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Abstract

Single grains of K-feldspar from alluvial fan units are dated using a more time-stable signal, the post-infrared

infrared stimulated luminescence, or, ‘post-IR IRSL’ (Buylaert et al., 2009). A quick measurement protocol

is discussed, ‘fast post-IR IRSL,’ that stimulates first with the IR diodes at the lower temperature and then

measures grain-by-grain at the higher temperature. A criterion is offered for rejecting outlying grains based

on hierarchical clustering. Single-grain fading rates are found to diverge from single-aliquot fading values,

and the fading rates from the brightest subset of grains correspond well with an infinite age cobble and

independent age control. Age comparison with a cosmogenic depth-profile age shows agreement at 1σ. The

depositional chronology suggests that the climate responsible for regionally-extensive, upper-regime floods

which aggraded the older units transitioned into a climate producing weaker channelized floods around the

Late Pleistocene-Holocene transition.

Keywords: post-IR IRSL, K-feldspar, hierarchical clustering, single-grain IRSL

1. Introduction

The motivation of this project is to use luminescence dating to quantify the depositional chronology

corresponding to a dramatic shift in depositional style observed for a set of alluvial fans near Cabo San

Lucas, Mexico. This shift in flow conditions is preserved in the bedforms of these fans, which change from

an aggradational sequence of supercritical units exhibiting sheetflow characteristics to an incisional sequence

of more channelized units. This study attempts to establish the timing of this shift, the duration of fan

deposition, and the time interval between units. By coupling sedimentological observations (Antinao and

McDonald, 2013) with an absolute chronology (this paper), we hope to elucidate the nature of regional alluvial

fan sedimentation, both in terms of dynamics (e.g., episodic sedimentation pulses or gradual accumulation)

and potential climatic influences (the relative importance of synoptic patterns through time).

An ideal application of luminescence dating requires adequate luminescence characteristics, a stable dose-

rate environment, a time-stable signal, and the isolation of those grains which have been completely reset
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at burial. In tectonically-active areas such as this, quartz grains are typically dim owing to their recent

detachment from bedrock (Preusser et al., 2006; Rhodes, 2011); feldspars, however, remain bright, but

suffer from anomalous fading (Huntley and Lamothe, 2001). Recent studies, however, have demonstrated the

increased stability of an infrared-stimulated luminescence (IRSL) signal measured at an elevated temperature

following the traditional low-temperature IRSL, i.e., post-IR IRSL (Thomsen et al., 2008; Buylaert et al.,

2009; Thiel et al., 2011; Buylaert et al., 2012). To discern the nature of dose dispersion among grains and avoid

problems such as partial bleaching or multiple dose populations, single-grain or small-aliquot measurements

are often necessary, especially in glacigenic or fluvial environments (Rhodes, 2007; Duller, 2008). This study

therefore considers the application of post-IR IRSL to single grains of K-feldspar from alluvial fan terraces

within a tectonically-active basin in Mexico.

2. Study site

The southern tip of the Baja California peninsula in Mexico (Fig. 1) has experienced a dynamic climate

during the Late Quaternary due to the changing influences of three different climate systems: extra-tropical

Pacific cyclones, tropical cyclones, and the North American Monsoon (Bacon et al., 2010; Antinao and

McDonald, 2013). Previous work on the Quaternary paleoclimate of Baja California Sur has focused on

pollen analysis (Lozano-Garcia et al., 2002), vegetation remains within packrat middens (Rhode, 2002) and

geochemical and rock magnetic analysis of off-shore core records (Blanchet et al., 2007), yet the possibility

of using stratigraphy to characterize the evolving depositional environment of Baja California Sur during the

Late Pleistocene to Holocene transition remains largely unexplored. Resolving the depositional chronology

for alluvial fan aggradation in southern Baja California may elucidate the relative importance of local climate

drivers during the Late Pleistocene.

The La Paz and San José del Cabo extensional basins are associated with the nearby Gulf of California rift

system and contain continental and marine strata ranging in age from early middle Miocene to recent (McCloy,

1984). Several workers have mapped the regional Cenozoic stratigraphy (McCloy, 1984; Smith, 1991), and

have delimited the extent of Quaternary alluvium (Martinez-Gutierrez and Sethi, 1997), but detailed mapping

of morphopedosedimentary units has only recently been undertaken (Antinao and McDonald, 2013).

Six terrace units have been mapped regionally (from oldest to youngest, Qt1 - Qt6) (Antinao et al.,

Unpublished results) (Fig. 1.b). The sedimentological features within these units demonstrate a distinct shift

in the style and magnitude of deposition between units Qt4 and Qt5. A 13.5-meter-thick exposure of Qt4 near

San Lázaro within the San José del Cabo basin contains several structures diagnostic of supercritical flow

(Koster, 1978): a transverse gravel bar, long-wavelength (15 m) antidunes, and transported boulders with

diameters of about 30 cm. Assuming a similar channel width to today, these bedforms would correspond to a

peak discharge of about 13,000 m3/s. There are three discrete depositional packages within the section, but

the lack of soil development between them suggests that the intervening time between packages was probably

brief. Qt4 and older units are also quite regionally extensive.
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A total of 48 samples (lab codes of J0186 - J0205; J0399 - J0428; J0591) are reported in this study

(two were lost in shipping, J0402 and J0411) from terrace units Qt2 (older) - Qt6 (younger), from a terrace

deposited in 1976 and from three modern channels. At many sites, samples were collected in sequences of

four to check for stratigraphic consistency in ages. Unit Qt4 was sampled at a relatively high density (22

samples) to elucidate the internal depositional dynamics; there were 6 samples from Qt2, 4 from Qt3, 7 from

Qt5, 2 from Qt6, 4 from an historic 1976 flood event, and one each from three modern channels.

3. Experimental details

3.1. Sample preparation and equipment

K-feldspar grains of 175-200 µm were isolated from the sedimentary samples under dim amber LED

light conditions. Subsamples were wet-sieved, treated with 3% HCl, separated by density with lithium

metatungstate (ρ <2.58 g/cm3), and treated with 10% HF for 10 minutes to remove the outer layer from the

grains. As sediments contained little organic material, treatment with H2O2 was considered unnecessary.

Luminescence measurements were carried out using a TL-DA-20 Risø automated reader equipped with a

single-grain IR laser (830 nm, at 90% of 150 mW) (Bøtter-Jensen et al., 2003) and a 90Sr/90Y beta source.

Measurements of scatter in De values for Risø calibration quartz suggest that source inhomogeneity causes

11% overdispersion. Emissions were detected through a Schott BG3-BG39 filter combination. Samples were

mounted on aluminum single-grain discs with 100 holes.

A calibrated EG&G ORTEC MicroNOMAD portable NaI gamma spectrometer was used to determine

the in situ gamma dose-rate for all samples near La Paz, and several samples near Cabo San Lucas. The U

and Th concentrations were measured with inductively-coupled plasma mass spectrometry (ICP-MS), and

the K concentration was measuring using inductively-coupled plasma optical emission spectrometry (ICP-

OES)(Table 1). These values were used to calculate the total beta dose-rate contribution using the conversion

factors of Adamiec and Aitken (1998). As both gamma spectrometer and ICP measurements were made, the

degree of potential U-series disequilibrium could be examined; NaI gamma spectrometry detects nuclides in

the lower-half of uranium and thorium decay chains, while ICP-MS measures parent nuclide concentration

(Olley et al., 1996). For the majority of samples, the ratio of measured uranium concentrations were near

one, and where the ICP estimate of U concentration was higher than the gamma spectrometer estimate, the

Th ratios were equally high, suggesting that this effect may result from spatial inhomogeneity. Examination

of the age estimates that show this effect in comparison to those from the same stratigraphic section suggests

that either: a) the ICP results correct for spatial inhomogeneity on the decimeter scale and provide a

representative beta dose-rate assesment, or b) the ICP results for these samples may suffer from the effects of

severe sediment inhomogeneity on the millimeter scale, leading to a degree of beta dose-rate overestimation.

A value of 12.5 ± 0.12 wt. % K content was used in calculating the internal dose rate (Huntley and Baril,

1997). Sediment samples were collected within each sample hole for water content measurement, and cosmic

dose-rates were estimated following Prescott and Hutton (1994).
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3.2. Measurement protocols

Two different post-IR IRSL (Buylaert et al., 2009) single-aliquot regenerative-dose (SAR) protocols (Mur-

ray and Wintle, 2000) were used to measure equivalent dose (De) values. The difference in protocols is the

measurement of the IR50 signal; in the normal post-IR50 IR225 sequence, both the IR50 and the post-IR50

IR225 signals are measured using the single-grain IR laser for 3 s per grain, whereas in the ‘fast’ post-IR50

IR225 sequence the IR50 signal is measured per aliquot using the IR diodes for 100 s. This fast post-IR50

IR225 protocol saves time by evicting the more unstable charge (IR50) once per aliquot, and measuring only

the more stable signal (IR225) grain-by-grain. The final 0.5 s are subtracted from the first 0.5 s of stimulation

to define the signal intensity. Both protocols incorporate a preheat of 250 ◦C for 60 s before natural and

regenerative measurements, as well as a stimulation with the IR diodes at 290 ◦C for 40 s at the end of each

SAR cycle.

The difference in heat received between the first and last grain during the measurement of the post-IR IR

signal was also considered. To understand the effect of prolonged heating on the signals, 200 grains of sample

J0196 were given a dose of 50 Gy, then the single-grain IR50 signals were measured. Prior to measuring the

post-IR IR signal, however, the discs were held at 225 ◦C for 0, 100 and 1000 s. The means of the sensitivity-

corrected signals increased with heat duration by about 16% per decade, though the signals all remained

within 1σ of each other; this effect is not yet understood. The dose-recovery tests for samples J0196 (Qt3

near San José del Cabo) and J0400 (Qt4 near La Paz) were also examined: no significant trend was observed

when the recovered doses were plotted against the time held at 225 ◦C before stimulation, suggesting that

any difference in heating between grains is probably insignificant.

4. Equivalent dose distributions

Accurately estimating the dose-frequency distribution of single grains is paramount when interpreting

the depositional history of a sample (Galbraith, 2010). Variation in single-grain De values can be caused by

a number of factors (Duller, 2008), including partial bleaching, bioturbation (Rink et al., 2013), dosimetric

heterogeneity (Thomsen et al., 2003, 2005), instrument reproducibility (3.3%, Thomsen et al., 2005), and (in

the case of feldspars) differential fading (Auclair et al., 2003) and/or internal dose-rates (Huntley and Baril,

1997).

A robust interpretation of sample history therefore requires a methodology. First, a reasonable overdis-

persion must be added in quadrature to the errors of all grains. Thomsen et al. (2005) suggest 10% as a

reasonable approximation of instrumental and irradiation heterogeneity errors for single grains of quartz.

For this study, we have applied an overdispersion of 15% to all age calculations. This term accounts for the

intrinsic variability that any well-bleached sample should exhibit and precludes the possibility of giving too

much weight to any one seemingly precise grain (Rhodes et al., 2010).

Second, any outliers must be rejected. Outlying grains may represent accidental inclusion during sampling

or bioturbation. The finite mixture model (Galbraith and Green, 1990) may work well to discriminate between
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several discrete dose populations, if the number of components are known and the populations are normally

distributed; however, the problem of identifying individual grains as outliers, as an unknown number of

singletons or multiple clustered grains which are far from the majority, remains poorly defined within the

luminescence literature.

We propose using hierarchical clustering to quantify grain similarity and thereby to define a similarity

threshold below which grains can be confidently rejected as statistical outliers (Duda, 1973). To do this,

similarity must first be defined in terms of grain De values and errors. The Bhattacharyya distance (Bhat-

tacharyya, 1946) compares two samples p and q with known means (µp and µq) and standard deviations (σp

and σq):

DB(p, q) =
1

4
ln(

1

4
(
σ2
p

σ2
q

+
σ2
q

σ2
p

+ 2)) +
1

4
(
(µp − µq)

2

σ2
p + σ2

q

).

Samples are defined as similar when both the means and standard deviations are similar, i.e., 13.5±0.5 is

closer to 12.5±0.5 than to 13.5±5.0. This ensures that precise potential neighbors are sooner clustered than

imprecise ones, which are unlikely to become outliers. Conversely, when grains are precise and far from each

other, the second term in the equation magnifies according to the difference in means squared over the sum

of the variances. To evaluate the similarity of all grains, one can first define a matrix with DB distances

between every pair of grains, and then progressively combine the grains into clusters until only one cluster

remains. The most dissimilar grain(s) can then be identified as the last cluster added.

Finally, the dose frequency distribution must be estimated. This can be done parametrically, assuming

a specific distribution form and estimating the parameters from the data (e.g., central age model, minimum

age models Galbraith et al., 1999). Alternately, for the minimum age of a single-grain sample it is possible to

use overdispersion as a threshold for omitting grains before applying the central age model, the assumption

being that a single, well-bleached population should not have an overdispersion larger than, for example,

15%. Determining the appropriate overdispersion is thus critical and this will depend on the depositional

environment and the dose-rate heterogeneity for each sample.

An interpreted example is given for sample J0186 (Fig. 2). Notice the importance of measuring single

grains: the synthetic aliquot De value of 136.5±14.9 Gy is more than twice that of the single-grain minimum

age model De value of 58.6±4.2 Gy. Given the depositional environment, we interpret this as a partial

bleaching effect. Additionally, notice the omitted grains, shown circled. Stratigraphically, this may represent

bioturbation, considering that the remaining grains exhibit a ‘leading edge’ (Rodnight, 2006, cf. p. 210)

and the resulting minimum age agrees closely with the adjacent luminescence samples in sequence. Only

by using such a holistic approach which incorporates stratigraphic relationships, depositional dynamics, and

luminescence characteristics can the complexities of single-grain dose distributions be interpreted.
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Table 1: Dose-rate data and post-IR IRSL ages.

Unit Field

code

Lab

code

Depth

(m)

K (%) Th

(ppm)

U (ppm) Measured γ

dose-rate

(Gy/ka)

Total

dose-rate

(Gy/ka)

De (Gy) post-IR

IRSL age

(ka)

Qt2 BA1219 J0417 5 1.9±0.1 2.5±0.1 0.72±0.04 0.883±0.003 3.12±0.13 163±13 52.2±4.8

Qt2 BA1220 J0418 6 1.9±0.1 2.0±0.1 0.80±0.04 0.883±0.003 3.14±0.13 209±19 66.5±6.8

Qt2 BA1221 J0419 5 2.0±0.1 6.7±0.3 1.26±0.06 1.283±0.003 3.70±0.13 218±8 58.8±3.2

Qt2 BA1222 J0420 5 2.1±0.1 7.5±0.4 1.25±0.06 1.283±0.003 3.77±0.13 210±17 55.7±5.0

Qt2 BA1223 J0421 1.8 1.9±0.1 6.2±0.3 0.96±0.05 1.174±0.004 3.59±0.13 225±25 62.7±7.4

Qt2 BA1224 J0422 1.8 2.0±0.1 5.8±0.3 1.17±0.06 1.174±0.004 3.69±0.13 240±20 65.0±6.1

Qt3 SL301 J0196 15 3.2±0.2 13.9±0.7 1.70±0.09 - 5.16±0.24 158±12 30.6±2.8

Qt3 SL302 J0197 15.2 3.0±0.2 6.4±0.3 0.98±0.05 1.409±0.004 4.54±0.20 165±15 36.4±3.6

Qt3 SL303 J0198 15.4 3.1±0.2 5.1±0.3 0.91±0.05 1.361±0.004 4.52±0.20 163±8 36.1±2.5

Qt3 SL304 J0199 16.3 3.3±0.2 6.3±0.3 1.13±0.06 - 4.57±0.24 169±9 37.0±2.9

Qt4 SJ101 J0186 2.2 3.4±0.2 6.6±0.3 1.01±0.05 - 4.78±0.25 58.6±4.2 12.3±1.1

Qt4 SJ102 J0187 2.5 2.7±0.1 9.4±0.5 1.51±0.08 - 4.43±0.21 60.2±4.6 13.6±1.2

Qt4 SJ103 J0188 2.82 2.8±0.1 8.7±0.4 1.21±0.06 - 4.39±0.21 63.9±4.6 14.6±1.3

Qt4 SJ104 J0189 3.05 3.2±0.2 5.5±0.3 0.87±0.04 - 4.47±0.24 60.9±4.3 13.6±1.2

Qt4 SJ201 J0190 0.9 3.8±0.2 6.6±0.3 0.87±0.04 1.543±0.005 5.38±0.25 16.2±1.9 3.0±0.4

Qt4 SJ202 J0191 1.4 3.8±0.2 5.5±0.3 0.75±0.04 - 5.05±0.28 23.3±2.0 4.6±0.5

Qt4 SJ203 J0192 2 3.0±0.2 7.8±0.4 1.02±0.05 - 4.49±0.22 31.3±4.4 7.0±1.0

Qt4 SJ204 J0193 2.77 3.4±0.2 6.9±0.3 1.06±0.05 - 4.81±0.25 97.9±6.2 20.4±1.7

Qt4 ST201 J0202 0.7 2.6±0.1 5.3±0.3 0.95±0.05 - 3.93±0.20 4.0±0.5 1.0±0.1

Qt4 ST202 J0203 1.14 2.9±0.1 5.0±0.3 0.81±0.04 - 4.16±0.21 8.5±0.8 2.0±0.2

Qt4 ST203 J0204 1.6 3.0±0.2 4.5±0.2 0.85±0.04 - 4.23±0.22 20.4±1.8 4.8±0.5

Qt4 ST204 J0205 2.48 2.0±0.1 7.6±0.4 1.08±0.05 - 3.51±0.16 57.8±9.5 16.4±2.8

Qt4 BA1201 J0399 4 1.6±0.1 1.8±0.1 0.50±0.03 0.621±0.002 2.64±0.11 27.4±3.9 11.8±2.21

Qt4 BA1202 J0400 4.2 1.7±0.1 1.4±0.1 0.38±0.02 0.608±0.002 2.67±0.12 38.2±5.7 16.4±2.91

Qt4 BA1203 J0401 4.4 1.6±0.1 1.5±0.1 0.37±0.02 0.610±0.002 2.59±0.11 30.5±6.0 13.4±3.11

1Values were corrected using g2700s=1.6±0.7.

2Values were corrected using g2700s=3.4±0.2.
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(Table 1, continued.)

Unit Field

code

Lab

code

Depth

(m)

K (%) Th

(ppm)

U (ppm) Measured γ

dose-rate

(Gy/ka)

Total

dose-rate

(Gy/ka)

De (Gy) post-IR

IRSL age

(ka)

Qt4 BA1209 J0407 1.04 2.0±0.1 6.3±0.3 3.74±0.19 1.363±0.004 4.16±0.14 17.1±2.4 5.5±0.82

Qt4 BA1210 J0408 1.2 2.1±0.1 6.2±0.3 3.62±0.18 1.424±0.004 4.25±0.14 19.4±4.1 6.1±1.32

Qt4 BA1211 J0409 1.4 2.1±0.1 6.2±0.3 3.48±0.17 1.434±0.004 4.20±0.14 27.9±3.8 8.9±1.22

Qt4 BA1212 J0410 1.6 1.8±0.1 4.9±0.2 3.00±0.15 1.208±0.004 3.74±0.12 32.1±5.3 11.6±2.12

Qt4 BA1214 J0412 2.6 1.8±0.1 5.0±0.3 3.34±0.17 1.282±0.004 3.84±0.12 57.8±9.8 20.7±3.72

Qt4 BA1215 J0413 0.4 2.1±0.1 6.4±0.3 3.25±0.16 1.412±0.003 4.23±0.15 105±13.9 34.6±4.72

Qt4 BA1216 J0414 1.08 2.1±0.1 6.3±0.3 3.84±0.19 1.345±0.003 4.13±0.14 90.4±12 30.4±4.42

Qt5 SL401 J0200 0.5 2.6±0.1 10.3±0.5 1.98±0.10 1.363±0.004 4.56±0.18 2.3±0.5 0.5±0.1

Qt5 SL402 J0201 0.9 2.8±0.1 8.7±0.4 1.74±0.09 1.363±0.004 4.63±0.19 1.7±0.3 0.4±0.1

Qt5 BA1217 J0415 1.17 1.0±0.1 2.2±0.1 0.97±0.05 0.608±0.003 2.33±0.08 12.3±2.6 6.0±1.31

Qt5 BA1218 J0416 1.95 0.8±0.04 3.6±0.2 0.88±0.04 0.572±0.003 2.13±0.07 18.5±5 9.9±2.71

Qt5 BA1225 J0423 0.75 2.9±0.1 3.7±0.2 0.84±0.04 1.363±0.004 4.50±0.19 2.2±0.3 0.5±0.1

Qt5 BA1226 J0424 0.75 3.0±0.2 3.4±0.2 0.95±0.05 1.363±0.004 4.57±0.2 1.3±0.2 0.3±0.05

Qt5 BA1227 J0425 0.47 2.4±0.1 8.5±0.4 1.09±0.05 1.421±0.004 4.30±0.16 1.6±0.3 0.4±0.1

Qt6 SL101 J0194 0.8 2.8±0.1 3.7±0.2 0.78±0.04 1.421±0.004 4.47±0.19 1.6±0.3 0.4±0.1

Qt6 SL102 J0195 2 3.3±0.2 4.1±0.2 0.87±0.04 1.421±0.004 4.83±0.21 2.0±0.4 0.4±0.1

1976 BA1205 J0403 0.69 1.9±0.1 1.3±0.1 0.45±0.02 0.709±0.003 3.01±0.13 0.4±0.1 0.1±0.11

1976 BA1206 J0404 0.96 1.7±0.1 2.6±0.1 0.80±0.04 0.718±0.003 2.93±0.12 1.9±1.6 0.7±0.51

1976 BA1207 J0405 1.63 1.8±0.1 0.9±0.05 0.43±0.02 0.666±0.003 2.86±0.12 0.9±0.4 0.3±0.11

1976 BA1208 J0406 2.84 1.7±0.1 3.0±0.2 0.86±0.04 0.639±0.003 2.83±0.12 0.9±0.2 0.3±0.11

Modern BA1228 J0426 0.1 1.8±0.1 0.6±0.03 0.26±0.01 - 2.71±0.17 -0.2±0.2 -0.1±0.1

Modern BA1229 J0427 0.1 1.9±0.1 5.1±0.3 3.35±0.17 - 3.68±0.18 2.3±0.2 0.8±0.22

Modern BA1230 J0428 0.1 2.2±0.1 18±0.9 1.51±0.08 1.543±0.005 4.55±0.18 -4.1±0.7 -0.9±0.2

1Values were corrected using g2700s=1.6±0.7.

2Values were corrected using g2700s=3.4±0.2.
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5. Results

5.1. Dose recovery test

To test the protocol, two samples from different regions (J0196 near Cabo San Lucas and J0400 to the east

of La Paz) were first bleached for 5 hours in natural sunlight, then given doses similar to the estimated burial

doses (174.5 and 46.5 Gy, respectively). After receiving a dose and preheat, the samples rested for about

40 hours prior to measurement. When measured with the post-IR IR dating protocol, the doses recovered

were 172.4±3.6 (overdispersion of 14%) and 47.2±1.6 Gy (overdispersion of 11%), both within 1σ of the

doses administered. The measured overdispersions add confidence to our assumption that well-bleached and

uniformly dosed populations should exhibit overdispersion values close to 15%.

5.2. Anomalous fading characteristics

When selecting the post-IR IRSL stimulation temperature, two issues arise: lower temperatures probe

signals which are potentially less stable, and higher temperatures probe signals which are less bleachable

(Thomsen et al., 2008; Buylaert et al., 2009; Li and Li, 2011; Buylaert et al., 2012). Considering the rapid,

subaqueous depositional environment of this study, we have chosen a post-IR IRSL stimulation temperature

of 225 ◦C for 3 s, which is more bleachable than the post-IR IRSL290, though perhaps less stable.

To assess the post-IR IRSL signal stability, we measured the sensitivity-corrected luminescence intensities

of single grains and single aliquots after laboratory storage (Huntley and Lamothe, 2001). For six samples

(J0196, J0400, J0407-J0410), grains were allowed to sit for a range of times, between about 2700 s to about

8 days. The fading values were generally internally consistent within 1 or 2σ (Fig. 3.a). Single aliquots

were allowed to sit for up to about 6 months (Fig. 3.b). Fading values for the same sample were not always

consistent when calculated using these different approaches (i.e., single grains compared with single aliquots).

Sample J0196, for example, showed consistency when the weighted mean fading value of all grains were

considered (n=125), but when only the grains with a test dose response greater than exp(9) were considered

(n=14), the apparent g2700s value (the amount of sensitivity-corrected signal lost to quantum tunneling over

an order-of-magnitude increase in time, i.e., ‘a decade’; Aitken, 1985, Appendix F) dropped from about 1%

loss per decade to slightly less than 0 (Fig. 3.c).

To resolve this discrepancy, a granodiorite cobble sample, J0591, taken from the same region as J0196,

was crushed and analyzed; it is reasonable to assume that this cobble represents the provenance material for

J0196, which comes from the catchment near Cabo San Lucas (Fig. 1.a). Nine small aliquots (not single-grain

discs) of this “infinite age” sample were prepared: for three, no dose was added; for three, a beta dose of

213 Gy was added to the natural; and for three, a dose of 425 Gy was added to the natural. All discs were

then measured with the post-IR IR protocol. The first-cycle, sensitivity-corrected intensities (natural and

natural-plus-beta signals) are shown in Fig. 3.d. The IR50 signal grows significantly with dose (as saturation

may not be reached by adding 425 Gy, it is impossible to say the level of saturation, but there is a 32%

growth in signal between 0 and 425 Gy added). The post-IR IR225 signal, however, is indistinguishable from
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the other dose points, suggesting that field saturation is identical to laboratory saturation, i.e., fading is

negligible. Since this cobble, which should be in full field saturation, appears not to fade, we can conclude

that perhaps the brightest grains are most representative of a sample’s true fading characteristics (e.g., that

the post-IR IR225 signal does not fade for these granodiorite-sourced samples).

It is interesting to note that for Fig. 3.c, the summed intensities of the brightest grains do not overwhelm

the dimmer grains; those with a test dose response greater than exp(10) comprise only 9% of the total intensity

for grains yielding fading results and grains giving a signal greater than exp(9) comprise 47%. Therefore, the

suggestion that brighter grains are more representative of fading characteristics does not simply mean that

the other grains do not contribute to the infinite age signal intensity. For this study, the brightest quartile

of grains were used to estimate fading characteristics of samples. The measured g-values varied regionally,

but, for the samples for which g-values were measured, were consistent within each region (the samples also

showed a strong, likely related, regional clustering for U, Th, and K content, suggesting the significance of

provenance on sample characteristics). For samples near Cabo San Lucas, no fading corrections were made;

for samples taken from the northwest, sourced by the Tertiary sandstone in Fig. 1.a, a g2700s value of 3.4±0.2

was used; for the samples sourced by the Cretaceous granite in the northeast, a g2700s value of 1.6±0.7 was

used (Table 1).

5.3. Comparison with independent age estimate

To test the reliability of our protocol, fan sediment samples were collected for 10Be depth-profile cos-

mogenic nuclide dating (Antinao et al., Unpublished results). Samples were taken from Qt2 south of La

Paz. Single-grain K-feldspar post-IR IRSL ages (uncorrected for fading) from samples J0417 (finite mixture

model assuming 2 components with an overdispersion of 15%) and J0418 (central age model, overdispersion

calculated to be 9.2%) agree with the 10Be depth-profile age for pit EAO-3 (8 samples modeled after Hidy

et al. (2010)) with 1000 Monte Carlo runs) at 1σ: 52.2± 4.8 ka (J0417), 66.5± 6.8 ka (J0418), and 54.0+10.6
−7.8

ka (EAO-3) (Antinao et al., Unpublished results) (Fig. 4). Notice the possibility to discriminate two appar-

ent dose populations in sample J0417, the older of which can be excluded considering the single population

within the stratigraphically-lower sample J0418. Such agreement with independent age control suggests that

anomalous fading does not significantly obscure accurate age recovery back to at least 60 ka.

5.4. Post-IR IRSL ages and discussion

Sample dosimetric information and ages are reported in Table 1. Depositional ages are usually presumed to

be minimum ages, as modeled by minimum age models, assuming an overdispersion of 15%, and occasionally

rejecting outliers using the method described above. The finite mixture model was used when discrete

populations were apparent (J0417, J0421-J0422) and the central age model was used when overdispersion

was low and distribution was roughly gaussian (J0412-J0414; J0418). Fading corrections have been applied

as by region as described in Section 5.2, according to the most sensitive quartile of grains. Agreement with
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independent age control for the oldest reported unit reinforces the assertion that the fading correction for

the southern samples is unnecessary.

One noticeable feature of the stratigraphic chronology presented in Table 1 is the range of age values

reported for Qt4, from 1.0 to 34.6 ka. By considering only samples taken from depths greater than 2 meters

below the surface, this range becomes 11.8 to 34.6 ka. These younger ages may reflect shallow deposits

coming from smaller basins in the mountain fronts, spreading over the larger fan terraces as thin layers,

though the soils seem to have been forming throughout the Holocene, which discourages this hypothesis; so,

the interpretation here remains open. The older ages are within 1σ of Qt3, suggesting perhaps a continuous

transition.

The depositional chronology presented in this study suggests a dichotomy between recent (past 500

years) spatially-restricted alluvial deposits, and Late Pleistocene upper-regime aggradational events. This

likely reflects the Late Pleistocene-Holocene transition from a regime dominated by tropical cyclones and El

Nino-enhanced zonal winter storms into a regime more similar to modern, with more subdued ENSO strength

and with weakened tropical cyclone activity (Antinao and McDonald, 2013).

6. Conclusions

The application of K-feldspar single-grain post-IR IRSL to alluvial fan units appears feasible. Distribu-

tions of De values seem to be reducible to depositional ages which show stratigraphic consistency. Clustering

analysis using the Bhattacharyya distance may prove useful for identifying statistical outliers in dose dis-

tributions. Dose-recovery test results suggest that overdispersion values of about 15% are typical of some

well-bleached populations. Agreement between post-IR IRSL and 10Be depth-profile ages, saturation of

provenance cobbles, and single-grain fading rates all indicate that in situ fading is negligible for samples col-

lected near San José del Cabo, though samples collected farther north appear to suffer minor fading. Fading

values derived from the brightest grains may be most representative of a sample’s true fading characteristics.
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Figure 1: (a) Sampling locations shown as blue circles along with the major geologic provenances and structural features,
modified from INEGI (1987a,b). Notice the three distinct groups of source regions. (b) Mapped Quaternary alluvial terraces
near Cabo San Lucas along with sampling sites at each unit. Terraces mapped by Antinao et al. (Unpublished results).
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Figure 2: Sample J0186 is plotted with potentially bioturbated grains circled. The minimum age model result (calculated
without the circled outliers) is displayed as a shaded region and the synthetic aliquot result is shown as the solid box.
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Figure 3: (a) Single-grain fading values are shown for sample J0196. Note that except for one value, all grains are consistent
with no fading at 1σ, though the precision is poor. (b) For a single aliquot of the same sample (J0196), normalized fade points
are shown following delays ranging from 475 s to nearly 6 months. The g475s value of 0.9 ± 0.4 % loss per decade is shown
as a dashed line. (c) Weighted mean of single-grain fading values with test signals greater than exp(x) are compared with
the single-aliquot fading value (n=2) for J0196. The brighter grains appear not to fade, although the negative values are not
fully understood. Note that the time constants are different for the two g-values: 475 s for the aliquots and about 2700 s for
single grains. (d) Beta doses were added to the natural signals of aliquots of J0591, a granodiorite cobble taken near sample
J0196 and assumed to be its provenance material. The points shown on (d) are the average of 3 aliquots (i.e., 9 aliquots were
measured). The IR50 signals grow significantly with dose, while the post-IR IR225 natural signals are indistinguishable from
the natural-plus-dose signals, suggesting that the post-IR IR225 signal has not faded, i.e., that the signal produced by field
saturation is the same as that produced by laboratory saturation.
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Figure 4: (a) Finite mixture model results for sample J0417, (b) central age model result for sample J0418, and (c) depth-profile
age model results for the pit EAO-3 (Antinao et al., Unpublished results).
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