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ABSTRACT

The rapidly growing amount of genomic sequence
data being generated and made publicly available
necessitate the development of new data storage
and archiving methods. The vast amount of data
being shared and manipulated also create new
challenges for network resources. Thus, developing
advanced data compression techniques is
becoming an integral part of data production and
analysis. The HapMap project is one of the largest
public resources of human single-nucleotide poly-
morphisms (SNPs), characterizing over 3 million
SNPs genotyped in over 1000 individuals. The
standard format and biological properties of
HapMap data suggest that a dedicated genetic
compression method can outperform generic com-
pression tools. We propose a compression method-
ology for genetic data by introducing HAPZIPPER, a
lossless compression tool tailored to compress
HapMap data beyond benchmarks defined by
generic tools such as GZIP, BZIP2 and LZMA. We dem-
onstrate the usefulness of HAPZIPPER by compressing
HapMap 3 populations to <5% of their original sizes.
HAPZIPPER is freely downloadable from https://
bitbucket.org/pchanda/hapzipper/downloads/
HapZipper.tar.bz2.

INTRODUCTION

Continuous improvements of high-throughput sequencing
technologies yield genomic datasets that are accumulating
at an exponentially increasing rate, including both
complete genomes and population genotypes.

Next-generation sequencing technologies ushered in a
new era in which the cost of sequencing a complete

human genome became affordable and is poised to go
<$1000 within a few years (1). Population genomic
sequences are frequently published (2–5), and a project
to sequence over 1000 human genomes is currently
underway (6).
Publicly available genomic datasets are typically stored

as flat text files with increasing burdens for electronic
storage and transmission (7). The storage of polymorphic
markers for all currently living humans is estimated to be
around million terabytes. Projected storage requirements
must also consider additional plant and animal popula-
tions. Storing, sharing or downloading genetic informa-
tion remotely is laborious and nearly impossible for
institutions in parts of the world lacking high-speed
Internet access. Even today, large storage sites such as
the Broad Institute and the European Bioinformatics
Institute, spend millions of dollars on storage (7,8) and
massive data transfer remains an imposing burden on
servers and Internet networks (9).
For researchers facing the daunting challenge of inter-

preting vast genomic datasets, data storage is a central
issue. Collaborations necessitate handling a huge influx
of datasets and require strategies for data transfer and
storage. Often data can only be shared by sending
physical storage devices to distant collaborators, which
is a slow and expensive process. Unfortunately, general-
purpose compression tools such as GZIP, BZIP2 and LZMA

offer limited compression abilities.
Improved compression can be achieved only with

dedicated tools that consider the special properties of
genetic data. This insight motivated the development of
compression tools specialized for mitochondrial and
nuclear genome sequence (10,11).
Our new proposed bit-level compression approach is

suitable for polymorphic genetic data. Given the import-
ance of HapMap data (12), we used phased haplotypes to
demonstrate the usefulness of our approach. We empha-
size that the framework provided by HAPZIPPER can
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be easily modified to compress other genetic datasets. We
further note that the proposed method is not a compres-
sion algorithm in the conventional computer science
meaning, but it rather uses a specific encoding scheme
and applies existing and novel compression algorithms
to efficiently and effectively compress the HapMap data.
HAPZIPPER is a lossless compression tool tailored for

HapMap data and achieves over 20-fold compression
(95% reduction in file size), providing 2- to 4-fold better
compression than the leading general-purpose compres-
sion utilities. We apply HAPZIPPER to HapMap Phase III
(release 2)-phased haplotypes of entire populations and
compress them into several megabases, small enough for
easy sharing.

MATERIALS AND METHODS

Reference-based compression scheme

High compression of genetic variation data for entire
populations is accomplished by mapping the data to an
existing reference map (dbSNP), National Center for
Biotechnology Information’s free public database of
single-nucleotide polymorphism (SNP) available at
http://www.ncbi.nlm.nih.gov/projects/SNP/. This
resource is intended to contain all known genomic vari-
ations in human and other species. Variation data

comprise SNPs and insertions/deletions of multiple nu-
cleotides. Upon identification, SNPs are commonly
submitted to a public database such as dbSNP. These
SNPs are later used to generate haplotype maps
(HapMap). Our method assumes that both HapMap
(12) and dbSNP will remain publicly available.

The compression scheme of HAPZIPPER consists of three
stages. First, HapMap haplotype data are encoded into a
bit-sequence using dbSNP as a reference. Second, taking
advantage of the genetic redundancy in population data,
the encoded dataset is split into two datasets of high- and
low-minor allele frequencies (MAFs). Finally, the two
parts are compressed separately using bzip2 (Figure 1).
We first describe the encoding scheme that generates the
bit-sequence.

HapMap encoding

HapMap haplotypes (12) consist of biallelic SNPs on a
single chromatid that are also recorded in the dbSNP
database. Thus, each HapMap haplotype can be encoded
as a bit-sequence in reference to dbSNP. More specifically,
for each chromosome, each HapMap SNP is classified
according to the following four categories (Figure 1):

(1) Exact match SNPs (or EX-SNPs): A SNP that
matches a dbSNP SNP in base pair position, alleles
and SNP reference number (i.e. SNP name).

Figure 1. HAPZIPPER compression diagram provided a dbSNP database. Phased haplotypes are compared with dbSNP SNPs and classified into four
categories: EX-SNPs, SF-SNPs, RM-SNPs and N-SNPs that include novel SNPs (Nnew-SNP) and SNPs that are similar to dbSNP except the alleles
(Nallele-SNP). Using dbSNP, the haplotype data are encoded into a bit-vector A, which corresponds dbSNP SNPs, and a bit-matrix B, which encodes
all the alleles marked as 1 in bit-vector A. The bit-matrix B is then divided into two bit-matrices B1 and B2, based on the MAF of the SNPs. The
binary bit-vector Bv represents the bit-matrices order in the original matrix. The information for categorical SNPs is stored in three tables: T-SF,
T-RM and T-N that are further compressed using relative positions and varying bits per integer. In the absence of a dbSNP database only the table
T-N is used.
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(2) Strand flipped SNPs (or SF-SNPs): A SNP that
matches a dbSNP SNP in base pair position, SNP
reference number and alleles from the opposite
strand.

(3) Reference number mismatch SNPs (or RM-SNPs):
A SNP that matches a dbSNP SNP in base pair
position and alleles, but not in SNP reference
number.

(4) Novel SNPs (or N-SNPs) consist of two types:
. Nallele-SNP: a SNP that matches a dbSNP SNP in

base pair position, but does not match the alleles
of the corresponding dbSNP.

. Nnew-SNP: a SNP that does not exist in dbSNP in
the same base pair position.

SNPs that have both a mismatch in the reference SNP
number compared with the dbSNP and that have
matching alleles with dbSNP only after a strand inver-
sion belong to both the SF-SNP and RM-SNP categories
(SF/RM-SNPs). All other SNPs belong to a single
category.

In our compression scheme, for each HapMap chromo-
some, a bit-vector A is created in reference to dbSNP with
‘1’ indicating an EX-SNP, SF-SNP or RM-SNP and ‘0’
indicating a Nallele-SNP. Novel HapMap SNPs (Nnew-
SNPs) will not have any entry in the correspondence
bit-vector A. Finally, a dbSNP SNP that does not have
a corresponding HapMap SNP is also indicated with 0 in
the bit-vector A (see rs80 in Figure 1).

The bit-matrix B encodes the genotypes in reference to
dbSNP alleles. For each HapMap individual, the two
alleles of the EX-, SF- and RM-SNPs are stored as a
bit-sequence of 1 for the dbSNP common variant and 0
if otherwise (Figure 1). Assume that there are M dbSNP
SNPs out of which K SNPs belong to categories 1, 2 and 3.
Let each HapMap SNP consists of 2N nucleotides (for N
individuals) for each of the K SNPs occupying 2NK
bits. Therefore, bit-vector A and bit-matrix B would
consist of M bits (in correspondence with dbSNP
SNPs) plus 2NK bits from the SNP nucleotides so that
the overall bit-sequence size is M+2NK bits. The infor-
mation for the categorical SNPs is stored by three tables
(Figure 1):

(1) Table T-SF stores the base pair position with the
mismatch strands for each SF-SNP.

(2) Table T-RM stores the base pair position and refer-
ence SNP number for each RM-SNP.

(3) Table T-N stores for Nnew- and Nallele-SNPs the base
pair position, reference SNP number and the two
alleles of each HapMap individual. Each haplotype
is encoded as a bit-sequence of 1’s and 0’s based on
the two HapMap alleles. Clearly, the T-N table
stores only novel HapMap SNPs that are absent
from dbSNP. When dbSNP is not used, this table
stores all the SNPs. We term this mode
HAPZIPPERMINUS.

Thus for each chromosome, the bit-vector A, bit-matrix
B and the three tables encode the complete information
for each HapMap haplotype. We next describe HAPZIPPER

compression techniques.

Compression of encoded HapMap

The human genome is non-random and highly repetitive.
Many HapMap alleles are rare, indicating a large abun-
dance of monomorphic SNPs in most populations. Note
that either the reference or the alternative alleles can be
rare. Using these genomic properties, we considered the
following compression techniques to reduce the size of
bit-matrix B and of the associated tables T-SF, T-RM
and T-N.

Relative positions with varying bits per integer
The positions stored in the tables T-SF, T-RM and T-N
are strictly increasing because the SNPs are ordered ac-
cording to their base pair positions in both HapMap and
dbSNP. As chromosome sizes can be as large as 247Mb,
storing the full position is expensive. Therefore, instead of
storing absolute positions in a table, each position is
stored as the difference with respect to the absolute
position of the previous entry of the table. For example,
SNP positions 103456, 144588, 183256, . . .will be stored
as 103456, 41132, 3868, . . . , using the offset from the
previous position. Moreover, the ‘relative positions’ are
stored as integers with varying numbers of bits; a single
bit at the most significant position in a byte when set to 1
is used to indicate the most significant byte of an integer
which also indicates the boundary between two integers.
Thus, we do not require a fixed number of bytes to store
each relative position. Instead, several integer values can
be compactly concatenated together to save space. As a
result, relative position values ranging from 0 to 127 are
stored using 1 byte of storage, 128–16 383 consumes 2
bytes and so on. Figure 2 gives an example of the encode-
ing scheme of relative positions for values 127, 128, 16 383
and 16 384.

MAF based encoding (MAFE)
The bit-matrix B, encoding the genotypes, is a highly
complex matrix exhibiting a mosaic of sparsity (0’s) and
density (1’s) due to the high frequency of rare alleles and
their random positioning. This complexity complicates the
compression process. To reduce the heterogeneity of this
matrix, we calculate the mean MAF for each SNP and
divide the bit-matrix B into two bit-matrices B1 and B2

of low- and high-MAF SNPs, respectively. A binary
bit-vector Bv of size K identifies their original positions
(Figure 1). As most of the SNPs are rare, the coded
alleles will have either high or low frequencies and thus
the compression of the two bit-matrices (each consists
mostly of 0’s or 1’s) is more efficient than the compression
of bit-matrix B. Finally, we use BZIP2 to compress the four
files: bit-vector A, bit-matrix B1, bit-matrix B2 and
bit-vector Bv. A similar procedure is followed for
encoding the T-N table, which requires a similar bit-vector
A and bit-matrix B for its encoding.

Compressing HapMap III population data

HAPZIPPER effectiveness was demonstrated on phased data
of 18 HapMap (Phase III draft 2) populations down-
loaded from http://hapmap.ncbi.nlm.nih.gov/downloads/
phasing/2009-02_phaseIII/HapMap3_r2/. The reference
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was dbSNP (build 129). The populations consists of unre-
lated individuals, sibling duos and parent–child trios.
Performance is assessed both with dbSNP (HAPZIPPER)

and without dbSNP (HAPZIPPERMINUS.) as a reference and
is compared with GZIP, BZIP2 and LZMA. GZIP is based on
Lempel–Ziv encoding (LZ77) (13). BZIP2 is based on the
Burrows–Wheeler transform (14) and is considered more
effective than GZIP, but slower. LZMA (Lempel–Ziv–
Markov chain algorithm) uses a dictionary compression
scheme similar to LZ77 and is considered more effective
and faster than BZIP2. We tested different options for com-
pression flags and found that the default flags for GZIP,
BZIP2 and LZMA all provided optimal compression time
and file size (Supplementary Table S4).
The compression effectiveness is compared using

‘fold-compression’, defined as the ratio between the
file-size before compression and the file-size after compres-
sion (e.g. compressing 100Mb file to 10Mb would be 10�,

that is 10-fold compression). CPU timings are reported for
dual-core AMD opteron processors with 3GHz CPU and
8 GB memory and may vary for different hardware, but
the fold-compression is expected to be similar.

Our tool is implemented in C++and is available under
a BSD open source license. Updated versions are available
at https://bitbucket.org/pchanda/hapzipper/downloads/
HapZipper.tar.bz2 under GNU (version 3 or later)
general public license with sample data for testing.
Further details about the compressed file structure can
be found in our user guide available with the tool. We
also provide example files to demonstrate how to use the
tool.

RESULTS

We applied HAPZIPPER and HAPZIPPERMINUS to the
HapMap-phased haplotypes in 18 populations, containing

Figure 2. Storing relative positions using varying number of bits. The binary representation of each relative position (top row) and the correspond-
ing encoded binary value (bottom row) are shown for boundary values 127, 128, 16 383 and 16 384. A bit in black shows the flag bit within an
encoded byte that indicates beginning of a relative position value with a 0.
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1 387 466 SNPs across 22 autosomal chromosomes. The
smallest populations consisted of 12 haplotypes (YRI-
duos and MEX-duos) and the largest population consisted
of 340 haplotypes (JPT+CHB). Population datasets
ranged from 60Mb to �1Gb in size (Supplementary
Table S1). We compared the performance of HAPZIPPER

with GZIP, BZIP2 and LZMA using the fold-compression
defined as the ratio (file size before compression)/(file
size after compression).

Mapping the HapMap SNPs to dbSNP, we found
�219 000 (15.8%) strand flipped SNPs (SF-SNPs),
�2500 (0.2%) reference number mismatch SNPs (RM-
SNPs) and �2300 (0.2%) novel SNPs (N-SNPs)
(Supplementary Table S2).

Using GZIP, fold-compression ranged from 4� (YRI-
duos and MEX-duos) to 12� (JPT+CHB), with the com-
pression effectiveness improving for larger datasets
(Figure 3). BZIP2 and LZMA performed similarly to one
another with a relatively low fold-compression of 5� for
small populations that improves for larger families until
reaching 18�. By comparison, HAPZIPPER reduced the
entire dataset size by 95% with a fold-compression of
13–26�. Using GZIP to compress the files already com-
pressed with HAPZIPPER resulted in a difference of
�3.5% in the size of the compressed files, demonstrating
the higher compression achieved by HAPZIPPER (Figure 3).

We also measured the performances of HAPZIPPER when
dbSNP was not used as a reference during compression
(HAPZIPPERMINUS) (Supplementary Table S1). In such
cases, all SNPs in the population are considered novel
SNPs and stored in theT-N table. HAPZIPPERMINUS outper-
formed all other algorithms reducing the entire dataset
size by 94% with a fold-compression of 6–26� (Figure 3).
Remarkably, HAPZIPPERMINUS performances approached
those of HAPZIPPER for large data files and matched them
on the largest dataset of 949Mb (Supplementary Table S1).

There are several reasons to how HAPZIPPER achieves
such high compression compared with the generic

compression methods. First, the inability of GZIP to
encode long SNP positions with ‘relative positions’ and
‘varying bits per integer’ degrades its performance. By
comparison, both HAPZIPPER and HAPZIPPERMINUS

encode each haplotype as a bit-sequence, whereas GZIP

does not attempt to encode the haplotypes. The savings
from the different compression techniques (relative pos-
itions and varying bits per integer) successfully overcome
the complex compression schemes of BZIP2 and the com-
pression that GZIP and LZMA achieve using LZ77. These
key enhancements, however, affect mostly HAPZIPPER,
but not HAPZIPPERMINUS that, like the generic algorithms,
does not take advantage of dbSNP data. For that we im-
plemented a novel compression scheme using our know-
ledge on the SNP MAFs. The MAF encoding was
designed to increase the homogeneity of the sequence
data and enhances its compression. This step boosts the
compression of HAPZIPPERMINUS by 50% and is respon-
sible for its high performances.
Overall, HAPZIPPER compression is up to four times bet-

ter than the GZIP compression and up to three times better
than BZIP2 and LZMA compressions. HAPZIPPERMINUS com-
pression is nearly two times better than generic compres-
sion tools. Applying HAPZIPPER to the HapMap
population dataset, originally ranging from 60 to
949Mb, results in 95% reduction in file size for population
data ranging from 4.5 (YRI-duos) to 36.2Mb
(JPT+CHB).
The total run-time (compression+decompression)

varies between all the tools (Figure 4 and Supplementary
Table S3a and b). The fastest compression is with GZIP,
followed by HAPZIPPER and HAPZIPPERMINUS, which are 8
and 7 times slower, and BZIP2 and LZMA which are 9 and 14
times slower than GZIP, respectively. The HAPZIPPER imple-
mentation was not optimized for CPU performance, and
performance gains should be possible.
The default settings of GZIP, BZIP2 and LZMA are set to

provide the most optimal compression in terms of both

Figure 4. A comparison of the compression tool total run-time (com-
pression+decompression) using six HapMap population datasets of
various sizes.

Figure 3. A comparison of the compression tool fold-compressions on
six HapMap population datasets of various sizes.
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time and file size (Supplementary Table S4). Even when set
to optimal compression, at the cost of increasing compu-
tation time, HAPZIPPER and HAPZIPPERMINUS outper-
formed all other algorithms, with the exception of GZIP

that performed better than HAPZIPPERMINUS for small
populations (<100 phased haplotypes) (Supplementary
Tables S1 and S4). We therefore concluded that
HAPZIPPER outperforms other methods in practical
settings, at their respective maximum compression setting.

DISCUSSION

To demonstrate the power of dedicated genetic compres-
sion approaches, we developed a compression scheme that
reduces the size of the HapMap dataset by >20-fold (over
95% reduction in file size). Our compression scheme is
scalable with the expected growth of databases; that is
the more complete the reference SNP map, the smaller
the compressed file will be. There are two reasons for
that: first, position data (insertions) are the most expensive
to compress. In other words, new variants added to
dbSNP from the 1000 Genomes project would reduce
the cost of compressing the HapMap data presented
here. Second, most of the new SNPs are expected to be
rare and create complex allele matrices that are well
handled by our algorithm.
As compression tools specific to DNA sequence data

(11) lose the phased haplotype information in HapMap,
we compared HAPZIPPER with general-purpose lossless
compression tools, such as GZIP, BZIP2 and LZMA.
HAPZIPPER compresses HapMap data better than any of
these tools for all population sizes tested. For example,
compressed by GZIP, the HapMap 3 dataset consumes
687Mb of disk space, whereas HAPZIPPER and
HAPZIPPERMINUS require only 302 and 384 Mb, respect-
ively, to store the compressed files. HAPZIPPER high com-
pression effectiveness comes at the cost of slower
compression and decompression run-times, relative to
GZIP (Figure 4 and Supplementary Tables S3a and b).
However, it is possible to improve the HAPZIPPER

run-time using low-level disk access to read/write large
HapMap files. Moreover, the compression and decom-
pression times are on the order of the time to transmit
the file itself electronically.
HAPZIPPER performs more effectively and efficiently if

the sender and receiver both have a copy of the reference
SNP map (of the same version number), although this is
not essential. We have shown that HAPZIPPER and
HAPZIPPERMINUS outperform other compression tools
even in the absence of any reference dataset (Figure 3).
Providing HAPZIPPER with a copy of the reference SNP
data (dbSNP) will optimize the compression and require
a smaller disk space because only the SNP reference
number, alleles and base pair positions are stored.
Effectively storing the dbSNP dataset reduces its size to
only 165Mb using variable number of bytes for both the
‘relative positions’ and SNP reference numbers and by
encoding the four possible nucleotides with 2 bits.
Overall, HAPZIPPER (302Mb) and dbSNP (165Mb) use

only 467Mb of disk space for all populations used in
this analysis, less than BZIP2 (496Mb), LZMA (548Mb)
and GZIP (687Mb).

HAPZIPPER is easy to use, and it runs in time proportional
to the number of individuals to be compressed (Figure 4).
The method described here cannot be used for imputed
data consisting of numerical values (e.g. dosage data),
but it can be easily adapted to compress unphased
genotype data from HapMap or other datasets, such as
the 1000 Genomes project data. We hope that HAPZIPPER

will become a viable tool for data compression.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–4.
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