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Abstract

Most human pre-mRNAs contain introns that are removed by splicing. Such a complex process needs strict control and
regulation in order to prevent the expression of aberrant or unprocessed transcripts. To analyse the fate of pre-mRNAs that
cannot be spliced, we inhibited splicing using an anti-sense morpholino (AMO) against U4 snRNA. As a consequence,
splicing of several selected transcripts was strongly inhibited. This was accompanied by the formation of enlarged nuclear
speckles containing polyadenylated RNA, splicing factors and the nuclear poly(A) binding protein. Consistently, more
polyadenylated pre-mRNA could be isolated from nucleoplasmic as well as chromatin-associated RNA fractions following U4
inhibition. Further analysis demonstrated that accumulated pre-mRNAs were stable in the nucleus and that nuclear RNA
degradation factors did not re-localise to nuclear speckles following splicing inhibition. The accumulation of pre-mRNA and
the formation of enlarged speckles were sensitive to depletion of the 39 end processing factor, CPSF73, suggesting a
requirement for poly(A) site processing in this mechanism. Finally, we provide evidence that the pre-mRNAs produced
following U4 snRNA inhibition remain competent for splicing, perhaps providing a biological explanation for their stability.
These data further characterise processes ensuring the nuclear retention of pre-mRNA that cannot be spliced and suggest
that, in some cases, unspliced transcripts can complete splicing sometime after their initial synthesis.
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Introduction

Most human pre-mRNAs contain multiple introns that are

removed by splicing. The splicing process involves five small

nuclear (sn) RNAs and well over a hundred associated factors [1].

It begins with base pairing between U1 snRNA and the 59 splice

site. Subsequently, the 39 splice site is recognised by U2AF35 and

65 before U2 snRNA base-pairs with the branch-point. U4, U5

and U6 snRNAs are then recruited before rearrangements within

the spliceosome release U1 and U4 prior to the first catalytic step.

This results in the formation of a downstream lariat exon and

release of the upstream exon. The two exons are ligated during the

second step of splicing and the intron lariat is de-branched and

degraded. In higher eukaryotes, splicing is thought to occur by

exon definition whereby splice sites are recognised through

interactions occurring across exons rather than over the much

longer introns [2]. In this model, the removal of the first and final

intron involves the 59 cap and the cleavage and polyadenylation

signal, respectively [3–6].

Splicing is also tightly coupled to transcription by RNA

polymerase II (Pol II) [7]. Several recent reports demonstrated

that the majority of introns are removed co-transcriptionally

before Pol II terminates transcription [8-12]. There is a general

polarity to this process such that 59 introns are more frequently

subject to co-transcriptional splicing with some 39 introns removed

after processing at the poly(A) site [9–11,13,14]. Mechanistically,

this is because 39 end processing requires prior recognition of the

terminal 39 splice site but not removal of the intron [15]. The

multiple studies showing that splicing is mostly co-transcriptional

are corroborated by findings that the majority of activated

spliceosomes co-purify with chromatin [16]. The active spliceo-

somes that are nucleoplasmic are present in speckles that also

contain the splicing factor, SC35 [16].

SC35 speckles contain many factors involved in pre-mRNA

processing, particularly splicing [17,18]. It is generally accepted

that Pol II is not enriched within speckles but it has been found at

their periphery [19,20]. It was also demonstrated that pre-mRNAs

associate with speckles in an intron-dependent manner and that

splicing could occur in these regions [21]. Consistent with an

association between speckles and intron removal, small molecule

inhibitors of splicing induce the appearance of enlarged nuclear

speckles containing both polyadenylated RNA and SC35 [22–24].

Polyadenylated mRNA also accumulates in speckles following

depletion of factors involved in its export [16,21]. Indeed, splicing

is required for the export of intron-containing pre-mRNA through

deposition of the Exon Junction Complex (EJC) and the export

factor TAP [25–30]. SC35 speckles therefore constitute sites of

splicing factor storage, in which pre-mRNA processing and final

steps in mRNP remodelling can take place prior to export into the

cytoplasm.

As would be expected for such a complex and fundamental

process, splicing is subject to strict nuclear quality control. This

was first observed in budding yeast where mutations in either the

exosome complex or Rat1 cause unspliced precursor RNAs to
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accumulate, with the exosome playing the major role in their

degradation [31,32]. In human cells, the Rrp6 component of the

nuclear exosome as well as the Rat1 homologue Xrn2 are also

involved in the quality control of transcripts when splicing is

impaired, either by mutation or through treatment with

Spliceostatin A (SSA) [33–35]. Interestingly, SSA also promotes

a major increase in the level of some unspliced pre-mRNAs, which

are not targeted by either Rrp6 or Xrn2 [24,33,36]. Instead, they

have been observed to accumulate as polyadenylated species in the

nucleoplasm of cells with a certain proportion leaking into the

cytoplasm to be translated [22–24,37]. It is not established why

these transcripts are not subject to rapid nuclear degradation.

We have studied the fate of transcripts that accumulate

following blocks to splicing using a morpholino (AMO) directed

to U4 snRNA, which we show to inhibit splicing in a dose-

dependent manner. Like small molecule splicing inhibitors, U4

AMO treatment causes polyadenylated RNA to accumulate in

nuclear speckles together with SC35 and nuclear poly(A) binding

protein (PABPN1). We also detect a substantial increase in the

abundance of several polyadenylated pre-mRNAs in both the

chromatin and nucleoplasmic fractions isolated from U4 AMO

treated cells. These transcripts remain stable in the nucleus

following prolongued transcription inhibition and nuclear exori-

bonucleases do not concentrate in speckles following splicing

blocks. We show that inhibition of 39 end cleavage and

polyadenylation impairs pre-mRNA accumulation and speckle

formation following splicing inhibition. Finally, we provide

evidence that some unspliced pre-mRNAs, produced in cells

where U4 snRNA is partially inhibited, are capable of delayed

splicing. These data uncover processes ensuring the stable nuclear

retention of unprocessed RNA following splicing inhibition.

Materials and Methods

Primers, siRNAs and Morpholinos
Intronless transcripts

c-Jun F CCCCAAGATCCTGAAACAGA

c-Jun R CCGTTGCTGGACTGGATTAT

GLUD2 F GAATCCATGGACGCATCTCT

GLUD2 R TCCCATCAGACTCACCAACA

TAF7 F CTCCTCACGAACTGGAGAGC

TAF7 R CCATAACACAGGGCAGGTCT

U12 intron containing transcript

FAM96B splF ATGCCAACCCCCTCATCTAC

FAM96B splR AACCCGCACCTGCTCTACTA

FAM96B usF ATGCCAACCCCCTCATCTA

FAM96B usR AGCGGCGGATATCGAAGAT

U2 intron containing transcripts

P27 splF AATGCGCAGGAATAAGGAAG

P27 splR ATTTGGGGAACCGTCTGAA

P27 usF GCTAACATACTGACAAAATAATTCCTG

P27 usR CATGTATATCTTCCTTGCTTCATCA

Myc splF GAGGCTATTCTGCCCATTTG

Myc splR CACCGAGTCGTAGTCGAGGT

Myc usR CTCTGACCTTTTGCCAGGAG

Myc usF CCAGGCTTAGATGTGGCTCT

Myc UCPA FGGCAAATATATCATTGAGCCAA

Myc UCPA RCCCAGACCCATTTCAACAGA

ETF1 usF TGCAAGAGAATAGGGCTTCC

ETF1 usR CGGACCCATGTCGACTACCT

ETF1 splF ACAGGAACGTGGAGATCTGG

ETF1 splR CAGGACTGAAAGGCGGTTTA

HSPA9 usF GGAGGGGGAGTGGAATAGAA

HSPA9 usR AGAGCCTTCTCGCTCAGATG

HSPA9 splF GCAATCAAGGGAGCAGTTGT

HSPA9 splR GTCGCTCACCATCTGCTGTA

Histone

Hist1E F TTCAACATGTCCGACTGC

Hist1E R AGGCGGCAACAGCTTTAGTA

U6 snRNA

U6 F ACATATACTAAAATTGGAACGATAC

U6 R GGAACGCTTCACGAATTTGCGT

AMOs

Control CCTCTTACCTCAGTTACAATT-

TATA

U4 TACGATACTGCCACTGCG

CAAAGCT

U6 CCATGCTAATCTTCTCTG

TATCGTT

U6atac AACCTTCTCTCCTTTCATACAA

CAC

siRNAs

Control Life technologies silencer negative control #1

CPSF73 Life technologies silencer select s28533

Cell culture
Cells were grown in DMEM supplemented with 10% foetal calf

serum. Electroporation of AMOs (10 nmol unless otherwise stated)

was performed on a confluent 10 cm diameter dish of cells in

400 ml DMEM using a 4 mm gap cuvette (960 mF, 280 v in a

Biorad gene pulser). RNA was isolated three hours after

electroporation unless cells were subsequently treated. For

transient transfection 2–3 mg of plasmid was transfected using

JetPrime (Polyplus) and experiments were performed 48 hours

later. For RNAi, 20% confluent 60 mm dishes were transfected

with 18 ml of 2 mM siRNA and 5 ml RNAiMAX (Life Technol-

ogies) and left for 72 hours. The transfection was repeated after re-

plating of cells to 20% confluence and RNA/protein was isolated

after a further 48 hours. Actinomycin D was used at a final

concentration of 10 mg/ml, Cordycepin was used at 50 mg/ml for

2 hours and Pladienolide B was used at a concentration of 1 mM

for 3 hours.

Antibodies
CPSF73 (Sigma, C2747), Tubulin (Sigma, T6557), PABPN1

(Abcam, 75855), SC35 (Sigma, 4045), Dbr1 (Proteintech, 16019-1-

AP), Pol II Serine 2-P (Chromotek, 3E10), Pol II H224 (Santa

Cruz, sc-9001x), U2AF65 (Sigma, U4758), Anti flag (Sigma, MS2),

Rrp6 (Abcam, 50558).

RNA analysis
Total RNA was isolated using Trizol (Life Technologies) and

DNase treated with Turbo DNase (Life Technologies). Isolation of

chromatin-associated and nucleoplasmic RNA is described in

detail elsewhere [33]. For real-time PCR analysis, 1 mg RNA was

reverse transcribed using Inprom II (Promega). Parallel reactions

were performed in the absence of reverse transcriptase to control

for DNA contamination. 1/20th of the cDNA mix was used for

real-time PCR using 5–10 pmol of forward and reverse primer

and Brilliant III SYBR mix (Agilent Technologies) in a Qiagen

Rotorgene machine. Differences were calculated using compara-

tive quantitation.

Inhibition of U4 snRNA in Human Cells
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Microscopy
For immunofluorescence (IF) of proteins, cells grown on cover

slips were fixed with 3.7% formaldehyde (10 min) and permea-

bilised by incubation with 0.5% Triton X 100 in PBS (10 min).

After three short washes with PBS, cells were blocked for 1 hour

with 10% goat serum (Life Technologies) and incubated with

primary antibody in 10% goat serum. Following three more

washes, they were incubated with the secondary antibody in 10%

goat serum for 1 hour. Finally, after 3 further washes with PBS

cover slips were mounted (gold anti-fade, Life Technologies) and

sealed. For FISH, cells were grown, fixed and permeabilised as for

IF and then equilibrated with 30% Formamide in 26 SSC

(2615 min). They were then hybridised with the probe over night

at 37uC in a humid chamber (30% Formamide, 0.02% BSA,

0.1 mg/ml tRNA, 10% Dextran Sulphate, 30 ng probe, 2xSSC,

0.5 ml RNase Inhibitor). Cells were washed and mounted as for IF.

Figure 1. A. Diagram depicting primer pairs used to analyse spliced (spl) and unspliced (us) pre-mRNA. Exons are black boxes. B. Quantitation of P27
and Myc splicing in cells treated with the indicated amounts of U4 AMO. Splicing inhibition was calculated as a ratio of signal for unspliced versus
spliced RNA and expressed as a fold change compared to cells treated with control AMO (0 nmol U4 AMO). Intronless TAF7 transcripts were analysed
as a control. C. Quantitation of unspliced P27, Myc, HSPA9 and ETF1 pre-mRNA, spliced Myc, HSPA9 and ETF1 mRNA, intronless c-Jun, TAF7 and
GLUD2 and minor spliceosome-dependent FAM96B splicing in cells treated with control or 10 nmol U4 AMOs. Results are expressed as a fold change
over values obtained in control cells after normalising to Histone H1E levels. D. Quantitation of FAM96B and Myc splicing in cells treated with control
or U6atac AMOs. Values are expressed as a fold change over values obtained in control cells after normalising to Histone H1E levels.
doi:10.1371/journal.pone.0096174.g001
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For 5-Ethynyl Uridine (EU) labelling, electroporated cells were

incubated with 0.5 mM EU (Life technologies), washed and

permeabilised as for IF. Subsequently, click ligation was performed

using a Click-IT kit as per the manufacturers’ guidelines (Life

Technologies). Cells were mounted and visualised as for IF. All

pictures were obtained using a Deltavision Elite (Applied

Precision, Issaquah Washington) microscope and either a Cool-

snap HQ (Photometrics UK, Marlow, Bucks) or Cascade II

EMCCD (Photometrics UK, Marlow, Bucks) camera. The

microscope was equipped with an x100 PlanAPO NA 1.4

(Olympus UK) objective. The deconvolution software used was

Softworx (Applied Precision, Issaquah Washington).

Results

A U4 AMO is a potent and dose-dependent inhibitor of
pre-mRNA splicing

We previously described the use of an anti-sense morpholino

(AMO) directed to U4 snRNA that acts as an efficient splicing

inhibitor in vivo [15]. Prior to spliceosome activation, U4 is

extensively base-paired with U6 which sequesters the catalytic

activity of the latter [15,38–40]. The region of U4 that forms stem

II of this interaction is crucial for splicing in vitro [41,42]. Our U4

AMO is designed to block the interaction between U4 and U6 by

preventing the formation of stem II and therefore inhibiting the

production of active spliceosomes. In so doing, pre-mRNAs can

assemble U1 and U2 complexes but splicing is blocked prior to

catalysis [15,42]. The use of AMOs to inhibit splicing is

advantageous over protein knock-down by RNAi because they

act much more rapidly (3 hours versus typically 72 hours),

somewhat limiting off-target effects.

We wished to use this reagent to study the consequences of

splicing inhibition in vivo. Although we have previously demon-

strated its effectiveness as a splicing inhibitor at the RNA level

[15], we had not studied the fate of the resulting pre-mRNAs. To

begin with, we assessed the dose-dependence of its effect on intron

removal. HeLa cells were electroporated with increasing amounts

of U4 AMO (0.5–20 nmol) or 10 nmol of control AMO (0 nmol

U4 AMO). Total RNA was then isolated after 3 hours to limit off-

target effects. Following reverse transcription with random

hexamers, real-time PCR was performed using primers that

detect intron-containing and spliced P27 or Myc transcripts

(Figure 1A). We chose these transcripts as they accumulate

markedly in cells where splicing is inhibited [15,24,33]. Splicing

Figure 2. A. FISH and IF to detect polyadenylated RNA or PABPN1 respectively in cells electroporated with control AMO or the indicated amounts of
U4 AMO. Scale bar is 5 mm. B. Graph showing the percentage of cells displaying an enlarged speckle phenotype under conditions of increased U4
AMO concentrations. 100 cells were counted per condition over three separate experiments. C. EU labelling of nascent RNA and IF of SC35 in cells
treated with control or 10 nmol U4 AMO. Scale bar is 5 mm.
doi:10.1371/journal.pone.0096174.g002
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was then plotted as a ratio of unspliced versus spliced product

(Figure 1B). Significant splicing impairment was observed with

1 nmol AMO (,4-fold); however inhibition was progressively

more substantial with 20 nmol U4 AMO inducing a 50–100 fold

inhibition of splicing for both of these transcripts. Thus, the U4

AMO is a powerful inhibitor of splicing that acts in a dose-

dependent manner.

Next, we assessed the effect of U4 AMO treatment on a range of

transcripts additional to those from MYC and P27 genes

(Figure 1C). To this end, total RNA was isolated from cells

treated with 10 nmol of control or U4 AMO and reverse

transcribed with random hexamers. Since P27 and MYC genes

are relatively short and contain only two introns, we measured

spliced and unspliced transcripts from two longer genes that

contain multiples introns: ETF1 and HSPA9. To verify the

specificity of U4 AMO treatment towards U2-dependent splicing,

transcripts from three intron-less genes (TAF7, c-JUN and GLUD2)

and a splicing event performed by the minor U12-dependent

spliceosome (that of FAM96B pre-mRNA intron 1) was assayed.

As expected, a substantial increase in the level of unspliced Myc

and P27 RNA was again evident with a reduction in spliced Myc

also observed. Similar effects were observed for ETF1 and HSPA9

transcripts. However, the levels of intron-less transcripts were

unaffected and FAM96B intron 1 showed no evidence of increased

retention. These data strongly suggest that the U4 AMO affects

the splicing of transcripts that are substrates for the U2-dependent

spliceosome but not the level of intron-less or minor-spliceosome

dependent RNAs.

As a final specificity control for the AMO approach, we elected

to inhibit the minor spliceosomal U6atac snRNA. We treated cells

with a control AMO or an AMO directed to the U6atac snRNA

[43]. Total RNA was again reverse transcribed with random

hexamers and real-time PCR was used to detect spliced and

unspliced Myc transcripts as well as to assess splicing of FAM96B

intron 1 (Figure 1D). The U6atac AMO did not affect Myc pre-

mRNA splicing, which was expected since its splicing depends on

the major spliceosome. However, it caused an accumulation of

FAM96B intron 1 with a concomitant reduction in the

corresponding spliced product. We conclude that the U4 AMO

inhibits splicing by the major spliceosome and the U6atac AMO

inhibits the minor splicing pathway. These data highlight the

specificity and potency of the U4 AMO-based approach to inhibit

splicing.

Splicing inhibition induces the formation of enlarged
nuclear speckles containing polyadenylated RNA

Previous studies demonstrated that treating cells with the small

molecule splicing inhibitors Meayamycin (MY) and Spliceostatin

A (SSA) induced the accumulation of polyadenylated RNA in

enlarged nuclear speckles [22–24]. These compounds inhibit

splicing after U1 and U2 snRNAs are recruited to the intron and

specifically target the SF3b complex [24,44–47]. We were

interested to see whether inhibition of U4 snRNA might cause a

similar enlargement of nuclear speckles even though SF3b would

not be directly targeted. To test this, we electroporated cells with

increasing amounts of U4 AMO or 10 nmol of control AMO

(0 nmol U4 AMO) and tested the location of polyadenylated RNA

and the nuclear poly(A) binding protein, PABPN1, by fluorescence

in situ hybridisation (FISH) and immunofluorescence (IF) respec-

tively (Figure 2A). Similar to MY and SSA, treatment of cells with

the U4 AMO caused polyadenylated RNA to accumulate in

enlarged nuclear speckles. The same was true for PABPN1. As the

concentration of AMO was increased, more cells displayed this

phenotype confirming its dose-dependence (Figure 2B). Finally,

Pladienolide B (PB), an established SF3b inhibitor, gave the same

result as did an AMO directed to U6 snRNA (Figure S1).

We next wished to determine if this polyadenylated RNA

represented a major or a minor fraction of transcripts that were

redistributed following splicing inhibition. To do this, cells were

electroporated with control or U4 AMOs and growing cells were

subjected to metabolic labelling using 5-Ethynyl Uridine (EU). EU

will detect all synthesised transcripts rather than only polyadenyl-

Figure 3. A. IF of SC35 and PABPN1 in cells treated with control or U4 AMO. Scale bar is 5 mm. B. IF of PABPN1 and U2AF65 in cells treated with
control of U4 AMO. Scale bar is 20 mm. C. IF of total Pol II (H224) and SC35 in cells treated with control or U4 AMO. Scale bar is 5 mm. D. IF of Dbr1 and
Pol II phosphorylated on Serine 2 (Pol II S2P) in cells treated with control of U4 AMO. Scale bar is 5 mm.
doi:10.1371/journal.pone.0096174.g003
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ated RNA. Cells were subsequently labelled with Alexa Fluor 594

by a click reaction and visualised (Figure 2C). In both control and

U4 AMO treated cells, the majority of signal was present in

nucleoli consistent with the high level of rRNA transcription that

occurs in cells. However, there was an additional concentration of

EU RNA in enlarged speckles outside of the nucleolar region in

U4 AMO treated cells but not in control cells. Importantly, these

enlarged regions overlapped with that of the well characterised

speckle marker SC35, as determined by IF. Together, the FISH

and IF data in Figure 2 show that polyadenylated RNA

accumulates in enlarged PABPN1 and SC35-containing nuclear

speckles when splicing is inhibited by a U4 AMO. The fact that

U4 AMO specifically inhibits U2-dependent splicing suggests that

some of the RNA within speckles is pre-mRNA. Indeed, an AMO

against U6atac snRNA did not induce this phenotype presumably

due to the small number of splicing events that are inhibited

(Figure S2).

Enlarged speckles contain U2AF65 but not active RNA
polymerase II

To characterise the enlarged nuclear speckles further, we

performed a limited IF analysis of additional factors to test their re-

localisation, if any, following splicing inhibition by the U4 AMO.

We first confirmed that PABPN1 and SC35 were co-localised in

enlarged speckles after U4 AMO treatment (Figure 3A). Next, we

assayed the U2AF65 splicing factor (Figure 3B, Figure S3A).

U2AF65 became concentrated in enlarged nuclear speckles

together with PABPN1 following U4 AMO treatment. This is

consistent with the expectation that U4 AMO blocks splicing

following U1 and U2 snRNA recruitment.

We next sought to determine whether Pol II, or factors that

would be expected to act after U4 snRNA in the splicing process,

would accumulate in enlarged speckles following splicing inhibi-

tion. We first performed IF on total Pol II (H224) (Figure 3C,

Figure S3B). Signal was observed throughout the cell with a

Figure 4. A. Isolation of chromatin-associated and nucleoplasmic RNA from cells treated with control or U4 AMO. Spliced (spl), unspliced (us) and
non-pA cleaved (ucpa) Myc transcripts are detected. Following normalisation to intronless c-Jun RNA, values are plotted as a fold change compared
to the chromatin-associated fraction of control cells (given a relative value of 1). B. Isolation of chromatin-associated and nucleoplasmic RNA from
cells treated with control or U4 AMO. Unspliced and polyadenylated Myc, P27, HSPA9 and ETF1 transcripts are detected. Following normalisation to
intronless c-Jun RNA, values are plotted as a fold change compared to the chromatin-associated fraction of control cells (given a relative value of 1).
doi:10.1371/journal.pone.0096174.g004
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noticeable enrichment within the nucleus. However, contrary to

SC35, it was not dramatically re-localised following U4 AMO

treatment suggesting that enlarged speckles do not represent sites

of transcription. Next, we analysed transcriptionally active Pol II

phosphorylated on Serine 2 of its C-terminal domain (Pol II S2P)

as well as the debranching enzyme Dbr1, which is required after

U4 function in splicing (Figure 3D, Figure S3C). Although U4

AMO caused a reduction in Pol II S2P signal, it did not promote

its localisation to enlarged speckles. This again suggests that there

is little or no transcription within the nuclear speckles and that

therefore the RNA within them is not nascent. Similarly, Dbr1 was

also broadly distributed within the nucleus but did not localise to

nuclear speckles following U4 AMO treatment. This is consistent

with the fact that it functions subsequently to U4 snRNA in the

splicing process. Thus, enlarged nuclear speckles observed

following U4 inhibition contain proteins that act prior to U4

snRNA in splicing, as well as PABPN1 presumably due to the

polyadenylated nature of the transcripts. However, Dbr1 and Pol

II are not concentrated within the enlarged speckles.

U4 AMO treatment causes the accumulation of
polyadenylated pre-mRNA in chromatin and
nucleoplasmic RNA fractions

Data so far show that U4 AMO inhibits splicing and causes

polyadenylated RNA to accumulate in enlarged nuclear speckles.

To quantitate the effects of U4 AMO on pre-mRNA levels and

their distribution within the nucleus, we used a well-characterised

Figure 5. A. IF of EGFP-Mtr4 and PABPN1 in cells treated with control or U4 AMO. Scale bar is 5 mm. B. IF of EGFP-Rbm7 and PABPN1 in cells treated
with control or U4 AMO. Scale bar is 5 mm. C. IF of Flag-Xrn2 and PABPN1 in cells treated with control or U4 AMO. Scale bar is 15 mm. D. IF of Rrp6 and
SC35 in cells treated with control or U4 AMO. Scale bar is 5 mm. E. FISH and IF to detect polyadenylated RNA and SC35 in cells treated with control or
U4 AMO followed by 2 hours in the presence of Act D or ethanol (Control). Scale bar is 15 mm. F. Real-time PCR analysis of polyadenylated and
unspliced Myc, P27, HSPA9 and ETF1 transcripts in the nuclear and cytoplasmic fractions of cells electroporated with control (C) and U4 AMO and
subsequently treated with Act D or ethanol (use of Act D is indicated below x-axis). Quantitation is shown as fold change compared to amounts
found in the nuclei of control AMO treated cells after ethanol treatment, which were given a value of 1.
doi:10.1371/journal.pone.0096174.g005

Inhibition of U4 snRNA in Human Cells
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method to biochemically isolate chromatin-associated and nucle-

oplasmic transcripts from nuclei [48]. This was done in cells

treated with control or U4 AMOs and isolated RNA was reverse

transcribed with random hexamers. To verify efficient separation

of the two fractions, we monitored the level of spliced, unspliced

and non-pA cleaved Myc RNA (Figure 4A). As previously

observed [9,12,33,49], spliced transcripts were more enriched in

the nucleoplasm compared to chromatin and were depleted in

samples from U4 AMO treated cells. Unspliced RNA was

predominantly chromatin-associated in control cells in agreement

with the view that pre-mRNA processing is normally coupled to

transcription. An increase in unspliced RNA was seen in both

chromatin-associated and nucleoplasmic fractions following U4

treatment as expected. This is similar to previous findings from our

laboratory and suggests that while some unspliced transcripts are

retained on chromatin following splicing inhibition, a proportion is

released [15]. Finally, non-pA cleaved RNA was predominantly

chromatin-associated in both control and U4 treated cells and was

unaffected by splicing inhibition. As well as being consistent with

our previous finding that poly(A) site cleavage is unaffected by U4

inhibition [15], this provides evidence that unspliced transcripts

accumulating in the nucleoplasm are cleaved at their poly(A) site.

Accordingly, we next assayed the distribution of polyadenylated

unspliced RNA within nuclei of control and U4 AMO treated

cells. Chromatin-associated and nucleoplasmic RNA from these

cells was reverse transcribed with oligo-dT before detection of

unspliced P27, Myc, ETF1 and HSPA9 transcripts by real time

PCR (Figure 4B). Unspliced, polyadenylated pre-mRNA was

increased in both fractions in U4 AMO treated samples as

compared to those isolated from control cells. This confirms that

some unspliced pre-mRNA is polyadenylated. Furthermore, the

presence of these species in the nucleoplasm following splicing

inhibition is consistent with the appearance of enlarged speckles

enriched in polyadenylated RNA under the same conditions.

Finally, transcripts from the P27 and Myc genes accumulated

more markedly in the nucleoplasmic fraction than those from the

longer HSPA9 and ETF1 genes following U4 AMO treatment.

This may suggest transcript-specific regulation regarding the

release of unspliced pre-mRNA from chromatin.

Nuclear degradation machinery does not concentrate in
speckles following splicing inhibition

The accumulation of pre-mRNA transcripts following U4 AMO

treatment is dramatic suggesting that they are not rapidly

degraded. Indeed, we have previously shown that following SSA

treatment, some pre-mRNAs accumulate and are not affected by

depletion of nuclear exoribonucleases suggesting that they are not

degraded despite their inability to be spliced [33]. To gain more

understanding of the resistance of these unspliced transcripts to

degradation, we analysed the cellular distribution of major nuclear

RNA decay factors in control and U4 AMO treated cells. We

performed IF following over-expression of GFP-tagged core

nuclear exosome component Mtr4 in control and U4 AMO

treated cells (Figure 5A, Figure S4A). This protein was found

throughout the nucleus, including nucleoli where it was previously

observed [50]. The more homogeneous nuclear signal that we

observed might be due to the fixation of cells necessary for this co-

localisation experiment or electroporation of AMOs [51]. How-

ever, while U4 AMO treatment caused accumulation of PABPN1

in enlarged speckles there was no similar concentration of GFP-

tagged Mtr4 in the same cells. A similar result was obtained with

GFP-tagged Rbm7, a nuclear exosome co-factor that does not

localise to nucleoli [50] (Figure 5B, Figure S4B). We also tested the

effect of U4 AMO on the localisation of over-expressed Xrn2,

which is the major nuclear 59R39 exonuclease. While PABPN1

was concentrated in enlarged speckles following U4 AMO

treatment, Xrn2 did not (Figure 5C, Figure S4C). These data

indicate that over-expressed tagged exonucleases do not concen-

trate in nuclear speckles when splicing is inhibited under these

experimental conditions.

Because the above results were obtained using tagged and over-

expressed factors, we asked whether the localisation of an

endogenous exoribonuclease was affected by U4 AMO treatment

(Figure 5D, Figure S4D). We analysed the Rrp6 component of the

nuclear exosome, which has a well characterised role in pre-

mRNA quality control in budding yeast and humans [31,35,52].

Moreover, Rrp6 is involved at the interface between polyadenyl-

ation and degradation [52–54]. In control AMO treated cells,

Rrp6 was predominantly localised to nucleoli as previously

reported and consistent with its function in rRNA processing

[50,55,56]. This pattern was essentially unchanged following U4

AMO treatment showing that Rrp6 does not re-localise to

enlarged nuclear speckles following splicing inhibition. In contrast,

SC35 was localised to enlarged speckles in the same samples.

These data indicate that exonucleases do not re-localise to

enlarged nuclear speckles following U4 AMO treatment. It is

consistent with the observation in Figure 4 that pre-mRNAs

accumulate in the nucleoplasm as well as the chromatin following

U4 AMO treatment.

Unspliced pre-mRNA is stable within the nucleus
following transcription inhibition

Some leakage of unspliced transcripts into the cytoplasm occurs

in SSA treated cells [24,37]. However, it is not clear if transcripts

that are observed in speckles can eventually be exported or not. To

test this, we performed FISH and IF on polyadenylated RNA and

SC35, respectively, using cells electroporated with control or U4

AMO. Following this, cells were treated or not for two hours with

the transcriptional inhibitor, Actinomycin D (Act D). As can be

seen in Figure 5E, U4 AMO treatment caused polyadenylated

RNA and SC35 to accumulate in enlarged speckles as expected.

However, this was still the case after Act D treatment suggesting

that bulk polyadenylated RNA is nuclear-restricted following U4

AMO treatment rather than exported or degraded over the period

of transcription inhibition.

FISH and IF signal within enlarged speckles were sometimes

more diffuse after Act D treatment, which potentially complicates

the interpretation of these experiments (Figure S4E). Therefore,

we directly analysed individual pre-mRNA transcripts in nuclear

and cytoplasmic RNA fractions from control and U4 AMO

treated subsequently treated with Act D or, as a control, its ethanol

solvent. Following reverse transcription with oligo-dT, RNA was

real-time PCR amplified to detect unspliced Myc, P27, ETF1 and

HSPA9 transcripts (Figure 5F). In cells treated with control AMO

these were mainly nuclear and Act D treatment caused their

depletion confirming that transcription was inhibited. In U4 AMO

treated cells, unspliced pre-mRNA accumulated in the nucleus as

expected; however, after Act D treatment the majority of this

signal remained nuclear. This suggests that a large proportion of

polyadenylated pre-mRNA that accumulates in the nucleus

following U4 AMO treatment is retained there stably, at least

under the conditions used here.

Enlarged speckles do not form when cleavage and
polyadenylation are inhibited

Data so far suggest that inhibition of U4 snRNA causes

accumulation of unspliced, polyadenylated pre-mRNA in the
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nucleus and the appearance of enlarged nuclear speckles. We next

wanted to address the mechanistic basis for these two observations

and began by investigating the role of 39 end processing since

poly(A) site cleavage is well known to be required to both release

RNA from chromatin and stabilise it [57,58]. We depleted the 39

end processing endonuclease, CPSF73, from HeLa cells

(Figure 6A). Cells were next treated with control or CPSF73

specific siRNAs and then electroporated with control or U4

AMOs before visualisation of polyadenylated RNA by FISH. In

control siRNA treated cells, the U4 AMO induced accumulation

of these transcripts in speckles as observed before (Figure 6B).

However, U4 AMO treatment of CPSF73 depleted cells did not

have this effect and speckles were smaller and more numerous.

It might be expected that polyadenylated RNA signals would be

diminished following CPSF73 depletion due to disruption of

poly(A) site processing. Therefore we also monitored speckle

formation using IF to detect SC35 in control and CPSF73

depleted cells treated with control or U4 AMOs (Figure 6C, Figure

S5A). As before, U4 AMO treatment of control cells induced the

accumulation of SC35 in enlarged speckles. However, when

CPSF73 depleted cells were treated with the U4 AMO, SC35 did

not show this dramatic re-localisation. This experiment suggests

that the formation of enlarged nuclear speckles in U4 AMO

treated cells requires CPSF73 activity. The formation of enlarged

nuclear speckles was similarly abrogated by inhibiting polyade-

nylation (Figure S5B and S5C).

The above experiments suggest that cleavage and polyadenyl-

ation are critical for the formation of enlarged nuclear speckles.

Given the confirmed stabilising role for a poly(A) tail we also

wondered whether CPSF73 depletion might impair the general

Figure 6. A. Western blotting of CPSF73 (top panel) and Tubulin (lower panel) in cells treated with control or CPSF73 siRNAs. B. FISH analysis of
polyadenylated RNA in cells treated with control or CPSF73 siRNAs and, subsequently, with control or U4 AMO. Scale bar is 5 mm. C. IF of SC35 in cells
treated with control or CPSF73 siRNAs and, subsequently, with control or U4 AMO. Scale bar is 5 mm. D. Quantitation of non-poly(A) site cleaved Myc
transcripts in cells treated with control or CPSF73 siRNAs and, subsequently, with control or U4 AMO. Values are expressed as a fold change
compared to control siRNA transfected cells treated with control AMO after normalising to U6 snRNA. E. Quantitation of unspliced Myc transcripts
(intron 2-exon3) in cells treated with control or CPSF73 siRNAs and, subsequently, with control or U4 AMO. Values are expressed as a fold change
compared to control siRNA transfected cells treated with control AMO after normalising to U6 snRNA.
doi:10.1371/journal.pone.0096174.g006
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accumulation of unspliced pre-mRNA following U4 AMO

treatment. To test this, we isolated total RNA from both control

and CPSF73 depleted cells treated with control or U4 AMO

(Figure 6D). cDNA was then generated with random hexamers.

To confirm that CPSF73 depletion was sufficient to impair poly(A)

site cleavage we used primers spanning the Myc poly(A) site to

detect transcripts on which 39 end processing had not occurred. 3–

4 fold more of this transcript was recovered in samples from

CPSF73 depleted cells indicating that knock-down was sufficient to

disrupt cleavage and polyadenylation. This was the case in both

control and U4 AMO treated cells indicating that splicing

inhibition does not influence the function of CPSF73 in poly(A)

site cleavage.

Next we monitored the accumulation of unspliced Myc

transcripts in all four samples (Figure 6E). In cells treated with

control siRNA, U4 AMO caused a large accumulation of this

species as expected. However, fewer unspliced RNAs accumulated

in CPSF73 depleted cells treated with U4 AMO indicating that

cleavage and polyadenylation stabilises unspliced RNA. A

requirement for cleavage and polyadenylation for speckle forma-

tion and pre-mRNA accumulation may be explained by 39 end

processing being necessary to release RNA from chromatin into

speckle regions. However, knock-down of cleavage and polyade-

nylation may reduce transcription and pre-mRNA stability more

generally thus reducing the detectable poly(A)+ FISH signal as well

as the accumulation of selected pre-mRNAs such as Myc.

Figure 7. A. Act D time course analysis of unspliced Myc RNA (intron 2-exon 3) in cells treated with control AMO or 1 and 10 nmol U4 AMO. For each
condition, values are presented relative to levels present at time zero (given a value of 1). B. Act D time course analysis of non-pA cleaved Myc RNA in
cells treated with control AMO or 1 and 10 nmol U4 AMO. For each condition, values are presented relative to levels present at time zero (given a
value of 1).
doi:10.1371/journal.pone.0096174.g007
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Transcripts retain the ability to be spliced following U4
snRNA inhibition

We have shown that, following splicing inhibition, many pre-

mRNAs accumulate as polyadenylated transcripts in a manner

dependent on cleavage and polyadenylation. Although unpro-

cessed, these transcripts are not degraded. Recent work indicates

that some splicing occurs after 39 end processing and transcription

are completed [14,16]. Moreover, it has been proposed that some

of this splicing occurs in nuclear speckle domains [16,21]. We

wondered whether transcripts that accumulate following U4 AMO

treatment might somehow resemble processing intermediates that

can go on to be spliced, which might explain why they are not

degraded. If this is the case then transcripts whose splicing is

initially inhibited under these conditions might be capable of being

spliced in a delayed manner.

Unfortunately, AMOs and small molecule inhibitors of splicing

are not readily reversible somewhat confounding this analysis.

However, results in Figure 1 show that lower concentrations of U4

AMO inhibit splicing but in an incomplete manner. Results in

Figure 2 confirm that these concentrations are also sufficient to

induce the appearance of enlarged speckles containing polyade-

nylated RNA. This being the case, we wanted to establish whether

or not the unspliced transcripts that accumulate under these

conditions can still be spliced. Accordingly, we monitored the

levels of unspliced Myc transcripts (intron 2-exon 3) following

transcriptional inhibition by Act D (Figure 7A). We previously

showed that this species is rapidly depleted following Act D

treatment but not when U4 AMO was used, which confirms that

its loss depends on functional splicing [15,59]. We performed this

experiment on cells treated with control AMO or with 1 or

10 nmol of U4 AMO. Levels of Myc intron 2-exon 3 RNA were

determined by real-time PCR following reverse transcription. In

the control treated cells, this species was strongly reduced after 15

minutes of Act D treatment. As expected, this was due to

functional splicing because little reduction was observed in cells

treated with 10 nmol U4 AMO even after 2 hours. This

observation also highlights the stability of unspliced Myc following

U4 inhibition. In cells treated with 1 nmol of U4 AMO, much of

this species was depleted over the full time-course albeit at a slower

rate than in control cells. These data suggest that some delayed

splicing occurs in cells where U4 is partially inhibited.

It was next important to determine whether this delayed splicing

occurred after cleavage at the poly(A) site, which we have shown to

be required for optimal accumulation of unspliced pre-mRNA

following U4 AMO treatment. To test this, the Act D time course

was repeated to determine the rate of Myc poly(A) site cleavage.

Primers were used that span the Myc poly(A) site such that only

unprocessed transcripts were detected. Importantly, poly(A) site

cleavage precludes the detection of this species and so its loss is

indicative of processing (Figure 7B and [59]). As we had observed

previously, this species was lost equally rapidly in control cells and

cells treated with 10 nmol U4 AMO showing that intron removal

is not necessary for poly(A) site processing [15]. Treatment with

1 nmol U4 AMO gave a similar result whereby poly(A) site

cleavage occurred at the control rate. In sum, when compared to

control AMO treatment, splicing is substantially delayed relative

to poly(A) site cleavage in cells treated with 1 nmol U4 AMO.

These data argue that transcripts, for which splicing is initially

prevented by partial U4 AMO treatment, can still be spliced. This

is likely to occur after cleavage and polyadenylation, the rate of

which is unaffected by U4 inhibition. Similarly, it was shown that

depletion of the CDC5L splicing factor caused accumulation of

polyadenylated RNA within nuclear speckles [16]. However,

reintroduction of the CDC5L protein relieved this effect. These

findings suggest that some pre-mRNA transcripts that accumulate

in the nucleus following splicing inhibition are in a spliceable state,

which may explain their stability.

Discussion

Here we have explored the fate of transcripts produced in cells

where splicing is inhibited using a U4 AMO. Pre-mRNAs

accumulate as polyadenylated species coincident with the forma-

tion of enlarged nuclear speckles containing polyadenylated RNA.

Both the pre-mRNAs and speckle structures are stable and remain

present in nuclei following prolongued inhibition of transcription

by Act D. Consistent with their stability, we observe no re-

localisation of nuclear exonucleases within the nuclei of cells when

splicing is inhibited. Both pre-mRNA accumulation and speckle

formation were sensitive to inhibition of pre-mRNA cleavage and

polyadenylation arguing that 39 end processing plays an important

role in both events. We suggest that transcripts in cells defective for

splicing are stable at least in part because they remain splice-

competent. Consistently, unspliced transcripts that accumulate

when splicing is only partially inhibited can be spliced in a delayed

fashion.

An enlarged speckle phenotype like the one we see is also

observed when cells are treated with small molecule inhibitors of

splicing [22–24]. At least some of these transcripts are exported to

the cytoplasm because their aberrant protein products are

detectable [24]. Therefore, it is possible that the nonsense-

mediated decay pathway is the mechanism by which they are

eventually degraded. However, we observe high levels of

polyadenylated RNA in the nucleus following U4 AMO

treatment. Furthermore, this remains the case even after

transcription is inhibited. We therefore favour the interpretation

that some pre-mRNA is exported into the cytoplasm but a

substantial fraction is retained in the nucleus. This is consistent

with data demonstrating a strong link between splicing and mRNA

export [25,29,30].

We were unable to unequivocally localise an individual pre-

mRNA to the enlarged speckles using FISH (data not shown) even

though these domains were enriched in polyadenylated RNA.

Data in figure 4 support the idea of polyadenylated pre-mRNA

being part of the enlarged speckles by showing their accumulation

in nucleoplasmic RNA fractions from U4 AMO treated cells. Our

observation that only substrates for U2-dependent splicing are up-

regulated by U4 AMO treatment and that enlarged speckles only

form when splicing is inhibited also suggests that speckles contain

pre-mRNA. Moreover, the sensitivity of enlarged speckle forma-

tion to CPSF73 depletion suggests the presence of pre-mRNAs

there since the major function of this factor is in processing poly(A)

sites. Finally, others were able to localise b-globin pre-mRNA to

speckles when small molecules were used to inhibit splicing – albeit

for a longer period of time than we used [22,23]. Thus, although

we cannot exclude the presence of other polyadenylated RNAs in

enlarged speckles, we favour the view that a proportion of RNA

within them is pre-mRNA.

U4 AMO promotes the accumulation of pre-mRNA on

chromatin as well as in the nucleoplasm, coincident with the

appearance of enlarged speckles. This indicates two potential ways

that ultimately prevent the expression of unprocessed transcripts:

one that prevents their release from chromatin and another that

sequesters released transcripts within nucleoplasmic domains.

Interestingly, the proportion of pre-mRNA that is present in the

nucleoplasm following splicing inhibition differs among the

transcripts that we analysed being much higher for P27 and

Myc transcripts as compared to HSPA9 and ETF1. Further
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studies will be required to determine the basis of this observation

but it may well reflect transcript-specific requirements for

chromatin release. However, it is generally the case that the

majority of pre-mRNA is retained stably in the nucleus following

U4 AMO treatment. We would speculate that this is due to factors

that remain bound as a result of intron retention as well as the

absence of proteins that are normally deposited by splicing. The

former may include members of the U1 and U2 snRNPs, which

remain bound in cells treated with U4 AMO [15]. Indeed U1-70k

and U2AF65 are actively involved in pre-mRNA retention within

the nucleus [37]. The latter class of factors is likely to include EJC

components, which are bound following splicing and are required

for RNA export [29,60,61].

As well as being retained in the nucleus due to defects in the

normal pathway of mRNA biogenesis, unspliced pre-mRNAs

accumulating following U4 inhibition could be subject to active

quality control. Indeed, a variety of different quality control

pathways have been identified that promote turnover of unpro-

cessed or splice-defective RNA. However, the transcripts that we

have analysed following U4 inhibition are stable. We speculate

that this may be because they are recognised as being genuine

splicing precursors rather than aberrant pre-mRNAs. We propose

that early steps in spliceosome assembly must still take place in the

presence of U4 AMO because recognition of the terminal 39 splice

site is required for 39 end processing, which still occurs when U4 is

inhibited [3,15,62]. The fact that some delayed splicing may take

place when U4 is partially inhibited indicates that these early

assembly steps might be sufficient to license intron removal.

Furthermore, this observation supports the possibility that there

may not be a fixed window in which splicing must occur. As such,

when splicing is inhibited, unspliced pre-mRNAs may be released

from the transcription site and accumulate in speckles or elsewhere

where, under normal circumstances, splicing would be completed.

We have described mechanisms that prevent the export and

expression of pre-mRNA in cells where splicing is inhibited by a

U4 AMO. Rather than being degraded, these transcripts are very

stable and we provide evidence that they can be spliced at a later

time than normal. This pathway thus serves two useful purposes:

firstly, unprocessed transcripts are prevented from being exported

and secondly, transcripts that appear capable of being processed

are preserved such that they may later complete their nuclear

maturation.

Supporting Information

Figure S1 Pladienolide B or U6 AMO treatment results
in the accumulation of polyadenylated RNA within
enlarged nuclear speckles. A. IF of SC35 and PABPN1 in

cells treated with DMSO or the splicing inhibitor Pladienolide B

(PB). Scale bar is 20 mm. B. FISH and IF of polyadenylated RNA

and SC35 respectively in cells treated with DMSO or the splicing

inhibitor PB. Scale bar is 20 mm. C. FISH and IF of

polyadenylated RNA and SC35 respectively in cells treated with

control or U6 AMO (10 nmol). Scale bar is 5 mm.

(TIFF)

Figure S2 U6atac inhibition does not result in enlarged
nuclear speckles. A. IF of SC35 and PABPN1 in cells treated

with control or U6atac AMO (10 nmol). Scale bar is 15 mm. B.

FISH and IF of polyadenylated RNA and SC35 respectively in

cells treated with control or U6atac AMO (10 nmol). Scale bar is

15 mm.

(TIFF)

Figure S3 Alternative cell pictures accompanying main
text figure 3. A. IF of U2AF65 and PABPN1 in cells treated with

control of U4 AMO (10 nmol). Two panels are shown per

condition. Scale bar is 20 mm. B. IF of SC35 and total Pol II

(H224) in cells treated with control of U4 AMO (10 nmol). Two

panels are shown per condition. Scale bar is 5 mm. C. IF of Pol II

S2P and Dbr1 in cells treated with control of U4 AMO (10 nmol).

Two panels are shown per condition. Scale bar is 5 mm.

(TIF)

Figure S4 Alternative cell pictures accompanying main
text figure 5. A. IF of GFP-tagged Mtr4 and PABPN1 in cells

treated with control of U4 AMO (10 nmol). Two panels are shown

per condition. Scale bar is 5 mm. B. IF of GFP-tagged Rbm7 and

PABPN1 in cells treated with control of U4 AMO (10 nmol). Two

panels are shown per condition. Scale bar is 5 mm. C. IF of flag-

Xrn2 and PABPN1 in cells treated with control of U4 AMO

(10 nmol). Two panels are shown per condition. Scale bar is

15 mm. D. IF of SC35 and Rrp6 in cells treated with control of U4

AMO (10 nmol). Two panels are shown per condition. Scale bar is

5 mm. E. Poly(A)+ RNA FISH and SC35 IF in control (left-hand

panels) and U4 AMO treated (right-hand panels) cells treated with

ethanol (control) or Act D for two hours in cells treated with

control of U4 AMO (10 nmol). Two panels are shown per

condition. Scale bar is 15 mm.

(TIF)

Figure S5 pre-mRNA cleavage and polyadenylation are
required for the formation of enlarged speckles follow-
ing splicing inhibition. A. Alternative pictures accompanying

main text figure 6C: IF of SC35 in cells treated with control or

CPSF73 siRNAs and, subsequently, with control or U4 AMO.

Two data panels are shown. Scale bar is 5 mm. B. Poly(A)+ RNA

FISH in control and U4 AMO treated cells treated with DMSO or

the polyadenylation inhibitor cordycepin (CDY). CDY prevents

the formation of enlarged poly(A)+ speckles following U4 AMO

treatment. Scale bar is 5 mm. C. SC35 IF in control and U4 AMO

treated cells treated with DMSO or the polyadenylation inhibitor

cordycepin (CDY). CDY prevents the formation of enlarged

SC35-containing speckles following U4 AMO treatment. Scale bar

is 20 mm.

(TIF)
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