTS web pages
4
. The documents specify systems from a variety of 

application domains, including transportation, engineering, communication, and web applications. 

In this dataset, we manually located a set of 200 anaphora instances 
5
containing different types of 

pronouns. Each instance consists of one or two sentences - i.e. the current sentence in which the 

pronoun appears, and the preceding one, depending on the position of the pronoun in the sentence. 

Each instance has two or more possible noun phrase (NP) candidates for the antecedent of an 

anaphor. In our data, nearly half of the cases (48%) were subject pronouns (i.e. ‘it’, ‘they’) 

although objective (i.e. ‘them’, ‘it’) and possessive (i.e. ‘its’, ‘their’) pronouns also accounted for a 

significant number (15% and 33%, respectively). Prepositional pronouns (e.g., ‘under it’, ‘on 

them’) were relatively rare (4% only - 8 instances in the whole dataset). 

Human judgment collection. The anaphora instances containing potential ambiguity were 

randomly partitioned into five separate surveys (each survey containing 40 instances), which were 

then administered to a group of 38 respondents (computing professionals who were academic staff, 

research students, or software developers) through a web site
6
. Among these judges, 25 were 

native English speakers, 22 people had at least 3 years RE/SE experience and 11 for 1~ 3 years, 

and 10 had some background in natural language processing (NLP). Each session started with an 

introduction explaining the task and illustrating how to record a judgment. The judges were then 

asked to record their interpretations for each instance in the survey. Instances were presented by 

highlighting the anaphor and each candidate antecedent (as in the example in Table 1 discussed 

later). The judges were asked to select the antecedent candidate they thought corresponded to the 

anaphor. To avoid bias and to collect opinions from different judges, each judge was allowed to 

complete a survey only once (but could complete several distinct surveys). In our collection, to 

ensure enough judges and to minimize the effect of noise introduced by rogue judgments
7
 [25], 

each instance was judged by at least 13 people, and tolerate up to one or two rogue judges. Each 

judge was allowed to choose one of NP candidates. If the judge could not decide which one is 

preferred, the alternative option ‘I am not sure which one of the above is more appropriate’ was 

available for selection.  

                                                

4
 http://research.it.uts.edu.au/re/ 

5
 In requirements documents, the sentences that describe requirements are not generally specified by the writer. So 

anaphora instances are collected based on the whole text of the document other than some specific requirements sentences. 
6
 http://www.surveymonkey.com/s.aspx?sm=kbGtRdJJXqWabZFk28tJfw_3d_3d 

7
 Rogue judgments are errors made by judges through carelessness or by accident, rather than judgments that reflect a 

genuine difference of opinion. 



8 

2.2.2 Ambiguity Threshold 

We use the ambiguity threshold as a key concept in determining when an ambiguity is nocuous. 

Different application areas may be more or less tolerant of ambiguity [43]. For instance, 

requirements documents describing safety critical systems should seek to avoid misunderstandings 

between stakeholders. Other cases, such as music books, could be less sensitive.  

In order to predict whether a particular instance displays nocuous ambiguity, we used the 

concept of ambiguity threshold proposed by Willis et al. [54], which sought to implement a 

flexible tolerance level to nocuous ambiguity. We adapted the definition specifically to anaphoric 

ambiguity. The definition makes use of a notion of certainty of a particular NP antecedent 

candidate, which is calculated as the percentage of the judgments that favoured this NP against the 

total judgments in the ambiguity instance. For instance, consider the example in Table 1. The 

certainty of the NP ‘supervisors’ is 12/13=92.3% and the certainty of the NP ‘tasks’ is 1/13=7.7%. 

The definition of ambiguity threshold, adapted to anaphoric ambiguity is as follows: 

 

Definition. Given an anaphora instance, I, a collection of judgments associated with NP 

antecedent candidates of the anaphor, and an ambiguity threshold τ (where 0.5 < τ ≤ 1.0): 

 

If there is one NP candidate that has a certainty greater than τ, then the instance I exhibits 

innocuous ambiguity at the threshold τ. Otherwise, the instance I exhibits nocuous ambiguity at the 

threshold τ. 

In this definition, the ambiguity threshold τ is set to be greater than 0.5. This constraint 

guarantees that, in an innocuous ambiguity case, only one NP candidate can be a potential 

anaphora reference. , To illustrate the definition, at the ambiguity threshold τ = 0.8, the ambiguity 

in Table 1 is innocuous because the certainty of the NP ‘supervisors’ exceeds the threshold, 

reflecting a clear agreement between the judges. 

 

Table 1. Judgment count for an anaphoric ambiguity instance 

1. Supervisors may only modify tasks they supervise to the agents they supervise.  

 Response Percent Response Count 

(a) supervisors 

(b) tasks 

92.3% 

7.7% 

12 

1 

 

 

Figure 1 depicts the relationship between the ambiguity threshold and the incidence of 

nocuous ambiguity. As expected, the number of nocuous ambiguities increases with the ambiguity 

threshold τ. This is understandable because high thresholds mean low tolerance to the 

disagreement among the judges, which is usually hard to achieve. For high thresholds (e.g., τ ≥ 

0.9), more than 60% of anaphoric ambiguity instances are classified as nocuous, showing that 

consensus between judges on an interpretation is elusive for context-dependent cases like 

anaphora. In practice, however, judges will make some mistakes and it is advisable to allow some 

degree of ambiguity tolerance (e.g., 0.7 ≤ τ ≤ 0.9) before registering a genuine difference of 

opinion indicating that an ambiguity is nocuous. 

Ambiguities that are nocuous at a lower threshold are much harder to detect than those that are 

nocuous only at higher thresholds because, by definition, the degree of divergence between 



9 

judgments will be more obscure at lower thresholds. Thus, τ can be used to find the most nocuous 

instances by comparing the nocuous ambiguity lists at different levels of thresholds, allowing an 

analyst to focus on the most critical cases first (e.g., when limited time is available for further 

elicitation). 

 

Fig. 1 Proportions of interpretations at different ambiguity thresholds in the anaphora instances 

3. Overall System Architecture 

We developed an automated system to detect nocuous anaphoric ambiguities from full-text 

documents. The system architecture is shown in Figure 2. The initial input is a complete 

requirements document. The output is the set of selected sentences that contain potentially 

nocuous anaphoric ambiguities.   

 

Fig. 2 Overall system architecture  

 

The system consists of four major functional process modules. 

 

(a) Text Preprocessing Module. The input requirements document is split into separate 

sentences using an established sentence boundary detector
8
. The individual sentences are then 

passed to the Genia Tagger
9
 [50] which identifies the individual words’ part of speech, and 

marks phrase boundaries. For example, the Genia tagger marks the phrase boundaries in (E6) 

above as: 

 

[A prototype ]NP[exists]VP[for]PP[this process]NP and [it]NP[will be examined]VP[for]PP[reuse]NP 

                                                

8
 http://text0.mib.man.ac.uk:8080/scottpiao/sent_dectector  

antecedent classifier 

Nocuous 

Ambiguities 

test 

instances 

text 
Text 

Preprocessing 

Ambiguous Instance 

Detection 

Antecedent Classifier 

Construction 

Nocuous Ambiguity 

Judgment 

training instances 

Document 



10 

 

Notice particularly that the two NPs ‘a prototype’ and ‘this process’ are identified, as is the 

pronoun ‘it’ which is also highlighted as an NP. Any additional statistical information (e.g., 

word co-occurrence) that is required for the heuristics in the classifier module are also saved 

into the back-end database at this point. 

   

(b) Ambiguous Instance Detection Module. This module identifies a set of possible antecedents 

for each identified pronoun. From the output of the text pre-processing module, three types of 

pronouns, i.e. 3rd personal, possessive, and prepositional pronouns (e.g., it, them, their, under 

it) can be identified, as can the set of all preceding NPs. In fact, it is possible for several NPs 

to refer to the same entity. The NPs are therefore clustered into corefering groups; this process 

is discussed fully in section 4.2. Clearly, in a whole document there will usually be too many 

NPs preceding the pronoun for them all to be possible antecedents. In practice, we take the set 

of possible antecedents to be the NPs preceding the pronoun in the same sentence, and (if 

there is only one preceding NP in the sentence), the sentence before it. 

 

(c) Antecedent Classifier Construction Module. This module implements a classifier based on 

multiple human judgments of the most likely NP antecedent candidate in terms of an 

anaphoric ambiguity instance. A number of preference heuristics are also included to model 

the factors that may favour a particular interpretation. The trained antecedent classifier feeds 

into the nocuous ambiguity judgement module. More detained discussions will be given in the 

later section 5.  

  

(d) Nocuous Ambiguity Judgment Module. Finally, for each pronoun and associated NP 

antecedent candidates, the antecedent classifier assigns one of the antecedent preference 

labels, Positive (Y), Questionable (Q), and Negative (N), to each candidate. This information 

is then used to calculate whether the anaphoric ambiguity is nocuous or innocuous, with the 

nocuous ambiguities being presented to the user as the final step. 

 

In the following sections, we will separately discuss the behaviour of the three modules, 

Ambiguous Instance Detection, Antecedent Classifier Construction, and Nocuous Ambiguity 

Judgment. 

4. Ambiguous Instance Detection 

To identify nocuous anaphoric ambiguities, each anaphor must be identified, along with its 

potential antecedents. The particular instance of the anaphor and the candidate antecedents 

(clustered into corefering sets [46]) are then used either as training instances to train the antecedent 

classifier, or as input to the judgement module during live deployment (Figure 3). 

                                                                                                                                 

9
 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/ 



11 

 

Fig. 3 The functional architecture of the ambiguity instance detection module (highlighted by the 

dashed line) 

4.1 Selection of Anaphora and Candidate Antecedents  

As described earlier, the output of the text preprocessing module is the set of separated sentences 

that make up the requirements document. For each sentence, word token information (e.g., word, 

word lemma, POS tag) and phrase chunks are identified by the Genia Tagger. The phrases 

(specifically the NPs) provide the necessary antecedent cases. Selection of anaphora and possible 

antecedent candidates proceeds by: 

A. The occurrence of the concerned pronouns is located by exact word token matching. 

Instances of anaphora are taken to be the 3rd personal and possessive pronouns, i.e. it, 

they, them, its and their. The rationale for limiting ourselves to the 3rd person is that, in 

requirements documents, very rarely are 1st and 2nd person references (e.g., ‘you’ or 

‘my’) used at all. This assumption does not hold for other kind of documents that are of 

relevance to requirements engineering, e.g. in contracts they appear commonly (as in, 

‘our service’ and ‘your obligations’). Our approach could of course be extended to 

address these. 

B. The candidate antecedents are the two or more NPs found in the text preceding the 

pronoun.  

C. If there are two or more NPs preceding the pronoun in the same sentence, then we use 

those as the candidate NPs. Otherwise, we also include the NPs in the previous adjacent 

sentence. 

 

To illustrate point C, consider example (E7). 

 

E9. In most Consortium states, these users must go to a service center to view LMI data using the 

LMI ACCESS application. They will primarily use the LMI ACCESS Job Seeker module. 

 

In this case, there are no NPs (and so no candidate antecedents) preceding the pronoun ‘They’. 

Therefore, the set of candidate NPs is extended to those appearing in the previous sentence, that is, 

{[most Consortium states]NP, [these users] NP, [a service center] NP, [LMI data] NP, [the LMI 

ACCESS application] NP}. 

training  instances 

Text 

Preprocessing 

Antecedent Classifier 

Construction 

Nocuous Ambiguity 

Judgment 
Anaphor 

Selection 

Antecedent 

candidate selection 

NP Coreference 

Resolution 

text 

antecedent classifier 

Ambiguous Instance Detection 

test 

instances 



12 

However, two types of NP compounds are given special consideration when identifying 

candidate antecedents:  

(a) NPs with preposition (PP) attachments are extracted as distinct candidate antecedents. For 

example, if the Genia tagger identifies the NP and preposition phrases: 

[job listings] NP [from] PP [other job banks] NP  

then the two distinct NPs, ‘job listings from other job banks’ and ‘other job banks’ would both 

be considered as candidate antecedents, because the 2nd NP is normally considered part of the 

PP which is part of the first NP. Currently, our system only deals with some simple PP 

attachment cases, i.e. the NP only attached with one PP. The ambiguity problem in NPs with 

multiple PP attachments (e.g., ‘the system for relocation parcels from Appraisals’) will be 

addressed in future work.   

(b) Coordinated NPs (i.e. NPs conjoined with ‘and’ or ‘or’) are also extracted separately. For 

instance, the tagged text: 

[several counties] NP and [metropolitan areas] NP  

is separated into three NP candidates: ‘several counties and metropolitan areas’, ‘several 

counties’, and ‘metropolitan areas’. 

4.2 Noun-Phrase Coreference Resolution 

Coreference occurs when multiple expressions in a sentence or document refer to the same entity 

in the world. Consider the instance (E10) 

 

E10. The Raw Data Processing Subsystem first checks the CCSDS parameters for valid values and 

stores these parameters if they are valid. 

 

This is a typical coreference case because the two NPs ‘the CCSDS parameters’ and ‘these 

parameters’ probably refer to the same parameters. When this example was presented to human 

judges, both of these NPs were separately selected as possible references of the pronoun ‘they’ by 

our judges. Without coreference resolution, the system would treat these two NPs as unrelated 

NPs, and mistakenly recognize this anaphoric ambiguity as nocuous because of the lack of 

agreement between the judges. However, in practice, we would expect this to be an example of 

innocuous ambiguity because the two NPs actually refer to the same object, and therefore the 

judges were actually in agreement. Therefore, the ability to link coreferring noun phrases within an 

ambiguous instance is critical to accurately identifying nocuous ambiguity. 

We build a noun-phrase coreference resolution engine which adopts the standard learning-

based framework employed in the work by Soon et al [46]. A set of references (i.e. NPs), along 

with the coreference relationships among them, are manually extracted from a set of 200 anaphoric 

ambiguity instances. Note that this set of anaphoric ambiguity instances (described later) is also 

used for nocuous ambiguity analysis.  

During training, for each anaphor ambiguity instance, training instances are created by pairing 

all possible NP antecedent candidates. These pairings are represented as a set of feature vectors. 

The pairings that contain coreferring NP phrases form positive instances, while those that contain 

two non-coreferent phrases form negative instances. Once the training instances are created, a 



13 

classifier is built by a k-nearest neighbour learning algorithm (See Section 4.2.2 for details about 

the building of a coreference classifier). 

To find the coreference relations among the possible NPs antecedent candidates in a new 

ambiguous instance, potential pairs of coreferring NPs are presented to the classifier, which 

determines whether the two NPs corefer or not.  

In our system, we use a heuristics-based method to exploit the factors that influence 

coreference determination. The heuristics are incorporated in terms of feature vectors. In the 

following subsections, we will introduce more details about the building of a noun-phrase 

coreference engine. 

4.2.1 Coreference Heuristics 

We use the mention-pair model [39] to build a NP coreference engine to determine which sets of 

NPs corefer. 

 

Definition: A mention-pair coreference instance consists of two NPs, i.e. NPi and NPj, where NPi 

appears preceding NPj in the text, and NPi is the referent of NPj. 

 

where NPi and NPj are non-pronoun noun phrases. For example, in the instance of (E8), the 

pairing ‘the CCSDS parameters’ and ‘these parameters’ make up a coreference instance, and ‘the 

CCSDS parameters’ is the referent of ‘these parameters’.  

To build the coreference engine, this definition is used, along with the set of features described 

in Table 2 (discuss later).  

Different types of information are used by the heuristics, which include the string contained in 

the phrase, grammatical and syntactic features, and semantic class information (i.e., the type of 

object referenced by the phrase). Here we present below a brief description of each type of 

heuristics. 

String-matching Heuristics. String-matching heuristics aim to capture the string matching 

patterns between the two coreferring NPs. To facilitate matching, for each NP, we first extract the 

information of its headword
10

 and modifiers. We perform four types of string-matching: (a) Full-

string matching: two strings are stripped of their stopwords, such as articles (e.g., ‘a’, ‘an’, ‘the’), 

demonstrative pronouns (e.g., ‘this’, ‘that’, ‘these’, ‘those’), then compared with each other. 

Therefore, the phrase ‘a test’ matches the phrase ‘the test’. (b) Headword matching: The phrases 

that share the same headword are more likely to be coreferent than those that have different 

headwords. For instance, ‘the CCSDS parameter’ and ‘these parameters’ in the example (E8) (c) 

Modifier matching: A modifier (e.g., adjective or adverb) could change or limit the meaning of a 

noun. It is possible that two NPs with the same headword but different modifiers refer to distinct 

entities. For example, ‘super users’ and ‘ordinary users’. (d) Alias name: One phrase is an alias of 

the other phrase, e.g., ‘AKSAS’ is the abbreviation of ‘Alaska State Accounting System’. The alias 

                                                

10
 A headword is the main word of a phrase, and the other words in that phrase modify it. For example, for the noun phrase 

‘the CCSDS parameter’, ‘parameter’ is the headword, and ‘CCSDS’ is a noun modifier for the headword.  



14 

list is either collected via the abbreviation table provided the document or extracted from the text 

using an abbreviation extraction algorithm
11

 [40].  

Grammatical Heuristics. This type of heuristics explores the grammatical properties of 

one or both NPs involved in an instance, which includes (a) NP type: Some specific NPs, such as 

the definite NP (e.g., ‘the test’) and demonstrative NP (e.g., ‘these parameters’), are likely to be 

coreferent with any NP that precedes it. (b) Proper name
12

: If two NPs are both proper names, 

they prefer to be coreferent, such as ‘the Raw Data Processing Subsystem’. (c) Number agreement: 

Coreferent NPs generally agree in number.  

Syntactic Heuristics. Syntactic heuristics are measured based on the grammatical role that 

the NPs play in the syntactic structure of the sentence. Three syntactic heuristics are developed: (a) 

Prepositional Phrase (PP) Attachment: If one NP is the PP attachment of the other NP, they 

have preference against coreference. For example, as mentioned previously in noun phrase 

extraction, the nested noun phrase ‘job listings from other job banks’ is split into two NP 

candidates, i.e. ‘job listings from other job banks’ and ‘other job banks’. But it is unlike to have a 

coreference relation between them. (b) Appositive: if two NPs are in a possible appositive 

construct, they are most likely to be coreferent. For instance, 

 

E11. At the national level, America’s Career Kit, a suite of Internet application, has been 

developed by the US Department of Labour. 

 

In example (E11), ‘a suite of Internet application’ is served to define ‘America’s Career Kit’, and 

thus they refer to the same entity. Our system determines whether one NP is in appositive to the 

other NP based on the dependency tree generated by the Stanford Parser
13

. (c) Syntactic role: this 

heuristic favours the NP candidates that have the same subject or object role in the sentence, as in 

example (E12). 

 

E12. Pre-Audit inputs revised data into the cost estimate, and stores the data in the system for 

tracking.  

 

Here, ‘revised data’ (object) is the reference of ‘the data’ that is also the object in the sentence.  

Semantic Heuristics. This type of heuristics makes use of semantic information (e.g., the 

structure information among the words). Semantic class agreement: If both NPs are associated 

with the same semantic classes, such as ‘Person’, ‘Organization’, and ‘Location’, it is likely that 

they are coreferent. The knowledge about the semantic class of a NP is derived based on the 

hierarchical structure of WordNet
14

. The semantic classes of the NPs, NPi and NPj, are in 

agreement if one is the parent node of the other, or they are in the same node, e.g., ‘employee’ and 

‘worker’. When one NP has multiple word senses in WordNet, the search will only focus on the 

first few senses (≤4). Unfortunately, requirements documents often contain acronyms, specific 

                                                

11
 http://biotext.berkeley.edu/software.html 

12
 Proper names are names of persons, places, or certain special things. They are typically capitalized nouns, such as 

‘London’, ‘John Hunter’ 
13

 http://nlp.stanford.edu/software/lex-parser.shtml 
14

 http://wordnet.princeton.edu/ 



15 

product names or other domain jargon, so - missing more specific lexical resources - this heuristic 

cannot be applied extensively. 

4.2.2 Building Coreference Classifier 

The classifier is built by training a k-nearest neighbour learner with feature sets obtained from the 

definitions in Table 2. A training instance consists of a pair of NPs which is associated with a class 

label denoting whether or not the NP pair is coreferential. The k-nearest neighbour learning 

algorithm is the lazy.IBk algorithm provided by the WEKA package
15

. This was chosen as we 

found it outperforms other learning algorithms provided by the package. The classifier built on the 

training dataset has achieved a precision of 82.4% and a recall of 74.2%.  

 

Table 2. Feature set for the coreference classifier. Each instance consists of a pair of NPs, NPi and 

NPj, characterized by 12 features 

Feature Type Feature Description 

Full-string matching Y if both NPs contain the same string after the removal of non-informative 

words, else N. 

Headword matching Y if both NPs contain the same headword, else N.  

Modifier matching Y if both NPs share the same modifier substring, else N. 

String-matching 

Alias name Y if one NP is the alias name of the other NP, else N. 

NP type (NP
i
) Y if NP

i
 is either definite NP or demonstrative NP, else N. 

NP type (NP
j
) Y if NP

j
 is either definite NP or demonstrative NP, else N. 

Proper name Y if both NPs are proper names, else N. 

Grammatical 

Number agreement Y if NP
i
 and NP

j
 agree in number, else N.  

PP attachment Y if one NP is the PP attachment of the other NP, else N. 

Appositive Y if one NP is in appositive to the other NP, else N. 

Syntactic 

Syntactic role Y if both NPs have the same syntactic role in the sentence, else N. 

Semantic Semantic class Y if NP
i
 and NP

j
 agree in semantic class, else N. 

 

 

Having trained the coreference classifier, it can be applied to instances of anaphoric 

ambiguity. As described earlier, each instance of an anaphor is associated with a set of candidate 

antecedents. To identify potential coreference relations among the candidate antecedents, a 

pairwise comparison of the NPs is carried out using the classifier. In this way, each NP pair can be 

tested for coreference, and sets of coreferent candidates identified. 

Table 3 shows the change of judgment count for an anaphoric ambiguity instance when 

coreference resolution is considered. The NPs, ‘the CCSDS parameters’ and ‘these parameters’, 

are grouped into the same candidate cluster by the trained classifier. Hence, the final judgments of 

the entity referred by the cluster are, in practice, the combination of the judgments for these two 

NPs.  

 

 

 

                                                

15
 http://www.cs.waikato.ac.nz/~ml/index.html 



16 

 

Table 3. The change of judgment count of antecedent candidates with coreference resolution 

1. The Raw Data Processing Subsystem first checks the CCSDS parameters for valid 

values and stores these parameters if they are valid. 

Before Coreference Resolution 

 Response Percent Response Count 

(a) the RAW Data Processing Subsystem 

(b) the CCSDS parameters 

(c) valid values 

(d) these parameters 

0% 

50% 

0% 

50% 

0 

7 

0 

7 

After Coreference Resolution 

 Response Percent Response Count 

(a) the RAW Data Processing Subsystem 

(b) {the CCSDS parameters, these parameters}  

(c) valid values 

0% 

100% 

0% 

0 

14 

0 

5. Antecedent Classifier Construction 

Nocuous ambiguity occurs when different readers interpret the same text differently. In this 

section, we attempt to investigate whether heuristics can be developed which model nocuous 

ambiguity. Our approach has three important elements: collection of human judgements (described 

previously in Subsection 2.2), developing the heuristics that model those judgments, and a 

machine learning component to train the heuristics. These elements are represented within the 

dashed line of Figure 4.  

 

Fig 4. The functional architecture of the antecedent classifier construction module (highlighted by 

the dashed line) 

This section focuses on which heuristics should be used to build an antecedent preference 

classifier, then section 6 considers how the combined heuristics should be trained. Our anaphora 

dataset with collected human judgments is used as input to the classifier, with each NP candidate 

within one anaphora instance being treated as a training instance for learning. The human 

judgements for each NP are used to determine the preference class label of the NP. A number of 

antecedent preference heuristics are developed, each of which is regarded as one feature in the 

feature vector associated with a NP candidate. A set of training instances are fed into a machine 

learning tool to construct a classifier. Given an anaphor and a set of possible NP antecedents, the 

test 

instances 

training  instances 

Ambiguous Instance 

Detection 

Nocuous Ambiguity 

Judgment 

Antecedent Preference 

Heuristics 

 

Machine Learning 

Algorithm 

Antecedent   Classifier Construction 

antecedent classifier 

Human  

Judgments 



17 

classifier then predicts how strong the preference for each NP is, and from there, whether the 

ambiguity is nocuous or innocuous.    

5.1 Anaphora Preference Heuristics 

When applied to anaphora, our model of nocuous ambiguity involves estimating the risk that 

different stakeholders interpret the anaphor as referring to different antecedents. This is distinct 

from disambiguation, a process which seeks to determine a unique antecedent, and which hence 

assumes that there is a single correct interpretation. It is also distinct from identifying when an 

individual stakeholder experiences a requirement statement as ambiguous: since no stakeholder 

can be assumed to have access to any other stakeholder’s interpretation, he or she cannot judge 

whether others will interpret the case differently. The purpose of our model is to highlight 

ambiguity problems that cannot be identified by a single stakeholder alone. 

Building on Willis et al. [54], our solution is to estimate the risk of divergent interpretations 

by applying a collection of heuristic rules, each marking a factor which would favour or disfavour 

an NP as the antecedent of an anaphor. Heuristics run over the text and their output is recorded in a 

matrix, which is later used by our machine learning algorithm to classify anaphoric ambiguities as 

nocuous or innocuous. 

Here, we give a brief description of the heuristics we have developed, with some examples. 

Each heuristic implements a preference factor drawn from the literature on anaphoric ambiguity. 

The heuristics fall into three types: those related to linguistic properties of words and sentence 

components, those related to context and discourse information, and those related to information 

on how words and sentence components distribute in the language. This distributional information 

is approximated by statistical information drawn from corpora, in this case in English. These 

heuristics embody a robust, knowledge-rich approach to estimate the preference for candidate 

antecedents of anaphora. Apart from corpora, we used lexical, syntactic, and semantic knowledge 

extracted from several linguistic resources including Stanford Parser, WordNet, BNC
16

 (British 

National Corpus), VerbNet
17

, and the Sketch Engine
18

 [26].  

In this paper, we describe 4 new heuristics as well as the original set of 13 heuristics presented 

in Yang et al. [58]. They are: coordination pattern preference, indicating verb, section heading 

preference, and domain-specific term preference. 

Below we describe our heuristics with some examples. The heuristics generate a collection of 

features for each candidate NP, summarized in Table 4. These are input to the classifier described 

in Section 5.2. It is important to understand that all our heuristics mark antecedents with 

preference factors based on different kinds of knowledge or evidence that favour or disfavour each 

particular NP for the role of preferred antecedent. None of the heuristics represent obligatory 

conditions for an antecedent to meet. Rather, we expect the preferred candidate NPs to emerge 

through the interplay of heuristics which will mutually reinforce or neutralize each other’s 

contribution, as we will see in Section 5.2. This approach has the added advantage that we can 

                                                

16
 http://www.natcorp.ox.ac.uk/ 

17
 http://verbs.colorado.edu/~mpalmer/projects/verbnet.html 



18 

exercise some control over optimization by adding, or removing, heuristics. Furthermore, the 

methodology can be extended to cover other ambiguity types by developing heuristics designed to 

handle them. 

5.1.1 Linguistic Preference Heuristics 

Our linguistic heuristics record syntactic and semantic clues found useful in identifying 

antecedents. 

H1. Number agreement. In English, anaphors and their antecedents usually must agree in 

number (i.e. singular or plural). There are exceptions: for instance, certain collective nouns in 

English (e.g. ‘organization’, ‘consortium’, ‘team’) appear to be singular but can be referred to by a 

plural anaphor (e.g., ‘they’). Similarly, singular antecedents that have been conjoined with ‘and’ or 

‘or’, as in (E13), take a plural anaphor: 

 

E13. IT developer and consultant often ask for an exemplary requirements specification as a 

starting point in their specific project. 

 

Finally, plural pronouns are often intended to refer to a singular antecedent to avoid using a 

gender-specific pronoun. Such instances appear in the requirements documents in our sample and 

always involve an antecedent that is a single person.  

 

E14. The user will be able to generate a printout to a local printer from their browser. 

 

In our system, each noun and pronoun is assigned a number property by the Stanford tagger 

which is checked by the Number Agreement heuristic. We use a syntactic rule to detect the 

conjoined NPs and assign the appropriate number property. We handle the exceptions by using the 

hypernym relationship in WordNet, specifically those hypernyms which point to collective nouns 

referring to groups such as ‘staff’ and ‘division’, or to descriptions of individuals like ‘employee’, 

or ‘user’. Moreover, we make use of a list of expressions that modify plural nouns (e.g., ‘a lot of’ 

and ‘a few’, ‘many’) in assigning the number property. 

H2. Definiteness. A definite noun phrase is more likely to be an antecedent of an anaphor than 

an indefinite NP [35]. The Definiteness heuristic tags an NP as definite if its head noun is modified 

by a definite article (e.g., ‘the system’), a demonstrative (e.g., ‘this function’), or a possessive 

pronoun (e.g., ‘its attribute’). 

H3. ‘Non-prepositional’ noun phrases. Brennan et al. [7] showed that a priority system 

operates between syntactic roles in determining antecedents. In English, the priority order, 

implemented by our heuristic, is ‘subject, direct object, indirect object’. In English, subjects and 

direct objects are not introduced by prepositions (such as in, to, up, etc.) and our heuristic favours 

non-prepositional NPs as antecedents. For instance: 

 

E15. Constraints are conditions about the data that must always be true. They are the integrity 

rules that protect the data in the eventual database. 

 

                                                                                                                                 

18
 http://sketchengine.co.uk/ 



19 

Here, the NPs ‘constraints’ and ‘conditions’ are more likely antecedent candidates because ‘the 

data’ is part of the preposition phrase ‘about the data’. 

H4. Syntactic constraint. Empirical evidence suggests that the syntactic roles of antecedent 

and anaphor often correspond [11]. This heuristic gives preference to candidates that have an 

identical subject or object role as the anaphor. For example: 

 

E16. The VCDUs are annotated to reflect the data quality, and any change in the VCID. They are 

also annotated to mark the end of the contact period. 

 

Here ‘They’ (the subject) refers to ‘The VCDUs’ which is also the subject of its sentence. 

H5. Syntactic parallelism. Repeating patterns may offer clues about preferred antecedent 

candidates. For instance, in (E17), both ‘This CONOPS’ and ‘it’ are the subjects in their own 

sentence, and are followed by the verb ‘describes’. This heuristic favours ‘This CONOPS’ as an 

antecedent. 

 

E17. This CONOPS [describes] the mission of the LMI system. It also [describes] the functions 

and characteristics of the system. 

 

H6. Coordination pattern. This heuristic marks a preference for candidates that are in the 

same location as the pronoun in a coordination pattern. Application is restricted to the patterns, 

‘[Subj.] V1 NP conj V2 it/them’, where conj = {and, or, before, after}. For instance: 

 

E18. This subsystem is responsible for [receiving] raw wideband data and [placing] it in a 

datastore for RDPS processing. 

 

In (E18), the verbs, ‘receiving’ and ‘placing’, are coordinated by the conjunction ‘and’, and ‘raw 

wideband data’ and ‘it’ are separately the corresponding objects of the coordinated verbs. 

Therefore, the heuristic prefers the NP, ‘raw wideband data’ as the antecedent for the anaphor, ‘it’.  

H7. ‘Non-associated’ noun phrases. This heuristic disfavours NPs occurring immediately 

with the anaphor but in a different syntactic role. For example: 

 

E19. The technical interfaces to the EHR system must be documented in such a way that the 

customers can understand them and use them for integration. 

 

In (E19), the NP ‘the customers’ is unlikely to be the antecedent because it stands in a subject 

relation to the same verb ‘understand’ of which ‘them’ is the object. 

H8. Indicating verbs. Empirical evidence suggests that some verbs, such as ‘represent’, 

‘identify’, ‘discuss’, ‘describe’, etc., are particularly good indicators of the antecedent. The first 

NP following them is marked as the preferred antecedent, as shown in (E20). We use a verb list 

based on Mitkov [35]. 

 

E20. The LPS operational scenarios [represent] sequences of activities performed by operations 

personnel as they relate to the LPS software.  

 

H9. Semantic constraint. This heuristic marks a preference for candidate antecedents that 

respect semantic constraints. For instance, the verb ‘to live’ normally requires an animate agent. In 

example (E21) our heuristic prefers ‘many individuals’ over ‘resources and services’.  

 



20 

E21. Many individuals have difficulty accessing resources and services because they [live] in a 

geographically remote area. 

Semantic properties and constraints, such as animacy, are collected from WordNet and VerbNet. 

In the case of E21, 'they' is an anaphor and is a subject that is followed by the verb 'live'. 'live' 

(whose subject is they, the anaphor) has a thematic role as an animated verb according to VerbNet. 

WordNet also gives the NP candidate 'individual' as belonging to the parent node, 'people', which 

WordNet identifies as an animated noun. Because WordNet and VerbNet agree on the animacy 

property, the noun satisfies the requirement of an animated verb.  

 

H10. Semantic parallelism. This heuristic records a preference for candidate antecedents 

sharing a semantic role with the anaphor (e.g., agent) as below: 

 

E22. RDCS [captures] a raw data byte stream after it [receives] the start capture directive from 

the MACS. 

 

This heuristic plays a particularly useful role since requirements documents contain many domain-

specific terms (e.g., ‘RDCS’) that are not present in WordNet and for which semantic properties 

cannot be retrieved. Verbs, on the other hand, are far less likely be highly domain specific, and in 

example (E22), both ‘captures’ and ‘receives’ are tagged as requiring agents in VerbNet and the 

heuristic allows us to use this constraint to record a relationship between ‘RDCS’ and ‘it’. 

H11. Domain-specific term. NPs that represent domain specific terms are more likely to be 

the antecedent than non-domain specific NPs. For this heuristic, we collect domain-specific term 

lists from two types of sources: (a) term dictionaries such as controlled vocabulary list, glossaries, 

and index lists, when contained in the requirements document; (b) Acronym or abbreviation list 

(see the discussion of ‘String-matching Heuristics’ in Section 4.2.1).  

5.1.2 Context/Discourse Preference 

The overall performance of antecedent determination can be improved when incorporating features 

that capture context/discourse information [7, 35]. These are distinct from the syntactic and 

semantic clues discussed so far, and concern what is best described as the structure of the 

information flow in a document. We have developed four heuristics. 

H12. Centering (discourse focus). This heuristic attempts to capture the most salient entities 

in a connected chunk of document (e.g., a paragraph or section/subsection) by marking a 

preference for the most frequently occurring candidate antecedents. We observed that about 87% 

(10,037 out of 11,552) of paragraphs in the dataset contain fewer than 3 sentences, which implies 

that the occurrence frequency of a NP is unlikely to be high. 

We compared the occurrence information of potential antecedents in both the paragraph in 

which they appeared, and the number of times they appeared in the whole document. We found 

that a reliable predictor for frequently occurring candidates was that the candidate noun would 

occur at least twice in the same paragraph as the anaphor. Therefore, this heuristic gives a 

preference for antecedent candidates that occurred twice or more in the paragraph.  

H13. Section heading. If a NP candidate also appears in the heading of the section in which 

the ambiguous instance is located, then we mark it as a preferred candidate. The section heading 



21 

information is extracted from the ‘Table of Content’ or ‘Content’ page at the beginning of the 

document, or using a simple string matching pattern, i.e., section headings usually start with a 

number and a dot followed further numbers/dots (e.g., ‘1.1’, ‘2.1.2’). For example, the section title 

for the paragraph where Example (E22) appears is ‘4.4.1 Functional Requirements allocated to the 

RDCS’, which contains the NP candidate ‘RDCS’ of interest. 

H14. Sentence recency. Antecedents and anaphora may occur in different sentences. This 

heuristic gives preference to candidate antecedents that occur in the same sentence as the anaphor. 

In Example (23), the NP candidate, ‘each relationship’, is more likely to refer to the pronoun ‘it’ 

than other NP candidates that appear in the previous sentence.   

 

E23. The relationships represent the association between the instances of one or more entities that 

are of interest to the LPS. For each relationship, there is a cardinality associated with it. 

 

H15. Proximity. The distance between antecedent and anaphor is significant and this heuristic 

allocates a rank to candidate antecedents reflecting their relative positions in the left context of the 

anaphor. Candidates closer to the anaphor are ranked higher (see Table 4). The distance of a NP 

candidate to an anaphor is the number of words between the right end of the NP and the anaphor 

itself. For example, in E18, the distances of the NPs, ‘This subsystem’ and ‘raw wideband data’ 

from the pronoun ‘it’ are 10 and 2 respectively. The heuristic prefer ‘raw wideband data’ is an 

antecedent. 

5.1.3 Statistics/Corpus Heuristics 

Although requirements documents tend to be highly specialized and contain terms that are not 

part of the general English vocabulary, comparison of textual features with a balanced sample of 

standard text, for instance drawn from a general corpus, can provide useful insights. For instance, 

example (E21) has two candidate antecedents (‘many individuals’ and ‘resources and services’) 

for the pronoun ‘they’ which is subject to the verb ‘live’. Evidence that one of the two candidates 

co-occurs frequently with the verb not just in the document itself, but also in other contexts 

increases the possibility that readers will assume it is the antecedent. 

H16. Local-based collocation frequency. This heuristic marks a preference for candidate 

antecedents which appear in co-occurrence patterns in the requirements document itself.  

 

E24. This subsystem provides the functionality to synchronize the major frames, extract major 

frame times, deinterleave band data, reverse band data if necessary, and align band data. It is 

also responsible for generating the Calibration and Mirror Scan Correction files. 

 

In Example (E24), unlike other NP candidates, the word ‘subsystem’ frequently co-occurs 

with the adjective ‘responsible’ in the document, and thus ‘this subsystem’ is more likely to be 

considered as the potential antecedent.   

H17. BNC-based collocation frequency. This heuristic marks a preference for candidate 

antecedents which appear in co-occurence patterns in a large corpus: in this case, the British 

National Corpus (BNC). The BNC is a modern corpus of written text containing over 100 million 

words of English, collated from a variety of sources, including some from the same domains as the 



22 

documents in our corpus. We use the Sketch Engine to collect information about the behavior of 

words and phrases, in the form of collocation frequencies and patterns, from the BNC. For 

instance, in Example (19), both headwords ‘interface’ and ‘system’ have a collocation score of 

2.77 and 7.23 with the verb ‘use’ in the ‘object-of’ relation of the BNC, whereas ‘way’ and 

‘customer’ has no such collocation relation with ‘use’. Therefore, the heuristic prefers the NPs 

‘The technical interfaces’ and ‘the EHR system’ to the NPs ‘a way’ and ‘the customers’.  

 

Table 4. Features for the antecedent classifier. Each instance represents a single NP candidate, 

NPj, characterized by 17 features. 

Feature Type Feature Description 

Number agreement Y if NP
j
 agree in number; N_P if NP

j
 does not agree in number but it has 

a person property; N if NP
j
 doesn’t agree in number; UNKNOWN if the 

number information cannot be determined. 

Definiteness Y if NP
j
 is a definite NP; else N. 

Non-prepositional NP Y if NP
j
 is a non-prepositional NP; else N. 

Syntactic constraint Y if NP
j
 satisfies syntactic constraint; else N. 

Syntactic parallelism Y if NP
j
 satisfies syntactic parallelism; else N. 

Coordination pattern Y if NP
j
 satisfies coordination pattern; else N. 

Non-associated NP Y if NP
j
 is a non-associated NP; else N. 

Indicating verb Y if NP
j
 follows one of the indicating verbs; else N. 

Semantic constraint Y if NP
j
 satisfies semantic constraint; else N. 

Semantic parallelism Y if NP
j
 satisfies semantic parallelism; else N. 

Linguistics 

Domain-specific term Y if NP
j
 is contained in the domain-specific term list; else N. 

Centering Y if NP
j
 occurs in the paragraph more than twice; else N. 

Section heading  Y if NP
j
 occurs in the heading of the section; else N. 

Sentence recency INTRA_S if NP
j
 occurs in the same sentence as the anaphor; else 

INTER_S. 

Context 

Proximal integral value n, where n means that NP
j
 is the nth NP to the anaphor in 

the right-to-left order 

Local-based collocation 

frequency 

integral value n, where n refers to the occurrence number of the matched 

co-occurrence pattern containing NP
j
 in local requirements document  

Statistics 

BNC-based collocation 

frequency 

Y if the matched co-occurrence pattern containing NP
j
 appears in the 

word list returned by the sketch engine; else N. 

5.2 Building a Machine-Learning Based Antecedent Classifier 

The heuristics described in Section 5.1 are antecedent preferences and not obligatory 

conditions. There might be cases where one or more of the antecedent preferences do not ‘point’ to 

the correct antecedent. When all preferences are taken into account, however, the preferred NP 

candidate is still very likely to be traced down. Moreover, we can easily add more new heuristics 

or delete some unimportant heuristics if it is needed in order to optimize the system performance. 

Indeed, individually, the heuristics have limited predictive power: their effectiveness lies in 

their ability to operate in concert. We try to harness this by using machine learning (ML) 

techniques to combine the outputs of individual heuristics. ML is an area of computer science 



23 

concerned with attempting to recognize complex patterns automatically and make intelligent 

decisions based on empirical data. Many ML algorithms allow learning of complex and nonlinear 

relations between heuristics which display complex interdependencies, such as those described in 

section 5.1. 

The ML techniques used in our system derive from supervised learning, whereby a function is 

inferred from a set of annotated training data, to classify instances of ambiguity into nocuous or 

innocuous instances. The training data for the antecedent classifier consists of a set of NP 

candidate instances, each of which contains a feature vector that is made up of heuristics scores 

(described in Table 4) and a class label that is determined by the distribution of human judgments 

as captured by thresholds, explained below.  

Classification is performed on a discrete-valued feature space. In other words, each 

training/test instance (i.e. an NP candidate) is represented as an attribute-value vector, where 

attributes describe properties of the antecedent preferences mentioned earlier (see Table 4) and 

values the outcomes associated with the corresponding heuristics. 

The class label associated with each NP training instance is marked as one of the three 

antecedent categories, positive (Y), questionable (Q), or negative (N). These are obtained from the 

distribution of judgment responses collected from the anaphora surveys. Class labels in the 

training set are associated with a particular ambiguity threshold τ. Specifically, in an innocuous 

ambiguity case, only one NP candidate can be marked as positive (Y) when the percentage of the 

judges selecting it as the correct reference is above the ambiguity threshold τ. The remaining NPs 

are tagged as negative (N). On the other hand, in a nocuous ambiguity case, an NP is labeled as 

questionable (Q) only if the percentage selecting it is below τ but greater than 0. Otherwise, it is 

tagged as negative (N). So if a particular anaphor had, for example, three potential antecedents, 

then that would give three training cases. 

Tables 5 and 6 illustrate how class labels for antecedent candidates in a nocuous and an 

innocuous ambiguity case are calculated. Table 5 illustrates a case of nocuous ambiguity at 

threshold τ=0.8. Antecedent candidates (a) and (b) are labeled as ‘Q’ because both attracted some 

preference judgments but no candidate score exceeded the threshold. Table 6 shows a case of 

innocuous ambiguity at threshold τ=0.8. Candidate (c) is tagged with ‘Y’ because its response 

score exceeds the threshold. The others are tagged with ‘N’. 

 

Table 5. Determining the class label for antecedent candidates in a nocuous ambiguity case at 

threshold τ=0.8 

1. The LPS operational scenarios represent sequences of activities performed by operations 

personnel as they relate to the LPS software. 

 Response Percent Class Label 

(a) the LPS operational scenarios 

(b) sequences of activities 

(c) activities 

(d) operations personnel 

33.3% 

66.7% 

0% 

0% 

Q 

Q 

N 

N 

 

 



24 

Table 6. The determination of antecedent label for the NP candidates in an innocuous ambiguity 

case at threshold τ=0.8 

2. Testing performed to demonstrate to the acquirer that a CSCI system meets its specified 

requirements. 

 Response Percent Class Label 

(a) Testing 

(b) the acquirer 

(c) a CSCI system 

0% 

16.7% 

83.3% 

N 

N 

Y 

 

As mentioned before, we use a coreference resolution engine to link possible coreferring NPs 

within a list of antecedent candidates for a given anaphor. Table 7 shows the impact of coreference 

resolution on the class labels associated with the list of candidate antecedents. The effect of the 

process is to conflate the judgments associated with coreferring NPs, which in turn affects the 

distribution of judgments, and their relation to the threshold. In this case, the NPs ‘the CCSDS 

parameters’ and ‘these parameters’ were identified as coreferring and the sum of the judgment 

proportions associated with both exceeds the threshold – in this case τ=0.8. Consequently, the 

ambiguity instance in Example (3) is judged as innocuous, and the classes label ‘Y’ is assigned. 

Note that without coreference resolution, the instance would have been considered nocuous.  

 

Table 7. The determination of antecedent label for the NP candidates in an ambiguity case with 

coreferring NPs at threshold τ=0.8  

3. The Raw Data Processing Subsystem first checks the CCSDS parameters for valid 

values and stores these parameters if they are valid. 

Before Coreference Resolution (Nocuous) 

 Response Percent Class Label 

(a) the RAW Data Processing Subsystem 

(b) the CCSDS parameters 

(c) valid values 

(d) these parameters 

0% 

50% 

0% 

50% 

N 

Q 

N 

Q 

After Coreference Resolution (Innocuous) 

 Respond Percent Class Label 

(a) the RAW Data Processing Subsystem 

(b) {the CCSDS parameters, these parameters}  

(c) valid values 

0% 

100% 

0% 

N 

Y 

N 

 

The antecedent classifier is built using the Naive Bayes algorithm within the WEKA machine 

learning algorithm package. It is designed to maximize the accuracy of prediction for antecedent 

class labels. The training data is obtained from the dataset of anaphoric ambiguity instances and 

the judgments associated with each possible antecedent candidate. Table 8 shows the distribution 

of the three antecedent class labels for the collection, at different thresholds and after coreference 

resolution. As expected, as the threshold τ increases, the number of Questionable class labels 

increases, and the number for both Positive and Negative instances decreases accordingly.  

 

 

 

 



25 

Table 8. Distribution of three types of antecedent instances at different ambiguity thresholds 

 Antecedent Class Label (%) 

 Y Q N 

τ = 0.50 21.20 6.24 72.6 

τ = 0.55 19.67 9.89 70.4 

τ = 0.6 19.19 10.83 69.96 

τ = 0.65 17.20 15.19 67.61 

τ = 0.70 16.49 16.73 66.78 

τ = 0.75 15.07 19.78 65.15 

τ = 0.80 12.95 23.80 63.25 

τ = 0.85 9.66 29.45 60.89 

τ = 0.90 9.31 30.03 60.6 

τ = 1.00 4.94 36.40 58.66 

 

6. Nocuous Ambiguity Judgment 

As described previously, we used a machine learning algorithm to construct an automated tool - an 

antecedent classifier – that, given a pronoun and a candidate NP antecedents, assigns a weighted 

antecedent tag to the NP candidate. The antecedent tag information in turn is used by the tool to 

predict whether the anaphora instance displays nocuous ambiguity. We compare automatic 

judgments returned by the system with the collected human judgments to evaluate system 

performance. Figure 5 shows the functional architecture of the Nocuous Ambiguity Judgment 

module, which is highlighted by the dashed line. 

  

Fig. 5 The functional architecture of the Nocuous Ambiguity Judgment module (highlighted by the 

dashed line) 

This module would find a natural home as a component of a requirements authoring 

environment
19

, where it would serve (in a role similar to that of a spell-checker in a word 

processor) to identify and highlight cases of nocuous ambiguity as soon as the requirement is 

written. We believe that rather than attempt to rewrite the text into a form that is less likely to be 

misunderstood, the author of the requirement, at the very time when the requirement is committed 

to written form, is best placed to rewrite it, based on knowledge of the intended meaning. As no 

one author is able to assess whether a particular ambiguous instance is likely to be misunderstood 

by other readers, our vision is for a tool which notifies authors that their text may lead to 

                                                

19
 In fact, as part of our future work we intend to integrate the technology in the popular DOORS requirements 

management tool. 

Nocuous Ambiguity Judgment 

Human Judgments 

= ? 

Ambiguous Instance 

Detection 

Antecedent Classifier 

Construction 

training  instances 

test 

instances 

antecedent 

classifier 

Antecedent 

Classification 

Result 

Integration Machine Judgments 



26 

misunderstandings. This allows the author to retain control of the requirements writing process, 

and to deal with potentially problematic cases in a manner which he or she considers most 

appropriate,,based on knowledge of who the other stakeholders are, and knowledge of his or her 

own goals. 

This scenario, however, is not the only one possible. In fact, the same technique can be used 

post-hoc on a whole requirements document, as part of a validation or quality assessment effort, in 

a similar spirit to Gnesi et al [18] (but with fewer false positives and thus increased precision), or 

in a stand-alone tool, as part of an acceptance test in a scenario in which requirements writing has 

been outsourced to a consulting company. In this latter role, our Nocuous Ambiguity identification 

technique could serve as a way to enforce parts of a given style guide on language used to 

document requirements. 

6.1 Antecedent Classification 

To determine the antecedent preference of an NP candidate in a test ambiguity case, we create a 

test instance in form of a feature vector for the NP, and present the feature vector to the generated 

antecedent classifier, which returns a class label of Positive (Y), Questionable (Q), or Negative (N). 

6.2 Result Integration for Nocuous Ambiguity Identification 

As previously discussed, our work emphasizes the discovery of potential nocuous ambiguity in 

order to notify a user rather than attempting to disambiguate. The user retains control over the final 

determination based on some contextual analysis. Berry et al. [3] suggest that, in order to improve 

the user’s trust in an ambiguity tool, it is desirable that the tool should find every instance of a 

particular type of ambiguities (i.e. 100% recall) even at the expense of some imprecision. In line 

with this high recall principle, the resultant algorithm is designed to maximise recognition of 

nocuous ambiguity, even at the expense of returning more innocuous cases. 

In order to obtain more potentially questionable instances of antecedent prediction, we relax 

the constraints and introduce two concepts, the weak positive threshold W
Y
 and the weak negative 

threshold W
N
. The rationale for using weak thresholds is that antecedent preference reflects a 

spectrum with Y (high), Q (medium), and N (low). Weak positive and negative thresholds act as 

buffers to the Q area. Antecedent NPs that fall in the W
Y
 or W

N
 buffer area are treated as possible 

false negative (FN) for the classification of the label Q. The antecedent tags Y and N are labeled as 

weak positive or weak negative depending on these thresholds. Figure 6 shows how an ambiguity 

is classed as nocuous or innocuous when the weak positive and weak negative labels are used. We 

treat as innocuous those cases where either: 

1. the antecedent label list either contains one clear Y candidate, whose certainty exceeds all 

others (Q or N) by a margin, or  

2. contains no Y candidate, one Q candidate, and one or more N candidates where the N 

candidates are not weak negative. 

 

 

 



27 

Determining whether ambiguity is nocuous or innocuous 

Given an anaphoric ambiguity instance with multiple potential NP candidates, the antecedent classifier returns 

an antecedent label set, , with the corresponding prediction scores, , for 

individual NP candidates. 

 

Parameters:  

1) W
Y
 - the threshold for the weak positive label. The label Y is viewed as weak positive when the positive 

prediction score ri < W
Y
 

2) W
N
 - the threshold for the weak negative label. The label N is viewed as weak negative when the negative 

prediction score ri < W
N
 

 

Procedure: 

if the label list R contains  

         (one Y, no Q, one or more N ) 

    or  

         (no Y, one Q, one or more N but not weak negative ) 

    or  

        (one Y but not weak positive, any number of Q or N)    

then 

         the ambiguity is INNOCUOUS 

else 

         the ambiguity is NOCUOUS       

Fig. 6 The procedure for determining whether anaphoric ambiguity is nocuous or innocuous 

7. Experiments and Results 

For the purpose of evaluation, we used a standard 5-fold cross validation technique in which, in 

each iteration, we trained on 80% and tested on 20% of the remaining data. The performance of 

the task was measured in terms of precision (P), recall (R), F-measure (F), and Accuracy: 

                    

where TP (true positives) is the number of correctly identified nocuous ambiguities, FN (false 

negatives) is the number of nocuous ambiguity not identified by the system, and FP (false 

positives) is the number of nocuous ambiguities y that are incorrectly identified. Here we use the 

F2 measure (β=2), which weights recall twice as much as precision in order to emphasize the 

impact of the recall on performance. All results were averaged across five iterations. 

As described earlier, the anaphoric ambiguity model introduced in this paper is an 

improvement over our original model in Yang et al. [58]. In this paper, we consider the additional 

effects of using NP coreference information resolution engine and four more antecedent preference 

heuristics, i.e. coordination pattern preference, indicating verb, section heading preference and 

domain-specific term preference. We carry out a new set of experiments, and compare the 

extended ambiguity model (AM_Ext) with the original model (AM_Ori) for the purpose of the 

evaluation of system performance. 

We present our experiments and results as follows: First we conducted a set of experiments to 

compare the performance of the antecedent classifier at different ambiguity thresholds. These are 

discussed in Section 7.1. Then in Section 7.2, we discuss the impact of various feature types on 



28 

performance of the antecedent classifier. The tool is then compared to a baseline measurement, 

and in Section 7.3, we report on the performance at different ambiguity thresholds. 

7.1 Performance of the Antecedent Classifier 

The performance of our antecedent classifier trained on the anaphoric instances is illustrated in 

Figure 7. Since all of the three antecedent categories, Y, Q, and N, are important in the later step of 

result integration, here we report the accuracy, which we think can better reflect the overall system 

performance. The best performance of the extended classifier, AM_Ext, was achieved at the 

threshold of 0.5 with an accuracy of 81.42%, whereas the worst performance was obtained at the 

threshold of 1.0 with a drop of 7.1% in accuracy (to 74.3%). Observing that at a threshold of 1.0, 

80% of ambiguities are deemed nocuous based on human judgment (see Figure 1), the classifier 

behaviour's is worse than that of the trivial classifier that always answers 'nocuous' for this case. A 

likely reason for the drop in accuracy at high thresholds is the problem of imbalanced distribution 

among different types of training instances for high thresholds (e.g., τ ≥ 0.9), especially for 

positive instances which are significantly decreased with the increase of the threshold. For 

example, there are only 42 positive instances compared with the total of 585 instances at the 

threshold of 1.0 (see Figure 1). 

The AM_Ext classifier performs generally better than the AM_Ori one with a slight average 

increase of 2.43% in accuracy. This means that the introduction of the NP coreference resolution 

engine and four new-added heuristics does capture some characteristics of anaphoric ambiguity, 

and thus improves the performance of the antecedent classifier. However, the effect is not evident. 

One possible explanation is: (a) The anaphora instances in which two NPs are co-referred occur 

infrequently in the dataset, and thus the effect of noun-phrase resolution is limit in system 

performance. (b)  Compared with the previous 13 heuristics, the four newly-added heuristics do 

not capture some important characteristics in anaphora ambiguity.  

 

Fig. 7. The performance of antecedent classifiers at different thresholds 



29 

7.2 Impact of Feature Types 

We also evaluated the impact of individual feature types on system performance compared with 

the full-fledged antecedent classifier with all features. We treat linguistic features as the basic 

feature type because of the important role that linguistic information plays in anaphora analysis. 

Table 9 shows that the context features or statistical features generally improve the performance of 

the antecedent classifier when they are incorporated with the linguistic features. Nevertheless, it 

seems that both types of features appear to have no apparent positive influence on antecedent 

prediction. It suggests that the syntactic and semantic characteristics inherent in the sentences 

provide the most important information to capture the associations between the antecedent 

candidates and the anaphor. The contextual and corpus-based statistical information is helpful to 

some extent, but not fundamental in the analysis of anaphoric ambiguity.  

We hypothesized that the best accuracy on all features would be achieved if each type of 

features could capture disparate characteristics of anaphora to some extent. The results in Table 9 

support this hypothesis: the system performs best when all features are used together which results 

in an increase of 2.1% in accuracy. 

 

Table 9 The impact of feature types on classifier performance (τ=0.8) 

Feature Type # Correct Instance # Incorrect Instance Accuracy (%) 

Linguistics  630 219 74.18 

Linguistics + Context 641 208 75.56 

Linguistics + Statistics 635 214 74.84 

All Features 647 202 76.25 

 

Table 10. The impact of individual heuristic feature on classifier performance (τ=0.8)  

Feature Type Heuristic Feature (Excluded) Accuracy (%) 

Linguistics Number agreement  

Definiteness 

Non-prepositional NP 

Syntactic constraint 

Syntactic parallelism 

Coordination pattern 

Non-associated NP 

Indicating verb 

Semantic constraint 

Semantic parallelism 

Domain-specific term 

75.64 

75.48 

75.72 

72.28 

75.86 

76.05 

75.62 

75.83 

74.57 

76.02 

76.02 

Context Centering 

Section heading 

Sentence recency 

Proximal 

75.86 

76.02 

75.14 

75.86 

Statistics Local-based collocation frequency 

BNC-based collocation frequency 

75.74 

75.80 

 All features 76.25 

 

Moreover, we conducted a set of experiments to evaluate the impact on system performance 

with respect to individual heuristics. In each run, one of the heuristics was excluded from the 



30 

feature set. The comparison of classifier performances for different heuristics (shown in Table 10) 

indicates that the heuristics, syntactic and semantic constraint, are more important features in the 

prediction of preferred antecedent, which contribute 3.7% and 1.68%, respectively, on accuracy 

improvement. However, some heuristics, such as coordination patterns, semantic parallelism, 

domain-specific terms, and section heading, display trivial influence on accuracy performance. 

Another interesting observation is that there is no one heuristic strong enough to make a decisive 

prediction. This evidence corroborates our findings in previous work [9], that the classifier 

performs well only when multiple heuristics are taken into consideration, even if the heuristics 

appear to be poor predictors individually. 

7.3 System Performance Comparison 

7.3.1 Comparing with the Baseline Model 

We use a baseline model to compare the performance of the proposed ML-based model for 

nocuous ambiguity identification. In the baseline model, we assume that each recognized 

ambiguity instance has the potential to be a nocuous ambiguity, and is counted as a positive match 

for the baseline model. Therefore, the baseline model achieves an ‘ideal’ recall RBL of 100%, and 

the precision and F-measure are calculated as: 

 

 

The performance comparison among the ML-based model with weak thresholds, the ML-

based model without weak thresholds, and the baseline model at different ambiguity thresholds are 

given in Table 11. As expected, compared with the baseline model, the ML-based model with 

weak thresholds performs better with an average increase of 7.79 percentage point on precision 

and 6.93 percentage points on F2 measure, although the recall is slightly lower compared with the 

ideal of 100%. However, for the ML-based model without the weak thresholds, we see notable 

improvement in precision, but much larger decreases in recall. Overall, the results suggest that the 

ML-based model benefits from using antecedent preferences information represented in the 

antecedent classifier. 

Comparing the ML-based model without weak thresholds, we see notable gains in recall, and 

smaller drops in precision for the ML-based model with weak thresholds. It reveals that the 

introduction of the weak positive and negative thresholds help catch more instances that fall into 

the grey areas between positive and questionable instances, or between questionable and negative 

instances. Those instances are very sensitive to the ambiguity threshold τ. 

Furthermore, we also find that the overall performance of the system begins to deteriorate as 

the threshold τ decreases, especially for precision and F-measure. As mentioned before, our 

technique is optimized to prefer high recall, at the expense of lower precision. In order to find 

more nocuous ambiguities, the determination of innocuous ambiguities is quite strict (as shown in 

procedure in Figure 6). However, at low thresholds, more ambiguities are considered innocuous, 



31 

because fewer readers are required to agree on a common interpretation. But the system 

requirement of high recall results in more false positives (innocuous cases being classed as 

nocuous) at low thresholds. This results in lower precision and F-measure at these thresholds.  

 

Table 11. The performance comparison between two ML-based models and the baseline model 

 ML-based Model  (AM_Ext_1) 

(with weak thresholds) 

ML-based Model (AM_Ext_2) 

(without weak thresholds) 

Baseline Model 

 

 P R F2 P R F2 P R F2 

τ = 0.5 0.2405 0.9500 0.5974 0.2724 0.5500 0.4568 0.1000 1.0 0.3571 

τ = 0.55 0.2989 0.9722 0.6702 0.3182 0.6745 0.5510 0.1950 1.0 0.5477 

τ = 0.6 0.3091 0.9750 0.6814 0.3385 0.6750 0.56305 0.2150 1.0 0.5779 

τ = 0.65 0.3760 0.9825 0.7428 0.3871 0.7368 0.62404 0.3000 1.0 0.6818 

τ = 0.7 0.4388 0.9841 0.7881 0.4506 0.7619 0.6694 0.3300 1.0 0.7112 

τ = 0.75 0.4632 0.9867 0.8047 0.4667 0.8400 0.7241 0.3900 1.0 0.7617 

τ = 0.8 0.5614 0.9785 0.8548 0.5802 0.8495 0.7773 0.4800 1.0 0.8219 

τ = 0.85 0.6485 0.9833 0.8912 0.6524 0.8717 0.8167 0.6100 1.0 0.8866 

τ = 0.9 0.6737 0.9837 0.9008 0.6906 0.8862 0.8386 0.6250 1.0 0.8928 

τ = 1.0 0.8201 0.9937 0.9533 0.8216 0.9497 0.9209 0.8000 1.0 0.9523 

7.3.2 Comparing with the Original Ambiguity Model 

Figure 8 shows the system comparison of the extended ambiguity model, AM_Ext, with the 

original one, AM_Ori, at different ambiguity thresholds. Although the AM_Ext model merely 

outperforms the AM_Ori model on F-measure with a small average increase of about 1 percentage, 

it is interesting to note that the apparent improvement takes place at the threshold range between 

0.55 and 0.75. One possible explanation is due to the class skewness problem, that is, the lack of 

the Questionable instances at the lower thresholds (τ <0.55) and the lack of the Positive instances 

at the higher thresholds (τ>0.75) (See Figure 1). The ML-based classifier could not perform well 

because of the unbalanced distribution of instances types at the lower or higher thresholds.  

  

Fig. 8. The performance comparison between the extended model and the original model 



32 

8. Threats to Validity 

This section describes the potential threats that might affect the validity of our work and the 

nocuous ambiguities identified by our tool, and discuss how they are mitigated or accommodated. 

Context Information. As mentioned earlier, anaphoric ambiguity is a somewhat context-

dependent ambiguity in which contextual information (e.g., discourse focus, the header of the text) 

provides some useful clues for interpreting the sentence. Structured documents (e.g., HTML and 

XML files) denote structural semantics for text such as title, headings, paragraphs, and other items. 

In fact, while many requirements documents are managed as structured databases (e.g., in tools 

such as DOORS), many others are distributed in PDF or word-processing format, especially when 

crossing inter-organizational borders. Recovering useful structure information for analysis from 

these formats can be a substantial challenge. Moreover, the relationships between requirements 

(e.g., prerequisite, supports, extends, conflicts), when available, could also be utilized when 

making judgments. 

In our surveys, judges were presented only with individual anaphora instances without the 

surrounding context. This can lead to additional difficulties for the judges in deciding on the 

correct interpretation, and is thus a threat to how generalizable to RE practice our results are. For 

example: 

 

E25. LVL1 trigger accept Identifier, A 24 bit L1ID is provided from the TTCrx with each LVL1A 

signal. In conjunction to the BCID, it uniquely defines an event. 

 

In this example, more than a half of the judges (7 out of 13 judges) could not decide which NP 

candidate is most likely to be the antecedent of the anaphora with respect to the five NP candidates 

that appear in the preceding text. Therefore, for most thresholds, this instance exhibits nocuous 

ambiguity. However, the header information of this paragraph was ‘L1ID’. Had the judges been 

provided with this, it is possible that this would have affected their choice of antecedent. 

This is particularly relevant for requirements documents. In fact, not only are requirements 

documents often highly structured, with numerous levels of headings and sub-headings which 

contribute to scope and qualify the actual text very accurately, but the potential readers of the 

document are generally familiar with the application domain, and can draw on very specific 

knowledge in order to select the most plausible interpretation. 

Nevertheless, the lack of contextual information means that, in our experiment, certain 

instances were judged as nocuous whereas, if presented in-context and to informed judges, they 

would have turned out to be innocuous. In essence, we risk having underestimated the number of 

false positives - which, as already discussed, is considered in the literature a minor problem. 

Domain-specific Corpus. Corpus-based statistics information is one of the main resources 

used by our heuristics. The corpus we used in our studies was the BNC corpus, which is a large 

generic text corpus. However, using a domain-specific corpus might improve the heuristics’ 

performance, especially for domain-specific ambiguities. If, as expected, training the classifier on 

a domain-specific corpus (which, however, would have to be different for each project or product 

family) yields better results, the effect of this threat is that we have again underestimated the 



33 

performance of our approach. Another consideration is also in order: in requirements engineering, 

it is often the case that different stakeholders have different areas and degrees of domain expertise. 

For example, an analyst might not have the specific knowledge possessed by a domain expert, or 

the latter might not share the specialized language of the developers. Hence, training a classifier on 

a highly-specialized domain corpus could be detrimental, in that ambiguities that could be 

dangerous for some of the stakeholders, would be deemed innocuous on the ground that other 

stakeholders (who have highly-specialized domain knowledge) would not consider them 

ambiguous. We therefore believe that using a generic corpus is appropriate in requirements 

engineering. 

Machine Learning (ML) Approaches. To select an appropriate machine learning algorithm 

to build our antecedent classifier, we tested a number of ML algorithms available in the WEKA 

package on our dataset. The reason we selected the Naive Bayes algorithm in our tests was 

because that algorithm generally performed better than other candidates at various levels of 

ambiguity thresholds. Naive Bayes achieved an average accuracy of 73.6% compared with 

Decision tree (70.39%), J48 (71.4%), LogitBoost (72.09%), and SVM (70.16%). However, during 

training, we found that the performance of a variety of ML algorithms on our dataset was 

relatively stable. Most of the ML algorithms achieved similar performances, with accuracy ranging 

between 70% and 74%. We conclude then that the particular choice of a ML algorithm would not 

substantially change our results. 

Still, it would be interesting to investigate whether the performance of our classifier can be 

improved by using other techniques such as Neural Networks or Genetic algorithms. 

Threshold settings in requirements engineering. The objective of our research is to develop 

techniques to identify the sentences containing nocuous ambiguities that carry high risk of 

misunderstanding. What is “high risk” is determined in our technique by a threshold, and having 

set the wrong threshold in our experiments is a threat to the technique's applicability in other 

situations. When our technique is applied in real-world requirements engineering contexts, the 

ambiguity threshold can be set by the users to help find the optimal tolerance to ambiguity. The 

optimal threshold needs to be found experimentally, and moreover might vary in the course of the 

requirements elicitation and analysis. For example, an analyst might want to focus initially on the 

very bad ambiguities, those that are almost guaranteed to cause trouble, and thus set a high 

threshold. As the analysis progresses and the most urgent cases of nocuous ambiguities are 

addressed (by clarifying, rewriting, or explicitly acknowledging them), the threshold can be 

progressively lowered, so that at each stage only a limited number of cases are shown (thus 

avoiding being overloaded with too many alarms). 

In this scenario, which particular threshold was used in our experiments is not particularly 

sensitive, since in practice a large range of values will be used – from the very lax for an initial 

brainstorming , to the most exacting for a high-assurance system. Additionally, as shown in 

Section 7.1, the performances of the techniques stays in the range of 75%-80% accuracy as the 

threshold vary, so the applicability of the technique in real-life requirements engineering is not 

hindered by the particular threshold setting. 



34 

Applicability to other requirements engineering practices. We focused in this work on 

requirements written in free-form natural language. Therefore there is a threat that the results 

cannot be generalized to other contexts, such as when requirements are expressed as use cases, 

scenarios, or in semi-formalized or formalized languages. The scope of applicability of our results 

are in fact limited to those cases where a reasonably large part of the requirements are conveyed in 

natural language form, either as part of a large document, or as snippets in a structured document. 

The latter covers, among others, most scenarios and other template-based approaches. We do not 

claim applicability to other techniques used in current practice (e.g., goal models, SCR tables, fully 

formal specifications). 

An interesting issue arises with regard to controlled natural language, which is mandated in 

several industries as the de-facto standard for writing requirements. In some cases, these languages 

exclude pronouns entirely, and hence our results (which pertain to pronominal anaphoric 

references) are not applicable. In other cases, pronouns are allowed, but the verbs or other 

connectives are restricted. We speculate that, for such controlled languages, results from the 

machine-learning algorithms would be even better (i.e. more precise) than what we have obtained 

from the generic corpus. Whether this would lead to a more precise approximation of the 

stakeholders' appreciation of ambiguity on the controlled language, is an open question. 

9. Related Work 

Ambiguity in Requirements Engineering. Ambiguity is a pervasive phenomenon in natural 

language, and thus in natural language requirements documents. The general phenomenon has 

been studied in philosophy and logic, and used in poetry in Homeric times. We will thus restrict 

ourselves to the specific treatment of ambiguity (and in particular, pronominal anaphora) in 

relation to requirements engineering. Early studies [16] have discussed ‘communication errors’ in 

relation to general quality of requirements, but only in 1992 the particular case of pronoun 

references is specifically addressed [45]. In the latter, anaphora is used as an example of ‘language 

ambiguities’, a very generic category which includes all cases where confusion or 

misunderstanding can derive from the specific wording used in a requirement. Four ambiguity 

categories that typically occur in requirements documents had been identified by Berry and his 

colleagues [3], which include lexical ambiguity, syntactic ambiguity, semantic ambiguity and 

pragmatic ambiguity. The second category, syntactic ambiguity, is the one more directly related to 

the case of pronominal anaphora that we have studied in the present work, although the resolution 

of the ambiguity is often driven by a combination of lexical, syntactic, semantic and pragmatic 

means (as discussed in Section 4.2.1).  A more detailed discussion about the ambiguity types 

contained in each category, together with relevant examples is given in [3]. Furthermore, Gervasi 

and Zowghi [17] investigated the nature of ambiguity in requirements specifications and provided 

deeper analysis on the causes and effects of different types of ambiguity (focusing on lexical, 

syntactic, and semantic ambiguity) in the system development process in order to help better 

understand the role of ambiguity in RE practices. In that work, Gervasi and Zowghi suggest a role 

for the linguistic feature of markedness as a predictor of whether any ambiguity is intentional on 



35 

the part of the writer, or not. Compared to our approach, markedness could constitute a further 

heuristics to detect the potential nocuity of a specific instance of ambiguity. 

Moving from more speculative works into the application-oriented ones, several studies have 

attempted to identify ambiguity in requirements for the purpose of improving the quality of NL 

requirements documents. A number of tools have been developed specifically to detect, measure, 

or reduce possible ambiguities in text. Fuchs and Schwitter [14] present a restricted NL, called 

Attempt Controlled English (ACE), to translate specifications into sentences in first-order logic 

(and, in successive works, extended to target a number of precisely defined semantics, such as 

PQL or RuleML) in order to reduce the ambiguity in requirement specifications. By design, 

requirements written in ACE have a unique interpretation, given by a set of rules. In particular, 

pronominal anaphora is allowed only in specific contexts (whereas cataphora is not allowed at all), 

and the ACE Interpretation Rules state that each pronoun has to be interpreted as referring to the 

most specific and most recent accessible noun phrase. In prescribing a fixed interpretation, ACE 

essentially dispel the ambiguity, but only with reference with the given standardized interpretation. 

However, a stakeholder who is not aware of the subtleties of ACE might still read the controlled 

language as if it was unrestricted natural language, and assume a wrong interpretation. In this 

sense, our technique is complementary to the usage of controlled languages of this sort, in that we 

point out ambiguities that could be misinterpreted, whereas ACE focuses on prescribing which 

interpretation is correct – without considering the risk of misinterpretation by a reader. 

Mich and Garigliano [32] investigate the use of a set of ambiguity indices for the measurement 

in syntactic and semantic ambiguity, which is implemented using an NLP system called NL-OOPS 

[33], based on the generic natural language processing system LOLITA [37]. NL-OOPS is aimed 

mostly at deriving object-oriented models of software from natural language requirements, and 

they consider ambiguity mostly as an obstacle to the derivation of a single model. In details, the 

ambiguity measures they use are based on three factors: polisemy, that is the number of different 

senses a word has (in a reference lexical resource), the number of different part-of-speech roles 

that a word could occupy, and how difficult it was for the LOLITA system to compute a parse tree 

for the sentence (essentially, measuring the uncertainty of the parse tree); based on these three 

factors, other derived measures are defined. This approach is different than our own, in that in the 

case of [32], a definition of what constitute ambiguity is given a priori by defining the metrics 

apodictically (and hence, the appropriateness of these metrics to the stakeholders' intuition has to 

be proven a posteriori), whereas in our technique, what constitutes a nocuous ambiguity is learned 

via ML from the stakeholders' responses. Similarly, Boyd et al. [6] describe a controlled natural 

language to help reduce the degree of lexical ambiguity of requirements specifications. By 

substituting synonyms or hyponyms with corresponding terms, and thus obtaining a reduced 

vocabulary. This approach helps with pronominal anaphora in that it reduces the chances for 

multiple references, but the issue is not discussed in detail in their work. 

Kamsties and his colleagues [23] describe a pattern-driven inspection technique to detect 

ambiguities in NL requirements; the technique however is essentially human-driven, and thus can 

draw on the knowledge of an expert inspector. When applied by a skilled professional, the 

technique can be effective, but it has higher costs and lower repeatability then the tool-supported 



36 

technique we proposed. We regard as a particularly important point that with our technique, 

nocuity detection can be performed repeatedly and with predictable effectiveness at different times 

during the requirements analysis process. Berry et al. [5] presented a natural language 

requirements specification model to address expressiveness and structural consistency problems of 

natural language requirements by examining the ambiguities manifested at the lexical, syntactic, 

structure, and semantic level.  Kiyavitskaya et al. [28] proposed a two-step approach in which a set 

of lexical and syntactic ambiguity measures are firstly applied to ambiguity identification, and then 

a tool reports about what specifically is potentially ambiguous in each sentence.  

Another strand of research has considered ambiguity among the quality features of 

requirements documents, and has set to develop tools to measure quality attributes in general. 

Most of these approaches define a quality model (QM) composed of a set of quality metrics (e.g., 

vagueness, subjectivity, optionality, weakness, etc.), and develop analysis techniques based on 

linguistic approaches to detect the defects (we are interested here in those related to the inherent 

ambiguity in the requirements). For example, QuARS (Quality Analyzer of Requirements 

Specification) [12] is a linguistic language tool based on a quality model for NL requirements 

specifications. It aims to detect lexical, syntactic, structural, and semantic defects including 

ambiguities. In QuARS, certain terms or syntactic structures are considered “dangerous” by 

themselves; for example, use of certain adverbs (e.g., ‘sufficiently’) or syntactic structures (e.g., 

coordination) are marked as potentially nocuous. The main obstacle to applying this approach in 

practice is the rather high number of false positives; in fact, there is no analysis of which among 

the potentially dangerous constructs are likely to really cause interpretation problems to the 

stakeholders. Wilson et al. [55] developed a QM tool, ARM (Automated Requirement 

Measurement), to identify potential problems, such as ambiguity, inaccuracy, and inconsistency, in 

natural language specification statements. Fantechi et al. [13] proposed a linguistic approach to 

detect the defects, such as vagueness, subjectivity, weakness, which are caused by ambiguity at the 

sentence level in functional requirements of textual (NL) user cases. Kaiya and Saeki [24] made 

use of the semantic relationships between concepts on a domain ontology to check if the ambiguity 

property of a require item. Achour [1] discussed the problem of requirements vague and 

unverifiable caused by ambiguity of words and phrases. All these techniques share the same 

approach as QuARS: the final validation with human stakeholders is used to assess the 

effectiveness of the technique, but not to inform the actual nocuity classification algorithm. In this 

sense, the technique we have proposed is novel compared to these previous experiences.  

Finally, there is a body of work that reported the effect of ambiguity problem on non-textual 

artifacts. The problem faced is significantly different from the one we discussed in this paper, in 

that the amount of text used as labels in most of these approaches is too limited to allow any 

substantial scope for ambiguity. Still, they share our overall goal, and are worth mentioning for 

completeness. For example, van Rossum [51] addressed the effects of technology implementation 

on the ambiguity of organization goals, and Futrelle [15] discussed the diagram ambiguity problem 

including the ambiguities inherent in the text within the diagram. Harter et al. [21] discussed the 

side effect of requirements ambiguity with respect to both development effort and cycle time that 



37 

are linked to software quality. More generally, Sussman and Guinan [48] conducted a study on the 

role of task ambiguity in the context of software development.    

Anaphora Resolution. Anaphora resolution research has been attracted intensive attentions 

from NLP community in the last few decades, and approaches to the anaphora resolution problem 

also vary. Earlier research efforts had focused on traditional heuristic-based approaches that 

explored various types of heuristics, typically involving the use of lexical, syntactic and semantic 

information [31, 35], computational theories of discourse such as focusing [20] and centering 

algorithm [50, 54], and statistics/corpus approach based on co-occurrence patterns [10, 41]. In 

recent, supervised machine learning approaches have been widely explored in reference resolution 

and achieved considerable success. A variety of ML algorithms, such as decision tree [2, 46, 38, 

47], Latent Sematnic Analysis (LSA) [29] and Support Vector Machine (SVM) [22], are 

investigated to determine the referent relationship between an anaphor and its antecedent candidate 

from the properties of the pair by using various types of features including string-matching 

features, syntactic features, grammatical features, semantic features, and discourse-based features. 

A broad overview of anaphora or NP coreference research can be found in books [36], tutorials 

[43], or overview papers [39]. In addition, a number of research projects have applied the anaphora 

resolution techniques in various kinds of applications such as machine translation [44], and 

information extraction like named entity identification [8, 27]. 

Similarly to other anaphora resolution approaches, we have explored a number of antecedent 

preferences to discover the preference for the candidates to the anaphor. However, our tool differs 

from the related work in that we have attempted to determine the degree to which an ambiguity is 

likely to be misinterpreted (i.e. whether it is nocuous relative to a particular ambiguity threshold), 

rather than attempting to undertake the anaphora resolution by applying disambiguation techniques 

to select the most like candidate as the antecedent of the anaphor. 

10. Conclusions and Future Work 

Since many requirements documents continue to be written in natural language, we need ways to 

deal with the ambiguity inherent in natural language. Our overall research goal is to develop 

techniques to detect potential nocuous ambiguity in requirements in order to minimize its effects. 

In this paper, we extended our previous work on anaphoric ambiguity by introducing an 

overall conceptual architecture of an automated system to identify potentially nocuous ambiguities 

in requirements documents that contain anaphoric ambiguity. Given a natural language 

requirements document, sentences that contain anaphoric ambiguities are first selected 

automatically from the text, and then a list of NP antecedent candidates are extracted from each 

anaphoric ambiguity instance. Possible coreference relationships among the NP candidates are 

identified using an NP coreference resolution engine. 

To construct a machine learning based antecedent classifier, a set of anaphoric ambiguities 

were extracted from a range of requirements documents, and associated human judgments on their 

interpretations were collected. The antecedent classifier was trained based on a set of antecedent 

preference heuristics and collected human judgments, which was used to predict the antecedent 



38 

preference of noun phrase antecedent candidates. The antecedent information was then used to 

identify nocuous ambiguity. Our experimental results showed that our approach achieves high 

recall with a consistent improvement on baseline precision subject to appropriate ambiguity 

thresholds, allowing us to highlight realistic and potentially problematic ambiguities in actual 

requirements documents. 

Although based on significant technical development and substantive empirical studies, we 

believe that the application of our approach is actually lightweight and usable in that it allows 

requirements analysts to experiment and iterate to identify potential nocuous ambiguity in 

requirements, depending on their chosen analysis sensitivity threshold. 

Nevertheless, there are a number of areas for improvement. For prediction accuracy of 

nocuous ambiguity, a larger dataset is required in order to obtain more training instances for the 

construction of the antecedent classifier. One of the problems for our current classifier is the 

shortage of positive and questionable instances compared with negative instances. We expect that 

more positive/questionable instances would enhance the accuracy of the classifier. More research 

is also needed to exploit additional antecedent preferences that account for more aspects of 

anaphora. 

In earlier work [56], we presented a methodology for the identification of nocuous ambiguity, 

which described three basic ideas underpinning our model of ambiguity: collection of human 

judgments, the heuristics used to model human interpretations, and a machine learning module to 

train the heuristics. This methodology has now been used effectively to handle coordination 

ambiguity [9, 54, 57] and anaphoric ambiguity [58]. We intend to apply the methodology to a 

wider range of ambiguity types, such as scope and preposition ambiguity, which also contain rich 

syntactic and semantic information that can be modeled by various heuristics. 

Currently, our automated tools are still  prototypes. It will be interesting to see if they are 

actually useful in practice, when applied in real-world requirements engineering environments. A 

number of general research questions need to be investigated in this context. How often does a 

requirements engineering problem arise because of an ambiguity problem? And, how many errors 

reported in actual applications be tracked back to an ambiguity such as nocuous anaphoric 

ambiguity?    

We envision that our automated support for ambiguity analysis will fit into one of a number of 

requirements management environments, in which requirements authors are able to invoke our 

analysis tool in much the same way as writers invoke spell checkers. We are currently 

investigating the development of this capability within a well known commercial tool. 

Acknowledgments. This work was supported by the UK Engineering and Physical Sciences 

Research Council (EPSRC) as part of the MaTREx project (EP/F068859/1), and by the Science 

Foundation Ireland (SFI grant 03/CE2/I303_1). We are grateful to our research partners at 

Lancaster University for their input, and to Ian Alexander for his practical insights and guidance. 

Moreover, we also wish to acknowledge the anonymous reviewers’ insightful comments and 

suggestions. 

 

 



39 

References 

1. Achour CB, Rolland C, Souveyet C, Maiden NAM (1999) Guiding Use Case Authoring: 

Results of an Empirical Study. In: Proceedings of 7th IEEE International Requirements 

Engineering Conference (RE'99) pp 36-43 

2. Aone C, Bennet SW (1996) Applying machine learning to anaphora resolution. In: 

Connectionist, Statistical and symbolic approaches to learning for natural language 

processing. pp 302-314 

3. Berry DM, Kamsties E, Krieger MM (2003) From contract drafting to software 

specification: Linguistic sources of ambiguity.  

4. Berry D, Kamsties E (2005) The syntactically dangerous all and plural in specifications 

IEEE Softw 22:55-57 

5. Berry D, Bucchiarone A, Gnesi S, Lami G, Trentanni G (2006) A new quality model for 

natural language requirements specifications. In: Proceedings of the international 

workshop on requirements engineering: foundation of software quality (REFSQ) 

6. Boyd S, Zowghi D, Farroukh A (2005) Measuring the expressiveness of a constrained 

natural language: An empirical study. In: Proceedings of the 13th IEEE International 

Conference on Requirements Engineering (RE’05), Washington, DC, pp 339-352 

7. Brennan SE, Friedman MW, Pollard C (1987) A centering approach to pronouns. In: 

Proceedings of the 25th Annual Meeting of the Association for Computational Linguistics 

(ACL), pp 155–162 

8. Castaño J, Zhang J, Pustejovsky H (2002) Anaphora Resolution in Biomedical Literature. 

In: Proceedings of International Symposium on Reference Resolution  

9. Chantree F, Nuseibeh B, de Roeck A, Willis A (2006) Identifying Nocuous Ambiguities 

in Natural Language Requirements. In: Proceedings of 14th IEEE International 

Requirements Engineering Conference (RE'06), Minneapolis, USA, pp 59-68 

10. Dagan I, Itai A (1990) Automatic processing of large corpora for the resolution of 

anaphora references. In: Proceedings of the 13th International Conference on 

Computational Linguistics (COLING'90) pp 1-3  

11. Denber M (1998) Automatic resolution of anaphora in English. Eastman Kodak Co., 

Technical Report 

12. Fabbrini F, Fusani M, Gnesi S, Lami G (2001) The linguistic approach to the natural 

language requirements, quality: benefits of the use of an automatic tool. In: Proceedings 

of the twenty sixth annual IEEE computer society—NASA GSFC software engineering 

workshop, pp 97–105 

13. Fantechi A, Gnesi S, Lami G, Maccari A (2003) Applications of Linguistic Techniques 

for Use Case Analysis. Requir Eng J 8 (9):161-170  

14. Fuchs NE, Schwitter R (1995) Specifying logic programs in controlled natural language. 

In: Proceedings of the Workshop on Computational Logic for Natural Language 

Processing, pp 3–5  



40 

15. Futrelle RP (1999) Ambiguity in visual language theory and its role in diagram parsing. 

In: Proceedings of the IEEE symposium on visual languages (VL’99), IEEE Computer 

Society, p. 172 

16. Gause DC, Weinberg GM (1989) Exploring Requirements: Quality before Design. Dorset 

House, New York 

17. Gervasi V, Zowghi D (2010) On the Role of Ambiguity in RE In: Proceedings of the 16th 

International Conference on Requirements Engineering: Foundation for Software Quality 

(REFSQ), pp 248-254 

18. Gnesi S, Lami G, Trentanni G, Fabbrini F, Fusani M (2005) An Automatic Tool for the 

Analysis of Natural Language Requirements. Int J of Comput Syst Sci & Eng (IJCSSE) 2 

(1):53-62 

19. Goldin L, Berry DM (1997) AbstFinder, A Prototype Natural Language Text Abstraction 

Finder for Use in Requirements Elicitation. Autom Softw Eng 4 (4):375-412 

20. Grosz BJ, Joshi AK, Weinstein S (1995) Centering: A framework for modeling the local 

coherence of discourse. Computational Linguistics 21 (2):203–226 

21. Harter DE, Krishnan MS, Slaughter SA (1998) The life cycle effects of software process 

improvement: a longitudinal analysis. In: Proceedings of the international conference on 

information systems, association for information systems, pp 346–351 

22. Iida R, Inui K, Matsumoto Y (2005) Anaphora resolution by antecedent identification 

followed by anaphoricity determination. ACM Trans on Asian Lang Inf Process (TALIP) 

4 (4):417 - 434  

23. Kamsties E, Berry D, Paech B (2001) Detecting ambiguities in requirements documents 

using inspections. In: Proceedings of the First Workshop on Inspection in Software 

Engineering (WISE'01), pp 68-80 

24. Kaiya H, Saeki M (2006) Using Domain Ontology as Domain Knowledge for 

Requirements Elicitation. In: Proceedings of 14th IEEE International Requirements 

Engineering Conference (RE'06) pp 186-195 

25. Keren G (1992) Improving decisions and judgments: The desirable versus the feasible. In: 

Wright G, Bolger F (eds) Expertise and decision support. Plenum Press, pp 25-46 

26. Kilgarriff A, Rychly P, Smrz P, Tugwell D (2004) The Sketch Engine. In: Proceedings of 

the Eleventh European Association for Lexicography (EURALEX), pp 105–116 

27. Kim J, Jong CP (2004) BioAR: Anaphora Resolution for Relating Protein Names to 

Proteome Database Entrie. In: Proceedings of ACL Workshop on Reference Resolution 

and its Applications pp 79-86 

28. Kiyavitskaya N, Zeni N, Mich L, Berry DM (2008) Requirements for tools for ambiguity 

identification and measurement in natural language requirements specifications. Requir 

Eng J 13:207–240 

29. Klebanov B, Wiemer-Hastings PM (2002) Using LSA for Pronominal Anaphora 

Resolution. In: Proceedings of the Third International Conference of Computational 

Linguistics and Intelligent Text Processing (CICLing 2002), Mexico City, Mexico, pp 

197-199 



41 

30. Kotonya G, Sommerville I (1998) Requirements Engineering Processes and Techniques. 

John Wiley & Sons  

31. Lappin S, Leass H (1994) An Algorithm for Pronominal Anaphora Resolution. Comput 

Linguist:535-561 

32. Mich L, Garigliano R (2000) Ambiguity measures in requirement engineering. In: 

Proceedings of international conference on software—theory and practice (ICS2000), pp 

39–48 

33. Mich L, Garigliano R (2002) NL-OOPS: a requirements analysis tool based on natural 

language processing. In: Proceedings of third international conference on data mining, pp 

321–330. 

34. Mich L, Franch M, Inverardi PN (2004) Market research for requirements analysis using 

linguistic tools. Requir Eng J 9:40–56 

35. Mitkov R (1998) Robust pronoun resolution with limited knowledge. In: Proceedings of 

the 18th International Conference on Computational Linguistics (COLING'98)/ACL'98 

Montreal Canada pp 869-875 

36. Mitkov R (2002) Anaphora Resolution. Longman. 

37. Morgan R, Garigliano R, Callaghan P, Poria S, Smith M, Urbanowicz A, Collingham R, 

Costantino M, Cooper C (1995) Description of the LOLITA system as used in MUC-6. 

In: Proceedings of the sixth message understanding conference (MUC-6. (1995)) 

38. Ng V, Cardie C (2002) Improving Machine Learning Approaches to Coreference 

Resolution. In: Proceedings of the 40th Annual Meeting of the Association for 

Computational Linguistics, pp 104-111 

39. Ng V (2010) Supervised Noun Phrase Coreference Research: The First Fifteen Years. In: 

Proceedings of the 48nd Annual Meeting of the Association for Computational 

Linguistics (ACL-2010), pp 1396–1411 

40. Oliver DE, Bhalotia G, Schwartz AS, Altman RB, Hearst MA (2004) Tools for loading 

Medline into a local relational database. BMC Bioinforma 5:146 

41. Paul M, Yamamoto K, Sumita E (1999) Corpus-based anaphora resolution towards 

antecedent preference. In: Proceedings of the 37th Annual Meeting of the Association for 

Computational Linguistics, Workshop "Coreference and It's Applications", pp 47-52 

42. Ponzetto SP, Poesio M (2009) State-of-the-art NLP approaches to coreference resolution: 

Theory and practical recipes. In: Tutorial Abstracts of ACL-IJCNLP 2009, pp 6. 

43. Poesio M, Artstein R (2008) Introduction to the Special Issue on Ambiguity and Semantic 

Judgements. Res on Lang & Comput 6:241-245 

44. Saggion H, Carvalho A (1994) Anaphora resolution in a machine translation system. In: 

Proceedings of the International Conference on Machine Translation, pp 1-14 

45. Schneider GM, Martin J, Tsai WT (1992) An Experimental Study of Fault Detection in 

User Requirements Documents. ACM Trans on Softw Eng and Methodol 1 (2):188-204 

46. Soon WM, Ng HT, Lim DCY (2001) A machine learning approach to coreference 

resolution of noun phrases. Computational Linguistics 27:521–544 



42 

47. Strube M, Muller C (2003) A machine learning approach to pronoun resolution in spoken 

dialogue. In: Proceedings of the 41st Annual Meeting of the Association for 

Computational Linguistics (ACL), pp 168–175 

48. Sussman SW, Guinan PJ (1999) Antidotes for high complexity and ambiguity in software 

development. Inf Manage 36:23–35 

49. Tetreault JR (2001) A corpus-based evaluation of centering and pronoun resolution. 

Computational Linguistics 27 (4):507-520. 

50. Tsuruoka Y, Tateishi Y, Kim J, Ohta T, McNaught J, Ananiadou S (2005) Developing a 

Robust Part-of-Speech Tagger for Biomedical Text. In: Advances in Informatics. pp 382-

392 

51. van Rossum W (1997) The implementation of technologies in intensive care units: 

ambiguity, uncertainty and organizational reactions. Technical Report Research Report 

97B51, Research Institute SOM (Systems, Organisations and Management), University of 

Groningen, Groningen, The Netherlands, http://irs.ub.rug.nl/ppn/165660821 or 

http://ideas.repec.org/p/dgr/rugsom/97b51.html#download 

52. Wasow T, Perfors A, Beaver D (2003) The Puzzle of Ambiguity. In: Orgun O, Sells P 

(eds) Morphology and the Web of Grammar: Essays in Menory of Steven G. Lapointe. 

53. Walker M, Joshi A, Prince E (1998) Centering Theory in Discourse. Oxford University 

Press. 

54. Willis A, Chantree F, de Roeck A (2008) Automatic Identification of Nocuous 

Ambiguity. Res on Lang & Comput 6 (3-4):1-23 

55. Wilson WM, Rosenberg LH, Hyatt LE (1997) Automated analysis of requirement 

specifications. In: Proceedings of the Nineteenth International Conference on Software 

Engineering (ICSE), pp 161–171 

56. Yang H, de Roeck A, Willis A, Nuseibeh B (2010) A Methodology for Automatic 

Identification of Nocuous Ambiguity. In: The 23th International Conference on 

Computational Linguistics (Coling’10), pp 1218-1226 

57. Yang H, Willis A, de Roeck A, Nuseibeh B (2010) Automatic Detection of Nocuous 

Coordination Ambiguities in Natural Language Requirements. In: The 25th IEEE/ACM 

International Conference on Automated Software Engineering (ASE'2010), pp 53-62 

58. Yang H, de Roeck A, Gervasi V., Willis A, Nuseibeh B (2010) Extending Nocuous 

Ambiguity Analysis for Anaphora in Natural Language Requirements. In: Proceedings of 

18th IEEE International Requirements Engineering Conference (RE'10) pp 25-34  


