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Distributed predictive control with minimization of mutual disturbancesI

Paul A. Troddena,∗, J. M. Maestreb,1

aDepartment of Automatic Control & Systems Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
bDepartment of Systems and Automation Engineering, University of Seville, Seville, Spain

Abstract

In this paper, a distributed model predictive control scheme is proposed for linear, time-invariant dynamically coupled systems.

Uniquely, controllers optimize state and input constraint sets, and exchange information about these—rather than planned state and

control trajectories—in order to coordinate actions and reduce the effects of the mutual disturbances induced via dynamic coupling.

Mutual disturbance rejection is by means of the tube-based model predictive control approach, with tubes optimized and terminal

sets reconfigured on-line in response to the changing disturbance sets. Feasibility and exponential stability are guaranteed under

provided sufficient conditions on non-increase of the constraint set parameters.

Keywords: decentralization; time-invariant; control of constrained systems; optimization-based controller synthesis; parametric

optimization.

1. Introduction

Model Predictive Control (MPC) has become one of the most

popular advanced control techniques [1], with many industrial

applications [2] and mature theoretical foundations [3]. The

key to this success is the inherent flexibility of MPC, which

allows for complex issues such as constraints or delays to be

dealt with explicitly, when otherwise the off-line determination

of a control law would be prohibitively difficult. Despite this,

the control of large-scale, interconnected or networked systems—

such as chemical plants [4], electricity networks [5] or teams of

vehicles [6]—still presents significant difficulties to MPC [7].

For example, the organizational structure of the system—and

its information flows—may not be conducive to a centralized

control approach. Moreover, even if it is, the MPC optimization

problem for the whole system may be too large to solve within

the required time.

For this reason, significant attention has been been given in

the past decade to distributed forms of model predictive control

(DMPC) [8–10]. In DMPC, the optimal control problem is de-

composed into several smaller sub-problems that are distributed

to a set of local controllers or control agents. Each controller or

agent is responsible for controlling a subsystem composed of a

subset of the system states and control inputs. In order to achieve

system-wide stability and satisfactory closed-loop performance,

the agents exchange information so that they can coordinate

their decision making. Many schemes have been proposed to
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date, and differ according to the particularities of the scenarios

in which they are applied: for example, the way in which the

system is decomposed, the source of coupling, or the limits in

the communication or computation capacity [10].

One of the fundamental, and most researched, problems in

DMPC is control of linear time-invariant systems coupled via dy-

namics. The problem is non-trivial since the states and inputs of

one subsystem affect others too, leading to mutual disturbances;

hence, coordination is usually needed to ensure satisfactory per-

formance of the overall system. Many approaches have been

proposed [8–10], and almost all involve the sharing of planned

control sequences or state trajectories between controllers. Re-

cently, attention has focused on tube MPC [11] as a means for

rejecting the mutual disturbances arising from these subsystem

interactions. The first tube-based DMPC approaches [12, 13]

were developed for dynamically decoupled, uncertain subsys-

tems with coupled constraints; each controller uses the tube

technique to reject bounded local disturbances. The direct appli-

cation of that approach to systems with dynamic coupling will,

however, result in excessive conservativeness, since the bounded

disturbance set for each subsystem must account for all possible

state and input interactions (and not just, for example, deviations

of neighbours’ states and inputs from planned, or reference, tra-

jectories). To circumvent this, improved proposals have been

made: in [14], tube-based controllers share reference trajectories

and maintain true states and inputs in bounded neighbourhoods

of these. In [15], the tube MPC concept is applied twice by each

controller: once to maintain a planned perturbed state trajectory

around a planned nominal trajectory, then again to maintain the

true, perturbed state trajectory around the planned one.

Though providing a natural route to guaranteed feasibility

and stability, a key drawback of the tube-based approaches is

conservatism because, ultimately, the mutual disturbance in-

duced by state and/or input coupling has to be bounded. If the

Preprint submitted to Elsevier November 8, 2016



state and input constraint sets are large, then this naturally leads

to large disturbance sets and, hence, more tightly constrained

local optimal control problems, even for [14, 15]. In this paper,

we attempt to overcome this drawback by exploiting the fact that,

often, subsystems do not use all of their state and input constraint

sets and, hence, the mutual disturbance sets can be reduced by

considering this. The main technical development is that local

controllers, when solving their optimal control problems, opti-

mize not only the control sequence but also the sizes of the state

and input constraint sets. In other words, subsystem state and

input sets are contracted to the smallest sizes sufficient to meet

control objectives, which in turn leads to smaller disturbance

sets. Controllers then share information about these state and

input sets—rather than planned state and control trajectories—in

order that they may compute a smaller estimate of the set of

possible disturbances. Finally, to reject these bounded distur-

bances, the tube MPC technique [11] is applied. However, in

this paper, the disturbance invariant sets required for tube MPC

are optimized online to take into account the changing sizes of

the disturbance sets.

The sharing of sets of states and inputs has similarities with

the “contract-based” DMPC approach [16], wherein subsystems

share “contract sets” about their future behaviour, based on

reachable sets computed at each time step given current knowl-

edge of uncertainty. Our work differs in several details, including

(i) the use of decoupled positively invariant sets as terminal con-

ditions, which are less complex objects, and easier to compute,

than the inter-dependent robust invariant sets required in [16];

(ii) in our approach, the complexity of each MPC problem is

similar to conventional MPC, and the shared information be-

tween subsystems is of parameterized versions of the state and

input constraint sets, which are readily available, while in [16]

sequences of reachable sets are required to be computed within

each MPC optimization; (iii) we offer a comprehensive way to

compute the required disturbance sets and robust invariant sets

that arise from the shared state and input sets, via a single linear

program (LP).

This latter aspect, in particular, of the proposed approach

also leads to similarities with the “plug-and-play” approach to

decentralized MPC [17]. In that approach, subsystem controllers

re-compute disturbance invariant sets on-line in order to account

for changes to disturbance sets. However, there are two key

differences: firstly, in [17], only the effect of adding or removing

subsystems from the overall system is considered when distur-

bance sets are re-computed, while in this paper we re-compute

disturbance sets to account for how much of the constraint sets

planned state and input trajectories are using. Secondly, in [17]

the notion of robust control invariant (RCI) sets [18] is used:

each subsystem controller solves an LP to compute an RCI set

and an associated feedback control law which are then used as,

respectively, the tube cross-section set and tube controller. In

this paper, however, we retain the original notion in tube MPC

of robust positively invariant (RPI) sets: each controller retains

the same (linear) tube controller throughout, but solves an LP

to re-compute its RPI tube cross-section set to take into account

changes to the mutual disturbance set. This is achieved by ex-

ploiting a recently developed method for computing, via a single

LP, an RPI set characterized by a-priori known inequalities [19];

we make a further extension to this approach to include the com-

putation of the disturbance set (which depends on neighbouring

subsystems’ states and inputs) implicitly in the RPI set optimiza-

tion, removing the need to compute the disturbance set explicitly

beforehand.

A preliminary version of this paper appeared in [20], present-

ing the initial idea and results. In the current paper, the following

additional contributions are made:

• A reconfigurable, parametric terminal set is designed, re-

placing the simple choice of the origin used in [20]. This

set, which enlarges the region of attraction and improves

closed-loop performance, adjusts automatically (on-line)

to account for the changes in size and shape of the con-

straint sets.

• The ancillary on-line operations to re-compute disturbance

invariant sets are refined and improved: RPI sets are com-

puted directly from shared information, via a single LP,

removing the need to explicitly construct disturbance sets

via Minkowski summations as in [20]. Furthermore, the

algorithm is generalized to permit re-configuration of sets

at a lower rate than the main sampling rate, in order to

reduce the on-line computational burden. Further simpli-

fications are described and discussed, including a scalar

implementation of the algorithm that requires minimal

on-line computation in addition to the MPC problem.

The paper is organized as follows. Preliminary details and

the problem statement are given in Section 2. In Section 3, the

distributed optimal control problem, including the parametric

design of the terminal set, is presented. The distributed control

algorithm is defined in Section 4, together with details and ex-

planations of on-line computations. Theoretical guarantees of

recursive feasibility and stability, under the sufficient condition

of non-increase of the state and input constraint set parameters,

are established in Section 5. In Section 6, simulations of the al-

gorithm are presented for an example system, before concluding

remarks are made in Section 7.

Notation: The sets of non-negative and positive reals are

denoted, respectively, R0+ and R+. The notation [a, b]n means

the n-dimensional product set [a, b] × [a, b] × · · · × [a, b], where

a ∈ R and b ∈ R. For a, b ∈ R
n, a ≤ b applies element by

element. The ball of radius δ is B(δ); the dimension will be

clear from the context. The distance of a point x ∈ R
n from

a set X ⊂ R
n is |x|X , infy∈X |x − y|. AX denotes the image

of a set X ⊂ R
n under the linear mapping A : Rn 7→ R

p, and

is given by {Ax : x ∈ X}. For X,Y ⊂ R
n, the Minkowski

sum is X ⊕ Y , {x + y : x ∈ X, y ∈ Y}; for Y ⊂ X, the

Minkowski difference is X ⊖ Y , {x ∈ Rn : Y ⊕ {x} ⊂ X}. For

X ⊂ R
n and a ∈ Rn, X ⊕ a means X ⊕ {a}. The support function

of a set X ⊂ Rn evaluated at y ∈ R
n is h(X, y) , sup{y⊤x :

x ∈ X}. A polyhedron is an intersection of a finite number of

halfspaces, and a polytope is a closed and bounded polyhedron.

Unless otherwise indicated, a subscript i denotes a variable or

parameter of subsystem i. The column vectors of zeros and ones
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are denoted 0 and 1 respectively, the length of which will be

clear from the context.

2. Preliminaries

In this section, the problem statement and some necessary

preliminary details are presented.

2.1. System dynamics and structure

We consider the discrete-time, linear time-invariant system

x+ = Ax + Bu,

where x ∈ R
n and u ∈ R

m are the state and input, and x+ is

the successor state. The system is partitioned into a set N =
{

1, . . . ,M
}

of subsystems, each described as

x+i = Aiixi + Biiui +
∑

j∈Ni

(Ai jx j + Bi ju j), (1)

where xi ∈ R
ni , ui ∈ R

mi are the state and input of subsystem

i ∈ N , with x = (x1, . . . , xM) and u = (u1, . . . , uM) being the

corresponding aggregated state and input vectors, and Ai j ∈

R
ni×n j , Bi j ∈ R

ni×m j . The latter are used to define the set of

neighbours of subsystem i as

Ni ,
{

j ∈ N \ {i} : [Ai j Bi j] , 0
}

.

Assumption 1. Each (Aii, Bii), i ∈ N is stabilizable.

2.2. Constraints

Each subsystem i ∈ N is subject to local constraints,

xi ∈ Xi ui ∈ Ui.

Assumption 2. Xi and Ui are polytopes and each contains the

origin in its interior.

In particular, let Xi , Xi(1) and Ui , Ui(1), where

Xi(ai) ,
{

xi ∈ R
ni : Cx

i xi ≤ ai

}

,∀ai ∈ R
rx

i

0+
,

Ui(bi) ,
{

ui ∈ R
mi : Cu

i ui ≤ bi

}

,∀bi ∈ R
ru

i

0+
,

i.e., polytopic sets of rx
i

and ru
i

linear inequalities respectively.

Xi(1) and Ui(1) are the original, hard constraint sets, but, in this

paper, we will assume that, in general,

xi ∈ Xi(ai) ui ∈ Ui(bi) (2)

for some ai ∈ R
rx

i

0+
and bi ∈ R

ru
i

0+
. That is, xi and ui belong to

polytopes with the same normal vectors as Xi(1) and Ui(1) but

different right-hand sides. Note that if ai ≤ 1, bi ≤ 1 then the

original constraints are satisfied.

2.3. Local subsystem disturbances and invariance

The dynamics of subsystem i may be written

x+i = Aiixi + Biiui + wi, (3)

where wi is a disturbance given by

wi =
∑

j∈Ni

(Ai jx j + Bi ju j).

Given the constraints (2), the disturbance is bounded as

wi ∈Wi ,
⊕

j∈Ni

(Ai jX j ⊕ Bi jU j).

Owing to the properties of Xi and Ui, and linearity, Wi is a

polytope with 0 ∈Wi. Without loss of generality, we define Wi

as a polytope constructed from rw
i

inequalities:

Wi , Wi(gi) ,
{

wi ∈ R
ni : Cw

i wi ≤ gi

}

,

where gi ∈ R
rw

i

0+
, and, furthermore, we define the Cw

i
in such

a way that W(1) is the set formed from the originally sized

constraint sets:

Wi(1) =
⊕

j∈Ni

Ai jX j(1) ⊕ Bi jU j(1). (4)

Finally, by Assumption 1, there exists a Ki such that (Aii +

BiiKi) has all of its eigenvalues strictly within the unit circle.

Given Wi and Ki, there also exists a robust positively invariant

(RPI) set, Ri, for each i, which satisfies the following definition:

(Aii + BiiKi)Ri ⊕Wi ⊆ Ri. (5)

Assumption 3. For each i ∈ N , given Wi = Wi(gi) and Ki

there exists a polytope Ri = Ri(qi) satisfying (5), where

Ri(qi) ,
{

xi ∈ R
ni : CRi xi ≤ qi

}

,

and qi ∈ R
rR

i

0+
.

That is, we assume that the RPI set is polytopic and may

be represented by rR
i

inequalities. In general, the size of Ri(qi)

depends on the size of Wi(gi), which in turn depends on X j(a j),

U j(b j) for j ∈ Ni. However, analogous to the definition of Wi(1),

we normalize Ri(qi) so that Ri(1) is defined as the polytopic RPI

set associated with the originally sized disturbance set Wi(1):

(Aii + BiiKi)Ri(1) ⊕Wi(1) ⊆ Ri(1).

The following assumption is common in tube-based MPC [21],

and limits the size of the disturbance set with respect to the state

and input constraint sets. Here, it is effectively a limit on the

strength of couplings.

Assumption 4. For all i ∈ N , Ri(1) ⊆ interior(Xi(1)) and

KiRi(1) ⊆ interior(Ui(1)).

Assumptions 1–4 are supposed to hold throughout.
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2.4. Control objective

The control objective is to regulate the state of each subsys-

tem to the origin while satisfying all constraints and minimizing

the infinite-horizon, system-wide cost

∞∑

k=0

∑

i∈N

ℓi
(

xi(k), ui(k)
)

, (6)

where ℓi(xi, ui) , (1/2)(x⊤
i

Qixi + u⊤
i

Riui) and Qi, Ri are positive

definite matrices.

3. Distributed optimal control problem

In this section, the distributed optimal control problem, used

in the proposed DMPC algorithm, is presented. First we present

a standard optimal control problem for a subsystem, based on a

conventional tube MPC approach [11, 21] albeit in a distributed

setting: that is, we propose to control the subsystem (3) via the

control policy

ui = vi + Ki(xi − zi)

where xi is the current state of i, (zi, vi) are the current state and

input of the nominal subsystem z+
i
= Aiizi +Biivi (i.e., neglecting

interactions), and vi is obtained from an MPC optimization

employing this nominal model.

We also introduce a key difference with respect to conven-

tional tube MPC: the constraint sets and RPI set are, respectively,

the sets Xi(ai), Ui(bi) and Ri(qi), which are parameterized by

ai, bi and qi, rather than the usual fixed sets. Subsequently, we

modify this optimal control problem to include optimization of

the state and input set parameters ai and bi, leaving qi as a pa-

rameter, paving the way for DMPC with minimization of mutual

disturbance sets.

3.1. Conventional tube-based distributed optimal control prob-

lem

At nominal state zi, the parametric optimal control problem

for subsystem i is

P̄i(zi; ai, bi, qi) : min
vi

{

Vi(zi, vi) : vi ∈ Vi(zi; ai, bi, qi)
}

where vi is the sequence of controls to optimize

vi =
{

vi(0), . . . , vi(N − 1)
}

,

the setVi(zi; ai, bi, qi) is defined by the constraints

zi( j + 1) = Aiizi( j) + Biivi( j), j = 1 . . .N − 1, (7a)

zi(0) = zi, (7b)

zi( j) ∈ Xi(ai) ⊖ Ri(qi), j = 0 . . .N − 1, (7c)

vi( j) ∈ Ui(bi) ⊖ KiRi(qi), j = 0 . . .N − 1, (7d)

zi(N) ∈ X
f

i
(ai, bi; qi). (7e)

The cost Vi is a finite-horizon approximation to i’s share of (6):

Vi(zi, vi) = V
f

i

(

zi(N)
)

+

N−1∑

j=0

ℓi
(

zi( j), vi( j)
)

,

where ℓi was previously defined, and the terminal cost V
f

i
will—

together with the terminal set X
f

i
(ai, bi; qi)—be defined in Sec-

tion 3.3.

In this problem, because the nominal dynamics are used for

predictions, i.e., without the perturbing effect of the coupled

dynamics, then the state and control constraint sets are tightened

to account for the ensuing prediction mismatch.

Denoting a feasible solution to the problem as v∗
i
(zi), whose

existence is discussed at the end of this section, the control

applied to the subsystem (3) is then

u∗i = κi(xi, zi) = κ̄i(zi) + Ki(xi − zi). (8)

where κ̄i(zi) is the first control in the optimized sequence v∗
i
(zi).

The second, linear feedback term is intended to reduce mismatch

between the nominal and perturbed trajectories.

Finally, note that the domain of the value function, and

therefore the control law, is

Z̄i(ai, bi, qi) ,
{

zi ∈ R
ni : Vi(zi; ai, bi, qi) , ∅

}

,

which is parameterized by ai, bi and qi; the role of these param-

eters is discussed in the next section. By definition, a feasible

solution to P̄i(zi; ai, bi, qi) exists if and only if zi ∈ Z̄i(ai, bi, qi);

it is possible to characterize and compute the latter set (for given

ai, bi and qi) using standard methods [21].

3.2. Modified distributed optimal control problem

The application of the control law (8) under the assumption

that Xi(ai) = Xi(1), Ui(bi) = Ui(1) and Ri(qi) = Ri(1) results

in a straightforward specialization of tube MPC [11] to the M-

subsystem system: the tube sets, and corresponding tightened

constraint sets, are fixed and computed offline. It is simple

to show (see, for example, [21, Ch. 3]) that if Ri(1) ⊂ Xi(1),

KiRi(1) ⊂ Ui(1) and zi(0) = xi(0) ∈ Z̄i(1, 1, 1), then recursive

feasibility and stability of the system is guaranteed. A conse-

quence of this kind of robust approach is that no communication

is needed between controllers; therefore, the control architecture

is decentralized.

In this paper, however, the sets Xi(ai), Ui(bi) and Ri(qi)

will be allowed to vary over time (but not over the prediction

horizon) by virtue of permitting the parameters ai, bi and qi

to vary. In particular, we will make use of a modified optimal

control problem, in which the ai and bi that parameterize the

state and input sets are now decision variables:

Pi(zi; qi) : min
(vi,ai,bi)

Vi(zi, vi) + ρa‖ai‖1 + ρb‖bi‖1

subject to vi ∈ Vi(zi, ai, bi; qi), (ai, bi) ∈ [0, 1]rx
i ×[0, 1]ru

i ,

where ρa > 0 and ρb > 0 are weighting parameters. The domain

is

Zi(qi) ,
{

zi : ∃(ai, bi) ∈ [0, 1]rx
i ×[0, 1]ru

i s.t.Vi(zi, ai, bi; qi) , ∅
}

.

By definition, Zi(qi) ⊇ Z̄i(ai, bi, qi) given (ai, bi) ∈ [0, 1]rx
i ×

[0, 1]ru
i .
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The idea behind this problem is that, at the same time as

optimizing the control sequence, the sizes of the sets Xi(ai),

Ui(bi) are minimized. Recall that the disturbance seen by a

subsystem i depends on the X j(a j) and U j(b j) of j ∈ Ni, so

smaller a j and b j lead to smaller disturbance sets. Note that the

RPI set parameter qi remains a parameter, rather than a variable,

of the optimization. Its use will be described in Section 4.

Remark 1. Here, and in the sequel, we consider the most gen-

eral case of permitting state and/or input coupling between sub-

systems, and therefore both ai and bi are decision variables in

the optimization problem for subsystem i. Notwithstanding,

the proposed approach may be specialized to more specific sys-

tem structures by fixing the appropriate variables; for example,

for state-only coupling between subsystems, ai is retained as a

variable and bi is fixed to 1.

3.3. Parametric terminal set and cost design

A standard approach to guaranteeing recursive feasibility

and closed-loop stability in MPC, without requiring an infinite

horizon, is to employ a terminal cost function V
f

i
along with a

terminal constraint set X
f

i
with specified properties [21]. Typ-

ically, and especially in the context of tube-based MPC, the

terminal set X
f

i
is assumed, or constructed, to be

(i) Positively invariant for the nominal dynamics z+
i
= Aiizi +

Biivi under some terminal control law vi = K
f

i
zi, chosen to

stabilize (Aii, Bii). In other words,

(Aii + BiiK
f

i
)X

f

i
⊆ X

f

i
. (9)

(ii) Admissible with respect to the tightened state and input

constraints. That is,

X
f

i
⊆ Xi(ai) ⊖ Ri(qi) (10a)

K
f

i
X

f

i
⊆ Ui(bi) ⊖ KiRi(qi). (10b)

The difficulty in the current setting is that the size and shape

of the terminal set are restricted by the sizes and shapes of the

constraint sets, which may change. While it is easy to satisfy

these requirements with a simple terminal equality constraint

(i.e., X
f

i
= {0}), the design of a larger and less conservative set

poses a non-trivial challenge, for the terminal set needs to be

either recomputed or reconfigured as Xi(ai) and Ui(bi) change.

Reconfigurable terminal sets have been proposed in the con-

text of setpoint, reference or target tracking and fault tolerant

forms of MPC [22–26]; the idea is to parameterize an invariant,

admissible set in terms of a steady-state target equilibrium pair,

so that when the target changes the terminal set can be adjusted

accordingly and automatically. In [27], a novel reconfigurable

terminal set that is an inner approximation to the maximal ad-

missible set (MAS) [28], parameterized by the right-hand side

of the polytopic input constraint set (i.e., here bi), is proposed;

the context is fault-tolerant control, wherein the failure of an

actuator may be modelled as a change in the input constraint set.

Inspired by [27], the approach taken here is to design a

reconfigurable terminal set that is parameterized by the state and

input constraint vectors ai and bi. The following result assures

the existence and properties of this set.

Lemma 1 (Parametric admissible invariant set). Suppose K
f

i

is such that Φi , Aii + BiiK
f

i
has all eigenvalues strictly within

the unit circle, and (ai, bi, qi) are such that the sets Xi(ai)⊖Ri(qi)

and Ui(bi) ⊖ KiRi(qi) are non-empty. Then the set

O∞i (ai, bi; qi) =
{

zi : EiΦ
k
i zi ∈ Yi(ai, bi, qi), k = 0, 1, . . .

}

,

where Ei ,
[

I (K
f

i
)⊤
]⊤

and Yi(ai, bi, qi) ,
(

Xi(ai) ⊖ Ri(qi)
)

×
(

Ui(bi) ⊖ KiRi(qi)
)

, is (i) compact, convex and contains the ori-

gin; (ii) constraint admissible and Φi-invariant (i.e., X
f

i
= O∞

i

satisfies (9) and (10)); (iii) finitely determined; (iv) inner ap-

proximated by the Φi-invariant polytope

{

zi : Mz
i
zi ≤ cz

i
− Mza

i
(ai − si) − Mzb

i
(bi − ti)

}

. (11)

Proof. Results (i)–(iii) follow directly by specializing the results

of [28] to the setting of this paper. For (iv), consider the nominal

subsystem dynamics augmented with the states of the constraint

parameters, āi , ai − si and b̄i , bi − ti:





z+
i

ā+
i

b̄+
i




=





Φi 0 0

0 I 0

0 0 I









zi

āi

b̄i




, (12)

where sil , h
(

Ri(qi), (C
x
il
)⊤
)

is the lth element of si, for l =

1 . . . rx
i
, and similarly til , h

(

KiRi(qi), (C
u
il
)⊤
)

for l = 1 . . . ru
i
.

Note that Cx
il

(respectively Cu
il
) corresponds to row l of the matrix

Cx
i
∈ Rrx

i × Rni (respectively Cu
i
∈ Rru

i × Rmi ), so the transpose

is taken to obtain a column vector.

The constraints that must hold for all times k = 0 . . .∞

are (10) and 0 ≤ ai ≤ 1, 0 ≤ bi ≤ 1. Using the polytopic

definitions of Xi and Ui,





Cx
i

−I 0

Cu
i
K

f

i
0 −I

0 I 0

0 −I 0

0 0 I

0 0 −I









zi

āi

b̄i




≤





0

0

1

0

1

0





Owing to the neutrally stable āi and b̄i dynamics, the maximal

constraint admissible set for (12) is not necessarily finitely deter-

mined. It is, however, if the constraints are inner-approximated

as





Cx
i

−I 0

Cu
i
K

f

i
0 −I

0 I 0

0 −I 0

0 0 I

0 0 −I









zi

āi

b̄i




≤





0

0

1 − δ1

0 + δ1

1 − δ1

0 + δ1





(13)

where 0 < δ < 1 [28]. Then a finitely determined inner ap-

proximation to the maximal admissible set for the augmented
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dynamics (12) and constraint set (13) is





Mz
i

Mza
i

Mzb
i

0 Ma
i

0

0 0 Mb
i









zi

āi

b̄i




≤





cz
i

ca
i

cb
i




.

It follows that the parametric terminal set, which is constraint

admissible and invariant, is given by

{

zi : Mz
i
zi ≤ cz

i
− Mza

i
(ai − si) − Mzb

i
(bi − ti)

}

.

and is valid for δ1 ≤ ai − si ≤ 1 − δ1, δ1 ≤ bi − ti ≤ 1 − δ1. �

This inner approximation to the maximal constraint admissible

set—parameterized by ai and bi—is employed as the terminal

set X
f

i
(ai, bi; qi). Writing the terminal constraint (7e) in the form

Mz
i
zi(N) + Mza

i
ai + Mzb

i
bi ≤ cz

i
+ Mza

i
si + Mzb

i
ti

where Mz
i
, cz

i
, Mza

i
, Mzb

i
, si and ti are parameters provided to the

optimization, and zi(N), ai and bi are variables, the parametric

dependence is clearly seen.

Remark 2 (Price of reconfigurability). The price of having a

parametric, finite representation of a constraint admissible termi-

nal set is complexity and conservativeness: the augmentation of

the dynamics lifts the subsystem dynamics to a higher dimension

and introduces eigenvalues on the unit circle (known to increase

the finite determinedness index [28]), and while the tightening

of constraints by δ is sufficient to guarantee finite determined-

ness of the set for the augmented system, it leads to an inner

approximation of the maximal admissible set [28].

The remaining consideration is the terminal cost function.

For this, we make the obvious choice of V
f

i
(zi) = (1/2)z⊤

i
Pizi,

where Pi is positive definite and satisfies

Φ⊤i PiΦi − Pi ≤ −Qi − (K
f

i
)⊤RiK

f

i
.

4. Distributed control algorithm and implementation

The modified optimal control problem Pi(zi; qi) is used in

the following algorithm.

Algorithm 1 (Distributed MPC for subsystem i).

Initial data: Sets Xi(1), Ui(1), Wi(1), Ri(1), X
f

i
(ai, bi; qi);

matrices Ki and K
f

i
, reconfiguration period T

Initialization: At k = 0, set xi = zi = xi(0), qi = 1 and

p = 0.

Online routine:

1. At time k and state (xi, zi), solve Pi

(

zi; qi

)

to obtain v∗
i
=

κ̄i(zi) and (a∗
i
, b∗

i
).

2. Apply ui = v∗
i
+ Ki(xi − zi) to subsystem i.

3. If k = pT ,

(a) Transmit a∗
i
, b∗

i
to subsystems j ∈ Ni.

(b) Compute Wi(g
+
i
) and Ri(q

+
i
).

(c) Set p = p + 1.

4. Measure x+
i

and compute z+ = Aiizi + Biiv
∗
i
.

5. Check if x+
i
− z+

i
∈ Ri(q

+
i
): if so, set qi = q+

i
.

6. Set (xi, zi) = (x+
i
, z+

i
), set k = k + 1, go to Step 1.

In this algorithm, initial data—including the sets Wi(1) and

Ri(1)—are provided in order that each subsystem controller may

construct and solve its optimal control problem. The initial state

of the nominal system is set equal to xi(0).

At time k, each subsystem solves its optimal control problem

to obtain the nominal control input vi for use in the control law

of step 2. The optimization also minimizes the constraint set

parameters, ai and bi. The idea is that, if subsystems are not

“using” all of their state and constraint sets, then these can be

contracted.

Every T steps, the optimized a∗
i

and b∗
i

are transmitted by

controllers to neighbours (step 3a), so that each subsystem con-

troller may use the received parameters to compute (in step 3b)

its disturbance and RPI sets for use at the next time step. Fol-

lowing these computations, a check is made, in step 5, of the

current states of the subsystem in regard to new RPI set. Before

we present the details of the computational operations in step 3b,

this checking step is explained.

4.1. Checking x+
i
− z+

i
∈ Ri(q

+
i
)

Having received the vectors (a∗
j
, b∗

j
) from neighbours and

computed Wi(g
+
i
) and Ri(q

+
i
), subsystem i then checks, in step

5, whether the successor states (x+
i
, z+

i
) satisfy x+

i
− z+

i
∈ Ri(q

+
i
).

The rationale for this is to maintain recursive feasibility and

constraint satisfaction guarantees despite changing the RPI set.

In particular, and as will be shown in the next section, if x+
i
−z+

i
∈

Ri(q
+
i
) then it follows that (Aii + BiiKi)(x+

i
− z+

i
) ⊕ W(g+

i
) ⊆

Ri(q
+
i

) and that the trajectory of (xi, ui) will satisfy all constraints.

On the other hand, if x+
i
− z+

i
< Ri(q

+
i
), then the same cannot

be guaranteed; in that case, however, there exists the fail-safe

option of using the current RPI set Ri(qi), since x+
i
− z+

i
∈ Ri(qi).

Because, as we will show, Wi(g
+
i

) ⊆Wi(gi) then Ri(qi) ⊇ Ri(q
+
i

)

and (Aii+BiiKi)(x+
i
−z+

i
)⊕W(g+

i
) ⊆ Ri(qi). In other words, if the

new RPI set does not meet the specified condition, the current

RPI set can be used to maintain the guarantees of feasibility

and stability. These properties of the controlled system will be

established in Section 5.

Note that this checking step need only be performed every

T steps, following the computation of a new Ri(q
+
i

). For presen-

tational convenience, however, it is presented in Algorithm 1 as

part of the main routine.

4.2. Implementation: the polytopic case

In this section, implementation details of the algorithm—and

particularly the ancillary computations in step 3b—are presented.

First, it is shown how the disturbance sets may be computed from

shared information via the solution of an LP. Having obtained

the modified disturbance set, the new RPI set is obtained via

applying the method in [19], which employs a single LP to

compute an RPI set that is minimal with respect to the family of

RPI sets represented by the same system of inequalities. Finally,

it is shown how these two LPs may be combined, so that the

RPI set can be computed directly from shared information, via

a single LP, without the need to compute the disturbance set

explicitly.
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4.2.1. Computing Wi(g
+
i
)

In Step 3b, the new disturbance set is calculated using the op-

timized state and input set parameters (a∗
j
, b∗

j
) from neighbours.

Moreover, as part of the initialization, the set Wi(1) must be

computed and provided to the controller for subsystem i.

For given (a j, b j) for neighbours j ∈ Ni, the disturbance

set may be determined exactly as the finite Minkowski sum of

polytopes

⊕

j∈Ni

Ai jX j(a j) ⊕ Bi jU j(b j). (14)

The complexity of this polytope—and of the operation required

to obtain it—depends on the state and input dimensions n j and

m j, the number of halfspaces or vertices representing the state

and input sets X j(a j) and U j(b j), and the number of neighbours

in Ni. More precisely, supposing the number of vertices of the

polytope Ai jX j(a j) ⊕ Bi jU j(b j) ⊂ R
ni is d j, then the number of

vertices of the sum (14) is O(d̄ni ) where d̄ = max j∈Ni
d j [29],

and the number of arithmetic operations to obtain it is O(s)

where s =
∏

j∈Ni
d j [30]. So, although polynomial in order, the

complexity of the representation of the disturbance set could be

high even for low dimensional (ni = 2 or ni = 3) subsystems. To

mitigate this, we note that only an outer-approximation to the

disturbance set is required:

Wi(gi) ⊇
⊕

j∈Ni

Ai jX j(a j) ⊕ Bi jU j(b j).

This justifies the assumption that the disturbance set be repre-

sented by rw
i

inequalities, where rw
i

can be chosen relatively

small compared to the exact representation of the set, provided

the above set inclusion holds. At time k = 0, the set Wi(1) is

computed, using a j = 1, b j = 1, and provided to controller i.

For subsequent time steps, since each X j(a j) and U j(b j), for

j ∈ Ni, is defined by a constant number, respectively rx
j

and ru
j
,

of inequalities, it follows that the (possibly outer-approximated)

disturbance set may also be defined by a constant number, rw
i

, of

inequalities regardless of the values of a j and b j (although some

inequalities may, of course, be redundant for certain values).

This has two significant implications: first, this motivates and

justifies the use of an RPI set also defined by a constant, finite

number of inequalities, as explained in the next subsection. More

immediately, however, it implies that, when the (a j, b j) change to

(a∗
j
, b∗

j
), the set Wi(gi) is reconfigured to Wi(g

+
i
) but retains the

same complexity of representation. Therefore, the Minkowski

summation need not be computed directly when the a j and b j

change, and the new disturbance set can be computed via a more

efficient means. In particular, note that the summation (14) may

be re-written in terms of support functions

h
(

Wi(g
+
i ),w
)

=
∑

j∈Ni

h
(

Ai jX j(a
∗
j),w
)

+ h
(

Bi jU j(b
∗
j),w
)

for all w ∈ Rni . To form Wi(g
+
i
), given that we already have a

representation Wi(gi) as {wi : Cw
i

wi ≤ gi}, it suffices to evaluate

this summation for the vectors (Cw
i1

)⊤, . . . , (Cw
irw

i

)⊤ that define the

left-hand side of the inequality description of Wi. Hence,

g+il =
∑

j∈Ni

h
(

Ai jX j(a
∗
j), (C

w
il )
⊤) + h

(

Bi jU j(b
∗
j), (C

w
il )
⊤)

=
∑

j∈Ni

max{Cw
il Ai jx

l
j : xl

j ∈ X j(a
∗
j)}

+max{Cw
il Bi ju

l
j : ul

j ∈ U j(b
∗
j)}.

for each row l of g+
i
. This suggests that a sequence of LPs

needs to be solved in order to determine g+
i
. However, further

efficiencies can be made by combining these LPs into a single

LP:

max
{g+

il
,xl

j
,ul

k
}

∀l∈{1,...,rw
i
}

rw
i∑

l=1

g+il

subject to, for j ∈ Ni and l = 1 . . . rw
i

,

g+il ≤
∑

j∈Ni

Cw
il (Ai jx

l
j + Bi ju

l
j),

Cx
j xl

j ≤ a∗j ,

Cu
j u

l
j ≤ b∗j .

In this problem, g+
il
∈ R, xl

j
∈ Rn j and ul

j
∈ Rm j are the decision

variables for each l = 1 . . . rw
i

.

4.2.2. Computing Ri(q
+
i
) given Wi(g

+
i
)

The second operation required in Step 3b is the computation

of the new RPI set associated with the latest disturbance set.

Precisely, the problem is the compute Ri(q
+
i

) for the closed-loop

dynamics x+
i
∈ (Aii + BiiKi)xi ⊕Wi(g

+
i
), where the latter is the

updated disturbance set. We already assumed that, at all time

steps, Ri(qi) is a polytope defined by rR
i

inequalities and normal

vectors (CR
i1

)⊤, . . . , (CR
irR

i

)⊤, where CR
il

is row l of CR
i

, and we

now justify this assumption.

Regarding the selection of CR
i

in order to define the set

Ri(1) from Aii + BiiKi and Wi(1), there are two main issues:

the size of the RPI set—the minimal RPI set is desirable to

limit conservatism [11]—and the computational complexity of

obtaining it, for Algorithm 1 requires it to be computed (or at

least re-computed) on-line as Wi(gi) changes. There are two

obvious possibilities, but each with drawbacks.

• The mRPI is the smallest RPI set, and may be obtained

via Minkowski summations. However, this set is finitely

determined only if (Aii + BiiKi)
k
Wi = βWi for some β ∈

[0, 1) (e.g., for deadbeat Ki).

• A method exists for computing an ǫ-outer-approximation

to the minimal RPI set to arbitrary accuracy [31], but

requires the solving of an a-priori unknown (but finite)

number of LPs and the Minkowski sum of an a-priori

unknown (but finite) number of polytopes.

Neither is suitable for on-line use. As an alternative, therefore,

we adopt the approach recently proposed in [19], based on the
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notions introduced in [32], which computes, via a single LP,

the so-called (P, r)-mRPI set instead of the mRPI set. This

is an RPI set defined by r pre-selected inequalities with left-

hand side P, and which is minimal (smallest in volume) with

respect to the family of RPI sets characterized by these same

inequalities. In the context of this paper, solving the following

LP computes, for some designer-specified CR
i

, the right-hand

side of the constraints qi, in order for the set to be RPI for the

disturbance set Wi(gi). If such a qi does not exist (which is the

case iff the nullspace of CR
i

is not (Aii + BiiKi)-invariant) then

the LP is unbounded [19].

For the initial time, we suppose that the set Ri(1) has been

designed off-line (i.e., by employing the method of [31], or

the one of [19] by some suitable choice of CR
i

; examples are

given in [19]). Then, at a subsequent time k, given Wi(g
+
i
),

the following LP computes an RPI set generated by the same

number, rR
i

, of inequalities and same normal vectors but right-

hand side, q+
i
.

q+i = c∗i + d∗i where (c∗i , d
∗
i ) = arg max

{cil,dil,ξ
l
i
,ωl

i
}

∀l∈{1,...,rR
i
}

rR
i∑

l=1

cil + dil

subject to, for all l ∈ {1, . . . , rR
i
},

cil ≤ CRil (Aii + BiiKi)ξ
l
i ,

CRi ξ
l
i ≤ ci + di,

dil ≤ CRilω
l
i,

Cw
i ω

l
i ≤ g+i .

Then the set Ri(q
+
i
) is RPI and—moreover—is the smallest RPI

set defined by these rR
i

inequalities [19]. Further details and

theoretical results may be found in [19].

4.2.3. Computing Ri(q
+
i
) without explicitly computing Wi(g

+
i
)

A further simplification can be made to on-line operations

by noting that the two previous optimization problems may be

combined, leading to a direct way to compute the RPI set from

shared data a∗
j

and b∗
j
. Thus,

q+i = c∗i + d∗i where (c∗i , d
∗
i ) = arg max

rR
i∑

l=1

cil + dil (15)

subject to, for l = 1 . . . rR
i

, k = 1 . . . rw
i

and j ∈ Ni,

cil ≤ CRil (Aii + BiiKi)ξ
l
i , (16a)

CRi ξ
l
i ≤ ci + di, (16b)

dil ≤ CRilω
l
i, (16c)

Cw
ikω

l
i ≤
∑

j∈Ni

Cw
ik(Ai jx

k
j + Bi ju

k
j), (16d)

Cx
j xk

j ≤ a∗j , (16e)

Cu
j u

k
j ≤ b∗j . (16f)

The decision variables of this problem are ci ∈ R
rR

i , di ∈ R
rR

i ,

ξl
i
∈ Rni and ωl

i
∈ Rni for l = 1 . . . rR

i
, and xk

j
∈ Rn j and uk

j
∈ Rm j

for k = 1 . . . rw
i

and j ∈ Ni.

The outcome here is worth remarking upon: this procedure

takes constraint sets from neighbours as inputs, and produces

an RPI set by solving a single LP. This LP is the one that is

solved on-line, in step 3b of Algorithm 1. The computational

complexity and information requirements in order for controller

i to formulate this problem are summarized next.

4.2.4. On-line computational burden

The algorithm specifies the solving of the optimal control

problem Pi(zi; qi) at every sampling instant, and the ancillary

LP every T steps. It should be noted that, owing to the robust

feasibility and stability properties of tube-based MPC, which

will be established in the next section under suitable sufficient

conditions, it is not necessary to solve any problem at a given

time step—including the optimal control problem—but it may

be advantageous to do so for performance reasons (see [21,

Ch. 3]). Nonetheless, it is important to evaluate the on-line

computational complexity of the proposed approach.

The modified optimal control problem Pi(zi; qi) has similar

complexity to a nominal LQ-MPC problem [11], but for the

addition of rx
i
+ ru

i
additional non-negative variables for the

parameterized constraints, and some additional inequalities to

represent to parametric terminal set (how many depends on, inter

alia, the choice of δ). Note that the modified problem is still

a quadratic program (QP), despite the 1-norm cost on ai and

bi, because the latter are constrained as non-negative and the

problem may be written in the form

min
yi

{

y⊤i Hiyi + f⊤i yi : Giyi ≤ hi

}

where yi = [v⊤
i

a⊤
i

b⊤
i

]⊤ and Hi is positive semi-definite.

The ancillary LP (15) subject to (16), used to determine

the RPI set, comprises 2(1 + ni)r
R
i
+ (ni + mi)r

w
i

variables and

(2+ rR
i

)rR
i
+ rw

i
(
∑

j∈Ni
rx

j
+ ru

j
) constraints. In order that controller

i can formulate and solve this problem, it needs knowledge of

the constraint matrices Cx
j

and Cu
j

for each subsystem j ∈ N j;

these can be provided either initially, or transmitted at the same

time as (a∗
j
, b∗

j
).

4.3. Simplified implementation: the scaled set case

Significant simplifications can be made to the optimal con-

trol problems and algorithm if, rather than allowing polytopic

reconfiguration of the sets Xi(ai) and Ui(bi), the re-sizing of Xi

and Ui (or just one of these, depending on system coupling – see

Remark 1) is restricted to a simple scaling. Suppose ai = αi1

and bi = αi1, where αi ∈ R0+. Then the optimal control problem

for subsystem i becomes

min
(vi,αi)

Vi(zi, vi) + ραi
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subject to

zi( j + 1) = Aiizi( j) + Biivi( j), j = 1 . . .N − 1

zi(0) = zi,

zi( j) ∈ αiXi(1) ⊖ γiRi(1), j = 0 . . .N − 1

vi( j) ∈ αiUi(1) ⊖ γiKiRi(1), j = 0 . . .N − 1

zi(N) = αiX
f

i
(1, 1; γi1),

Some explanations are due. In step 3a of the algorithm, subsys-

tem controllers exchange values of the scalar α∗
i
. The subsequent

disturbance set for subsystem i becomes

⊕

j∈Ni

α∗j
(

Ai jX j(1) + Bi jU j(1)
)

for which an outer approximation may be computed easily as

Wi(g
+
i ) = γ+i Wi(1) ⊇

⊕

j∈Ni

α∗j
(

Ai jX j(1) + Bi jU j(1)
)

where γ+
i
= max j∈Ni

{α∗
j
}. It follows that the RPI set using this

outer-approximated disturbance set is obtained directly as

Ri(q
+
i ) = γ+i Ri(1).

Likewise, the parametric terminal set is simply scaled as shown

in the above terminal constraint.

With this simplification, the sets Wi(1) and Ri(1) are com-

puted off-line, and no Minkowski additions or ancillary LPs

need to be solved on-line. The drawback is, of course, conser-

vativeness; however, the approach is still less conservative than

the conventional tube-based decentralized MPC approach, as

demonstrated in Section 6.

5. Recursive feasibility and stability

One of the attractive features of tube MPC is guaranteed

recursive feasibility despite the bounded disturbance: given a

feasible solution v∗
i
(zi) to P̄i(zi)—where we take this to mean the

conventional, non-parametric optimal control problem—with

xi ∈ zi ⊕ Ri, it is simple to show that ṽi(z
+
i
), where z+

i
= Aiizi +

Biiκ̄i(zi), and ṽi(z
+
i
) is obtained as the tail of the sequence v∗

i
(zi)

ṽi(z
+
i ) = {v∗i (1; zi), v

∗
i (2; zi), . . . , v

∗
i (N−1; zi),K

f

i
z∗i (N; zi)} (17)

is feasible for P̄i(z
+
i
). Moreover, since x+

i
∈ z+

i
⊕ Ri and P̄i(z

+
i
)

includes tightened versions of Xi and Ui, the true subsystem

states and inputs satisfy all constraints for any x+
i
∈ Aiixi +

Biiκi(xi, zi) ⊕Wi and all future xi(k).

This is the situation when the same RPI set, Ri, is used in

the problems at xi and x+
i
. That the tail of the previous solution

is feasible at the successor state is also valuable in establishing

closed-loop stability [21].

5.1. Loss of feasible tail guarantee

When a different RPI set is used in the problem at x+
i
, this

feasible tail guarantee is destroyed.

Proposition 1 (Infeasibility of the tail). Suppose that v∗
i
(zi) is

feasible for Pi(zi; qi), where Ri(qi) satisfies (Aii + BiiKi)Ri(qi) ⊕

Wi(gi) ⊆ Ri(qi) for some gi ∈ R
rw

i

0+
. Consider that the RPI set

is changed to Ri(q
+
i
) , Ri(qi) as a result of the disturbance set

changing to Wi(g
+
i
) ,Wi(gi). Then (i) ṽi(z

+
i
) is not necessarily

feasible for Pi(z
+
i
; q+

i
); (ii) the future trajectory {xi(k), ui(k)}k

does not necessarily satisfy all constraints.

Remark 3. The proof is omitted, but it is simple to construct

instances of infeasibility and constraint violation, both when

the RPI set is reducing and enlarging in size. For example,

consider when Wi(0) = {0} (which may happen when all coupled

subsystems are at the origin), so that xi − zi ∈ Ri(0) = {0}, and

the disturbance set increases from Wi(0) to Wi(1). Then given

a feasible solution v∗(z) to Pi(zi; 0), ṽi(z
+
i
) is not necessarily

feasible for Pi(z
+
i
; 1) because z+

i
∈ Xi ⊖ Ri(0) = Xi does not

imply z+
i
∈ Xi ⊖ Ri(1). On the other hand, consider the reverse

situation: when xi − zi ∈ Ri(1) and the disturbance decreases

from Wi(1) to Wi(0) = {0}. Given a feasible solution v∗(z) for

Pi(zi; 1), it does now follow that ṽi(z
+
i
) is feasible for Pi(z

+
i
; 0).

However, x+
i
− z+

i
is not necessarily in Ri(0) = {0}, meaning that

constraint satisfaction by the true subsystem dynamics is not

guaranteed for all vi ∈ Vi(z
+
i
).

Proposition 1 has profound implications. If it cannot be guar-

anteed that a feasible solution can be constructed from the tail

of a previous one, then the tail can not be used in the usual way

to establish monotonic descent of the value function and, hence,

stability of the system. It is this that motivates the checking step

in the algorithm, and in the next section we show that, with this

step included and an additional assumption, the tail feasibility

guarantee is maintained.

For the remainder of Section 5, the standing assumptions 1–4

are supposed to hold.

5.2. Non-increasing disturbance sets imply feasibility

We begin with establishing a sufficient condition for guaran-

teed feasibility of the tail. For this, we require the following two

lemmas.

Lemma 2 (Smaller Wi implies smaller Ri). Suppose that

Ri(q
1
i
) satisfies (Aii + BiiKi)Ri(q

1
i
) ⊕Wi(g

1
i
) ⊆ Ri(q

1
i
) for some

g1
i
∈ R

rw
i

0+
. Consider g2

i
≤ g1

i
, so Wi(g

2
i
) ⊆ Wi(g

1
i
). Then there

exists q2
i
≤ q1

i
such that Ri(q

2
i
) ⊆ Ri(q

1
i
) and (Aii+BiiKi)Ri(q

2
i
)⊕

Wi(g
2
i
) ⊆ Ri(q

2
i
).

Proof. If (Aii + BiiKi)Ri(q
1
i
) ⊕ Wi(g

1
i
) ⊆ Ri(q

1
i
) then (Aii +

BiiKi)Ri(q
1
i
) ⊕ W ⊆ Ri(q

1
i
) for any W ⊆ Wi(g

1
i
), including

Wi(g
2
i
). Therefore, q2

i
= q1

i
is a valid choice to satisfy the claim.

�

Lemma 3 (Smaller Ri implies largerZi). Given q1
i
, q2

i
such

that q2
i
≤ q1

i
≤ 1,Zi(q

1
i
) ⊆ Zi(q

2
i
).

Proof. Given some zi ∈ Zi(q
1
i
), by definition there exists a

v∗
i
(zi) ∈ Vi(a

∗
i
, b∗

i
; q1

i
) where a∗

i
≤ 1 and b∗

i
≤ 1. The same

v∗
i
(zi) ∈ Vi(a

∗
i
, b∗

i
; q2

i
), for q2

i
≤ q1

i
, in view of the constraints

set inclusion Xi(a
∗
i
) ⊖ Ri(q

1
i
) ⊆ Xi(a

∗
i
) ⊖ Ri(q

2
i
), with similar

inclusions for Ui and X
f

i
. Therefore, zi ∈ Zi(q

2
i
). �
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Proposition 2 (Condition for tail feasibility). Suppose

zi ∈ Zi(qi) and (v∗
i
(zi), a

∗
i
, b∗

i
) is a feasible solution to Pi(zi; qi).

Then (ṽi(z
+
i

), a∗
i
, b∗

i
) is a feasible solution to Pi(z

+
i

; q+
i

) if q+
i
≤ qi.

Proof. Follows directly from Lemma 3 and the definition ofZi.

�

This sufficient condition, together with Lemmas 2 and 3, mo-

tivates the following assumption, which we shall use to establish

recursive feasibility. A discussion on the strength, implications

and satisfaction of this assumption is given in Section 5.3.

Assumption 5. The optimized set parameters ai and bi are non-

increasing over time: i.e., a∗
i
(k) ≤ a∗

i
(k−1) and b∗

i
(k) ≤ b∗

i
(k−1).

The following result establishes recursive feasibility of the con-

trolled system.

Theorem 1 (Recursive feasibility). Suppose that Assumption

5 holds and, for all i ∈ N , that xi(0) ∈ Zi(1). Then each

subsystem controlled according to Algorithm 1 is recursively

feasible and satisfies all constraints.

Proof. Consider subsystem i ∈ N with state (xi, zi) and sup-

pose there exists a solution
(

v∗
i
(zi), a

∗
i
, b∗

i

)

to Pi(zi, qi). Further

suppose that xi − zi ∈ Ri(qi), so that xi ∈ Xi, ui ∈ Ui. Now con-

sider the successor sets Wi(g
+
i
) ⊆ Wi(gi) and Ri(q

+
i
) ⊆ Ri(qi),

where, because of Assumption 5, g+
i
≤ gi and q+

i
≤ qi. The

successor error state is (x+
i
− z+

i
) ∈ (Aii + BiiKi)(xi − zi)⊕Wi(g

+
i

):

by construction, (x+
i
− z+

i
) ∈ R(qi), but either (i) (x+

i
− z+

i
) ∈

R(q+
i
) or (ii) (x+

i
− z+

i
) < R(q+

i
). In either case, by Proposi-

tion 2,
(

ṽi(z
+
i
), a∗

i
, b∗

i

)

is a feasible solution to both Pi(z
+
i
, q+

i
)

and Pi(z
+
i
, qi). In case (i), q+

i
is adopted, and the future tra-

jectory of the system satisfies xi(k) ∈ zi(k) ⊕ Ri(q
+
i
) for any

sequence {wi(k)} ∈Wi(g
+
i

)×Wi(g
+
i

)× . . . . Moreover, xi(k) ∈ Xi,

ui(k) ∈ Ui because zi(k) ∈ Xi ⊖ Ri(q
+
i
), vi(k) ∈ Ui ⊖ KiRi(q

+
i
).

In case (ii), q+
i

is not adopted, keeping qi, and the future trajec-

tory of the system satisfies xi(k) ∈ zi(k) ⊕ Ri(qi) also for any

sequence {wi(k)} ∈Wi(g
+
i

)×Wi(g
+
i

)× . . . . Moreover, xi(k) ∈ Xi,

ui(k) ∈ Ui because zi(k) ∈ Xi⊖Ri(qi), vi(k) ∈ Ui⊖KiRi(qi). This

completes the part of the proof that, given a feasible solution

with xi − zi ∈ Ri(qi), feasibility and constraint satisfaction are

guaranteed for all subsequent times.

Now consider time 0. xi(0) ∈ Zi(1) so by definition there

exists a solution
(

v∗
i
(zi), a

∗
i
, b∗

i

)

to Pi(zi(0), qi(0)) where zi(0) =

xi(0) and qi(0) = 1. It follows that, for all i ∈ N , Wi(gi(1)) =

Wi(g
+
i
) ⊆ Wi(gi(0)) = Wi(1), hence Ri(qi(1)) = Ri(q

+
i
) ⊆

Ri(qi) = Ri(1). The successor error state is xi(1) − zi(1) ∈

(Aii + BiiKi)(xi(0) − zi(0)) ⊕Wi(gi(0)) =Wi(gi(0)) ⊆ Ri(qi(1)),

so (i) xi(1) ∈ Xi for all wi(0) ∈ Wi(gi(0)) and (ii) the check in

step 5 is satisfied. So, qi(1) ≤ qi(0) = 1 is adopted for time

1, and, using the preceding part of this proof for time k = 1

onwards, the result is established. �

The final result of this section establishes exponential sta-

bility of the origin for the controlled system. The following

assumption is made.

Assumption 6. The gain matrix K , diag(K1,K2, . . . ,KM) is

such that the large-scale system x+ = (A + BK)x has all eigen-

values strictly within the unit circle.

Remark 4 (Mildness of Assumption 6). In theory, determin-

ing suitable Ki such that all (Aii + BiiKi), and also (A + BK), are

stable is a non-trivial problem. It may be cast conservatively as

a linear matrix inequality (LMI) problem of designing a static

state feedback controller u = Kx for x+ = Ax + Bu with decen-

tralized structure imposed on K [33, 34]. In practice, however,

it is desirable to design the Ki such that the sets Ri are small,

which suggests the poles of (Aii + BiiKi) being close to, or at,

the origin. In that case, the coupling between subsystems would

need to be relatively strong (relatively large off-diagonal Ai j

and Bi j compared to Aii and Bii) in order for the eigenvalues of

(A + BK) to lie outside of the unit circle.

Theorem 2 (Exponential stability of the origin). Suppose

Assumptions 5 and 6 hold. Then the origin is exponentially

stable for each subsystem i ∈ N when controlled according to

Algorithm 1. The region of attraction isZi(1).

Proof. We first show exponential stability of the origin for the

nominal controlled subsystem, z+
i
= Aiizi+Biiκ̄i(zi), and then use

the fact that xi ∈ zi ⊕ Ri(qi), together with the stable large-scale

dynamics, to show the same for the true state.

Given some zi ∈ Zi(1), the optimal cost of problem Pi(zi; qi)

is Vi

(

zi, v
∗
i
(zi)
)

+ρa‖a
∗
i
‖1+ρb‖b

∗
i
‖1. The value function V∗

i
(zi; qi) =

Vi

(

zi, v
∗
i
(zi)
)

satisfies

ci|zi|
2 ≤ V∗i (zi; qi) ≤ di|zi|

2,∀zi ∈ Zi(qi), 0 ≤ qi ≤ 1

where di > ci > 0. The lower bound here follows by definition

of Vi(zi, vi), and the upper bound from continuity of V∗
i
(zi; qi),

which itself follows from the fact that z+
i
= Aiizi + Biivi is linear

and the sets Xi(ai) ⊖ Ri(qi), Ui(bi) ⊖ KiRi(qi), and X
f

i
(ai, bi; qi)

are polytopic. Under Assumption 5, an upper bound on the

optimal cost of Pi(z
+
i
; q+

i
) is Vi

(

z+
i
, ṽi(z

+
i
)
)

+ ρa‖a
∗
i
‖1 + ρb‖b

∗
i
‖1

where

Vi

(

z+i , ṽi(z
+
i )
)

≤ V∗i (zi; qi) − ℓi
(

zi, κ̄i(zi)
)

.

Moreover, since, by Assumption 5, q+
i
≤ qi, then V∗

i
(z+

i
; q+

i
) ≤

V∗
i
(z+

i
; qi) ≤ Vi

(

z+
i
, ṽi(z

+
i
)
)

. Hence

V∗i (z+i ; q+i ) − V∗i (zi; qi) ≤ −ℓi
(

zi, κ̄i(zi)
)

≤ −ci|zi|
2,

for all z ∈ Zi(qi), 0 ≤ qi ≤ 1, q+
i
≤ qi. By the usual argu-

ments (see, for example, [21, Theorem 2.24]), there exists a

constant γi > 0 such that |zi(k)| ≤ γi(1 − ci/di)
k |zi(0)|, and the

origin is therefore exponentially stable for z+
i
= Aiizi + Biiκ̄i(zi)

with region of attractionZi(1).

Since zi(0) = xi(0), then xi(k) ∈ zi(k) ⊕ Ri(1) for all k. More

specifically, xi(k) ∈ zi(k)⊕Ri(qi(k)) at some k, where 0 ≤ qi(k) ≤

1. Since xi(k) = zi(k) + ei(k), where ei(k) , xi(k) − zi(k) ∈

Ri(qi(k)), then

|xi(k)|Ri(qi(k)) = |zi(k)+ei(k)|Ri(qi(k)) ≤ |zi(k)+ei(k)|ei(k) = |zi(k)|

10



and so

|xi(k)|Ri(qi(k)) ≤ γi(1 − ci/di)
k |zi(0)|, (18)

which shows the distance between xi(k) and Ri(qi(k)) decreases

exponentially fast. Ri varies with qi(k), and we wish to establish

convergence of the sequence {qi(k)} to a limit; first, consider

the sequences {a∗
i
(k)}, {b∗

i
(k)}, where 0 ≤ a∗

i
≤ 1 and a∗

i
(k) ≤

a∗
i
(k − 1) for all k by Assumption 5, with similar bounds for b∗

i
.

Thus, each is a non-increasing, bounded sequence that converges

to some finite limit, say (āi, b̄i). It holds that (0, 0) ≤ (āi, b̄i) ≤

(1, 1). Then Wi(gi)→Wi(ḡi) =
⊕

j∈Ni

(

Ai jX j(āi) ⊕ Bi jU j(b̄ j)
)

,

and Ri(qi)→ Ri(q̄i). Because of (18), the state xi converges to

Ri(q̄i) exponentially fast.

As a consequence of the exponential convergence of the

nominal state zi, there exists a k∗ such that every nominal state

zi enters a set {0} ⊕ B(δ) in finite time k∗; the true state xi lies

within B(δ) ⊕ Ri(qi(k
∗)). Within this set, the large-scale system

dynamics evolve according to

x+ = Ax + Bu = (A + BK)x + B(v∗ − Kz)

where v∗
i
= κ̄i(zi); moreover, there exists a sufficiently small δ

such that, for zi ∈ {0} ⊕ B(δ), the optimal sequences {v∗
i
(0), . . . ,

v∗
i
(N − 1)} and {z∗

i
(0), . . . , z∗

i
(N)} lie in the interiors of their re-

spective constraint sets, and the control law κ̄i(zi) = K̄izi. Then

v∗ − Kz = (K̄ − K)z where K̄ = diag(K̄1, . . . , K̄M). Owing to

the exponential convergence of each zi, the term B(v∗ − Kz) =

B(K̄ − K)z is exponentially decaying. In view of this and stabil-

ity of (A + BK), we conclude that the state x, and hence each

subsystem state xi, in fact converges exponentially to the origin.

�

5.3. Discussion: ensuring non-increasing disturbance sets

The recursive feasibility guarantee relies on Assumption 5,

and so naturally the question arises of how strong it is and when

it is met. The analysis in the previous section informs about

the sufficiency of non-increasing (a∗
i
, b∗

i
) in order to guarantee

recursive feasibility and constraint satisfaction: for a subsystem

i at time k, if (a∗
j
, b∗

j
) of neighbours j ∈ Ni are non-increasing

with respect to their previous values, then the RPI set Ri(q
+
i
)

does not increase in size and (i) there is guaranteed to exist a

solution to the modified optimal control problem at the next step

k + 1—namely, the candidate solution ṽi(z
+
i
) together with set

parameters a∗
i
(k + 1) = a∗

i
(k) and b∗

i
(k + 1) = b∗

i
(k)—and (ii)

all constraints are guaranteed to be satisfied. By recursion and

extension across the whole system, therefore, Assumption 5 is

automatically met if each subsystem were to adopt the (subopti-

mal) feasible candidate solution at every step.

For performance reasons, however, it is desirable to obtain

an optimal solution at each time step. Yet it does not hold, in

general, that non-increasing values of ai and bi are an optimal

choice: the optimal ai and bi depend on the choice of weighting

parameters in the cost function (i.e., the Qi, Ri, ρa and ρb), and

the application, and it is possible that the objectives of minimiz-

ing Vi(zi,ui) and ρa‖ai‖1 + ρb‖bi‖1 are conflicting. On the one

hand, the controller would like to optimize predicted control per-

formance, which it is most free to do so when the its constraint

sets are very large, but on the other hand it desires to minimize

the size of the disturbance sets, which lowers conservativeness

across the system. Therefore, a balance must be reached be-

tween the size of the constraints sets and the maximal size of the

disturbance sets: ideally, very small penalties on ai and bi will

incentivize the controllers to eliminate the slack or excess in the

constraint sets without adversely affecting the optimal state and

input trajectories.

In the event that increasing ai and bi do occur, subsequent

feasibility and constraint satisfaction may be lost (but not neces-

sarily so, since the non-increase of (ai, bi) is merely a sufficient

condition, rather than a necessary one, for recursive feasibility).

However, we also note that the option always exists to reject

such a solution and adopt the feasible candidate solution, which

is formed from a previously computed solution and satisfies

Assumption 5.

In the following sections, we give some further guidelines

and considerations for design in order to maintain feasibility and

good performance.

5.3.1. Constraining non-increase of (ai, bi)

Satisfaction of Assumption 5 is guaranteed if non-increase of

(ai, bi) is constrained, either as a constraint in the optimization,

i.e.,

ai ≤ a∗i (k − 1),

bi ≤ b∗i (k − 1),

or as an extra step and condition within the algorithm; that is,

an optimal solution is adopted if and only if a∗
i
≤ a∗

i
(k − 1)

and bi ≤ b∗
i
(k − 1). The former has the disadvantage that the

optimization problems become increasingly constrained, and the

controllers have less flexibility and robustness, as the subsystem

states converge; an external disturbance, unmodelled uncertainty

or setpoint change could easily render the system infeasible. The

latter option appears to avoid this, but in fact the controllers still

lose flexibility and robustness since only solutions that lead to

non-increase of ai and bi can be implemented.

5.3.2. Promoting non-increase via the objective

A preferable option, which retains flexibility within the con-

trollers, is to promote non-increase via the cost function, either

by penalizing more heavily (via ρa and ρb) the values of ai and

bi, or by explicitly penalizing increase of ai and bi. For the latter,

non-increase can be promoted via the objective

Vi(zi,ui) + ρa‖ai‖1 + ρb‖bi‖1 +W(γa
i + γ

b
i ),

where γa
i
, γb

i
are non-negative scalar variables, W is large and

positive, and

ai ≤ a∗i (k − 1) + γa
i

bi ≤ b∗i (k − 1) + γb
i .

In this case, the controller is permitted to select a solution with

increasing (ai, bi) if it needs to, but prefers not to.

The precise selection and tuning of the weights Qi, Ri, ρa,

ρb and W depends on the particular application. However, the
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price of meeting Assumption 5 in this way is suboptimality

with respect to the control objective. This, and the relaxation of

Assumption 5, are topics of current research.

6. Illustrative example

We consider a modified version of the four-truck system

from [15]. Each truck is modelled by the second-order dynamics

[

ṙi

v̇i

]

=

[

0 1

− 1
mi

∑

j∈Ni
ki j −

1
mi

∑

j∈Ni
hi j

]

︸                                  ︷︷                                  ︸

Aii

[

ri

vi

]

+

[

0

100

]

ui + wi

wi =
∑

j∈Ni

[

0 0
1
mi

∑

j∈Ni
ki j

1
mi

∑

j∈Ni
hi j

]

︸                             ︷︷                             ︸

Ai j

[

r j

v j

]

where ri is the displacement of truck i from an equilibrium

position, vi is its velocity and ui is the control input (accel-

eration). The disturbance wi arises via the coupling between

trucks: truck 1 (mass m1 = 3 kg) is coupled to truck 2 (mass

m2 = 2 kg) via a spring (stiffness k12 = 0.5 N m−1) and damper

(h12 = 0.2 N m−1 s−1). Likewise, truck 3 (mass m3 = 3 kg) is

coupled to truck 4 (mass m4 = 6 kg) via k34 = 1 N m−1 and

h34 = 0.3 N m−1 s−1. However, in this paper we modify the

system to also couple trucks 2 and 3 via k23 = 0.75 N m−1 and

h23 = 0.25 N m−1 s−1, so that the four trucks are coupled as one

group.

The problem considered is controlling the trucks to equilib-

rium from initial states of

x1 =

[

1.8

0

]

x2 =

[

−0.5

0

]

x3 =

[

1

0

]

x4 =

[

−1

0

]

.

The trucks are subject to state constraints |ri| ≤ 4, |vi| ≤ 1

and input constraints |ui| ≤ 1 for i = 1, 2, 3, |u4| ≤ 2. These

constraints form the sets Xi(1), Ui(1), from which the initial

disturbance sets Wi(1) are computed.

For the DMPC design, the continuous-time dynamics are

discretized using zero-order hold and a sampling time of 0.1 sec-

onds, treating the state couplings as exogenous disturbances in

order to preserve sparsity of the subsystem-to-subsystem cou-

pling. (Note, then, that the discretization is approximate rather

than exact—for an interesting discussion and contribution to-

ward sparsity-preserving discretization, see [35].) The MPC

controllers are designed with cost matrices Qi = I and Ri = 100.

The weighting parameter ρa—which governs the preference for

minimizing the system cost versus minimizing the size of state

constraint set—was set to 0.0001. Because the trucks are not

input coupled, we fix Ui = Ui(1) and do not include bi as an

optimization variable. The prediction horizon is N = 25.

For each truck, the tube control law, Ki, is chosen to be the

deadbeat controller for the local nominal dynamics x+
i
= Aiixi +

Biui. This means the minimal RPI set is finitely determined, and

leads to an initial RPI set, Ri(1), defined by four inequalities.

On the other hand, the parametric terminal set is the maximal

constraint admissible set associated with the infinite-horizon

LQR terminal controller K
f

i
= K∞(Aii, Bi,Qi,Ri) and the state

and input constraint sets Xi(ai) and U; the terminal cost matrix

Pi is the corresponding Lyapunov equation solution.

6.1. Constraint and invariant set comparison

Figure 1 shows the relevant constraint, terminal and tube

sets for trucks 1 and 2. The top subfigure illustrates the potential

drawback of taking a robust approach to what is a nominal

control problem, for the tube set R2(1) for truck 2—constructed

to offer robustness to the disturbance set W2(1) induced by the

couplings with trucks 1 and 3—is of a significant size compared

to the state constraint set X2(1). The tightening of the state

constraint set—the difference between the set X2(1) and the

tightened set X2(1) ⊖ R2(1)—is significant.

The middle subfigure of Figure 1 shows the same sets for

truck 1, but also the re-configured versions of these sets after

having solved the initial optimal control problem at time k = 0.

The state constraint set X1(1) is optimized to X1(a∗
1
), while the

parametric terminal set X
f

1
(1; 1) becomes X

f

1
(a∗

1
; 1). Note the

asymmetry of the re-configured state and terminal sets, and that

the latter is, of course, a subset of the former. The optimized state

trajectory x∗
1

is also shown, and respects all constraints. Finally,

the bottom subfigure illustrates the impact of this minimization

of the constraint set for truck 1 on the tube cross-section (RPI)

set of the coupled truck 2, which is reduced significantly.

6.2. Closed-loop performance

To evaluate the performance of the proposed scheme, the

four-truck system is controlled by three different algorithms:

1. Algorithm 1 (“DMPC”).

2. Tube Decentralized MPC (“Tube DeMPC)”, which is Al-

gorithm 1 without optimization of ai and re-computation

of RPI sets.

3. Centralized MPC (“CMPC”).

Figure 2 shows the resulting closed-loop state trajectories.

For Tube DeMPC and the proposed DMPC, the RPI sets are also

shown at each time step. Note that these represent uncertainty

around nominal trajectories, and each controller has to tighten

constraints to make allowance for the entire tube cross-section.

For Tube DeMPC these sets are of a considerable size, mean-

ing the velocity constraint must be tightened significantly. In

contrast, the RPI sets for Alg. 1 contract significantly after the

initial step, as controllers form better estimates of the actual

disturbance sets, based on how much of the original state and

input sets each subsystem is using. The bottom plot of Figure 2,

showing the first five steps of truck 1, illustrates this contraction

clearly. With Algorithm 1, the RPI sets are significantly reduced

after just one time step, and the subsystem trajectory is able to

go closer to constraints and the CMPC trajectory.

Table 1 compares the total closed-loop costs obtained from

the different approaches, showing results for using as a termi-

nal set both the reconfigurable maximal admissible set, X
f

i
=

O∞
i

(ai, bi; qi), and the origin. As the state trajectories shown in

the figures suggest, the proposed approach achieves performance

closer to that of centralized MPC than that of Tube DeMPC. The

simplified implementation of the proposed DMPC (“sDMPC”),
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Figure 1: (Top) State constraint set X2(1), terminal set X
f

2
(1; 1), RPI set R2(1),

and tightened state constraint set X2(1) ⊖ R2(1) for truck 2. (Middle) The same

sets for truck 1 both prior to (lighter lines), and following (darker lines), the

optimization at time k = 0; X1(1) is reduced to X1(a∗
1
) and the parametric

terminal set is reduced from X
f

1
(1; 1) to X

f

1
(a∗

1
; 1). Also shown is the optimized

state trajectory x∗
1
. (Bottom) The original RPI set R2(1) for truck 2, and the new

set, R2(q+
2

), computed after receiving a∗
1

from truck 1.

described in Section 4.3, is also included in the table; it can

be seen to out-perform the DeMPC control scheme, despite the
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Figure 2: Closed-loop state trajectories of system controlled by CMPC, Tube

DeMPC, and Alg. 1 with T = 1. (Top) All four trucks. (Middle) Truck 1, with

tube cross-section sets shown. (Bottom) Enlarged image of the first five steps of

truck 1’s trajectory.

minimal on-line computational complexity. Finally, the effect of

the update rate T of the RPI sets is shown; good performance is

achieved even with T = 10.
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6.3. On-line computation

Regarding the computational complexity of the approach,

solving the distributed optimal control problem (which is a QP)

took a maximum time 0.007 seconds across the four trucks

during the 100-step simulation, using CPLEX 12.6 on a 64-bit

Intel Core i7-2600 machine running at 3.40 GHz with 8 GB

RAM. In contrast, the unmodified distributed optimal control

problem employed by the DeMPC took a maximum time of

0.006 seconds, while the larger QP used by the centralized

controller took a maximum time of 0.045 s to solve.

The ancillary LP—used to compute the RPI sets from the

shared constraint set information—took a maximum time of

0.003 seconds, using CPLEX 12.6 as the LP solver, indicating

the practicality of the proposed approach.

7. Conclusions

A novel tube-based DMPC scheme has been proposed with

guaranteed recursive feasibility and stability. The rationale of

the approach lies in the optimization of—and exchange of in-

formation about—the input and state constraint sets in order to

minimize the mutual disturbances between subsystems. In order

to guarantee feasibility and stability, the approach employs a

parametric terminal constraint set, which adjusts automatically

to account for the changes to state and input constraint sets. The

re-configuration of disturbance sets and tube (RPI) sets, in re-

sponse to new information from neighbours, is done on-line via

the solving of a single LP by each subsystem controller. As it is

verified in the simulation section, the proposed approach is less

conservative than conventional tube-based decentralized MPC.
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