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Introduction
Before every cell division, organelles are duplicated and segre-

gated between mother and daughter cells. Peroxisome segrega-

tion is a regulated process in Saccharomyces cerevisiae. After 

duplication, about half of the peroxisomes are retained in the 

mother cell, and the others are transported along actin cables to 

the growing bud in a class V myosin (Myo2p)-dependent manner 

(Hoepfner et al., 2001; Fagarasanu et al., 2005). The peroxisomal 

integral membrane protein Inp2p has been identifi ed as the per-

oxisomal Myo2p receptor (Fagarasanu et al., 2006).

The longstanding question of how peroxisomes multiply 

has been addressed by several groups whose fi ndings have given 

rise to several models of peroxisome biogenesis (Fig. 1). In the 

fi rst model, peroxisomes are derived from the ER and mature 

into functional peroxisomes (for reviews see Tabak et al., 2003; 

Kunau, 2005; van der Zand et al., 2006). In the second model, 

peroxisomes multiply by the growth and division of existing 

peroxisomes, with the ER providing the lipids (Fujiki et al., 

1984; Lazarow, 2003; Mullen and Trelease, 2006). Thus, the 

main difference between these two models of peroxisome mul-

tiplication is that according to the maturation model, peroxi-

somes are continuously formed de novo from the ER, whereas in 

the growth and division model, peroxisome numbers are main-

tained by the division of preexisting peroxisomes. There is 

evidence supporting both of these models, and a third model 

has been postulated that incorporates features of the fi rst two. 

According to this model, ER-derived preperoxisomal structures 

mature into peroxisomes that subsequently divide (for reviews 

see Thoms and Erdmann, 2005; Titorenko and Mullen, 2006).

Recent studies have shown that the ER plays an essential 

role in peroxisome formation. Saccharomyces cerevisiae cells 

lacking the peroxin Pex3p are devoid of any peroxisomal struc-

tures (Hettema et al., 2000). When Pex3p is reintroduced, per-

oxisomes are formed de novo from the ER. Pex3p expression is 

fi rst detected in the ER, where it concentrates in an ER sub-

domain called the peroxisomal ER. Subsequently, peroxisomal 

ER structures are severed from the ER and fuse with each other to 

form a precompartment, which matures into import-competent 

peroxisomes (Hoepfner et al., 2005; Kragt et al., 2005; Tam et al., 

2005). To date, only Pex3p has been shown to reach peroxi-

somes via the ER in S. cerevisiae. Most other membrane pro-

teins are thought to be imported after ER and matrix protein 

import, which relies on several integral membrane proteins and 

occurs at a later stage in the maturation pathway (for reviews 

see Tabak et al., 2003; Titorenko and Mullen, 2006).

The ER to peroxisome pathway is evolutionarily con-

served and has been shown to give rise to peroxisomes de novo 

in mammalian cells (Kim et al., 2006). A defect in this pathway 

results in Zellweger syndrome and perinatal death (Honsho et al., 

1998; Matsuzono et al., 1999; Ghaedi et al., 2000; Muntau et al., 

2000; Shimozawa et al., 2005).

Electron micrographs suggestive of the fi ssion of peroxi-

somes in the yeasts Candida tropicalis (Veenhuis et al., 1980) 
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and Hansenula polymorpha (Kamasawa et al.,1996) have been 

published previously. In some cell types, a complex peroxisomal 

reticulum is observed. This has been postulated to comprise a 

dynamic network that undergoes continuous fi ssion and fusion 

(Lazarow and Fujiki, 1985). The balance between these two 

processes would then determine whether peroxisomes are found 

as single entities or as networks. It was only with the introduc-

tion of live cell imaging that peroxisome fi ssion was shown to 

occur unequivocally (Hoepfner et al., 2001; Jedd and Chua, 

2002). The fusion of peroxisomes has not been described.

A role in peroxisome fi ssion has been suggested for the 

yeast dynamin-related proteins (Drps) Vps1p and, more recently, 

Dnm1p based on the low abundance and morphology of per-

oxisomes in cells lacking these proteins (Hoepfner et al., 2001; 

Kuravi et al., 2006). Mammalian and plant orthologues have 

also been implicated in the regulation of peroxisome abundance 

(Koch et al., 2003; Li and Gould, 2003; Mano et al., 2004; 

Tanaka et al., 2006). Drps and dynamin are large evolutionarily 

conserved GTPases implicated in the budding of transport 

vesicles and organelle fi ssion/fusion (Praefcke and McMahon, 

2004). Whether they act as mechanoenzymes or regulatory 

GTPases is unresolved (Song and Schmid, 2003). Cells lacking 

Vps1p and Dnm1p display a single elongated peroxisome with 

a beads-on-a-string–like appearance. Mammalian and plant 

cells lacking the Vps1p orthologue display similar elongated 

peroxisomal structures. It has thus been suggested that these 

Drps play a role in peroxisome fi ssion (Hoepfner et al., 2001; 

Kuravi et al., 2006). This is in line with the observation that both 

Vps1p and Dnm1p have been found associated with the peroxi-

somal membrane (Kuravi et al., 2006; Vizeacoumar et al., 2006). 

However, no direct evidence has been provided that Drps are 

required for peroxisome fi ssion. Indeed, even in cells lacking 

Vps1p and Dnm1p, existing peroxisomes can divide, albeit at 

a later stage in the cell cycle, around the time of cytokinesis 

(Hoepfner et al., 2001; Kuravi et al., 2006).

In the absence of direct evidence for a role of Drps in per-

oxisome fi ssion and with the existence of a de novo peroxisome 

formation process, it has been suggested that Drps are required 

for the de novo pathway rather than for the fi ssion of existing 

peroxisomes. Drps were suggested to act either (1) early in the 

de novo pathway at the point where Pex3p exits the ER (for re-

views see Kunau, 2005; van der Zand et al., 2006) or (2) at the 

last step, fi ssion to release mature peroxisomes, in the model 

whereby peroxisomes form de novo as an elongated and con-

stricted structure (Fig. 1; for review see Thoms and Erdmann, 

2005; Titorenko and Mullen, 2006). The questions that we have 

addressed in this paper are (1) what is the contribution of per-

oxisome fi ssion versus de novo peroxisome formation to the 

total number of peroxisomes and (2) what role do the Drps play 

in peroxisome maintenance?

To address these questions, we have analyzed peroxisome 

multiplication in S. cerevisiae and the role of the Drps in this 

process. We have developed pulse-chase and mating assays to 

follow the fate of existing and de novo–formed peroxisome 

populations with time using fl uorescence microscopy and live 

cell imaging. We show that in wild-type (WT) cells grown on a 

nonfermentable carbon source, the only mode of peroxisome 

multiplication is fi ssion. We have developed an assay that fol-

lows the trafficking of Pex3-GFP to peroxisomes after the 

release of a block in transport out of the ER. We show that the 

ER-derived Pex3-GFP–containing structures do not give rise to 

de novo–formed peroxisomes in WT cells but instead fuse read-

ily with existing peroxisomes. This delivery of ER-derived 

material to mature peroxisomes constitutes the only fusion event 

in WT cells. Surprisingly, it is only in cells that lack peroxisomes 

as a result of a defect in inheritance that peroxisomes arise 

de novo out of the ER. The process of forming peroxisomes 

de novo is much slower than peroxisome multiplication by fi ssion 

and, in contrast to fi ssion, does not require Drps: Drps are not 

required for exit of peroxisomal proteins from the ER. How-

ever, they are required for fi ssion of existing peroxisomes. Our 

data support a peroxisome multiplication model whereby the 

ER provides essential membrane components allowing peroxi-

somal membrane growth and subsequent fi ssion by Drps.

Results
Peroxisomes multiply by fi ssion 
of existing peroxisomes
We have developed assays to follow the fate of peroxisomes with 

time. The fi rst assay involved conditional expression of the well-

established peroxisomal marker GFP–peroxisome-targeting sig-

nal type 1 (PTS1; GFP fused to PTS1). This fl uorescent fusion 

protein allows the visualization of peroxisomes in vivo, but pre-

peroxisomal structures will not be detected using GFP-PTS1, as 

these structures do not import GFP-PTS1 (matrix protein import 

is considered to be the last step in the maturation pathway).

Expression was under control of the GAL1 promoter. In 

the absence of galactose and in the presence of glucose, expres-

sion is undetectable both by Western blot analysis (Fig. 2 A) 

Figure 1. Models of peroxisome formation and multiplication. The fi rst 
two models propose that peroxisomes form de novo from the ER. ER-derived 
membrane structures (preperoxisomes) mature into peroxisomes that import 
matrix proteins (black). The role of Drps has been suggested to be either at 
the ER membrane (model 1) or at a later stage in the maturation pathway 
(model 2). The third model proposes that peroxisomes multiply by fi ssion of 
existing peroxisomes (black) and that the ER provides lipids and some 
membrane proteins in the form of a preperoxisomal structure (gray) that 
fuses with existing peroxisomes. Drps have been proposed to be required 
for the fi ssion of peroxisomes.
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and fl uorescence microscopy (not depicted). In the presence of 

galactose, GFP-PTS1 is expressed and is imported effi ciently 

into structures that are concluded to be peroxisomes, as they are 

absent in the peroxisome assembly mutant pex3∆ (not depicted).

We routinely induced expression for 3 h on galactose 

medium and shifted the cells to glucose medium to shut down 

expression. Analysis of the level of GFP-PTS1 in equal culture 

volumes at 2-h intervals after shutdown showed that GFP-PTS1 

initially increased, after which it remained stable for another 

4 h (Fig. 2 A). We are confi dent that the stable level of GFP-

PTS1 is a result of tight shutdown of the GAL1 promoter and 

not leaky expression balanced out by GFP-PTS1 breakdown. 

First, intraperoxisomal proteins are extremely stable, and no intra-

peroxisomal proteases have been described in S. cerevisiae. 

Second, the only known way to degrade intraperoxisomal pro-

teins is via pexophagy, whereby complete peroxisomes are bro-

ken down. Deletion of the ATG17 gene that blocks pexophagy 

(Farre and Subramani, 2004; Cheong et al., 2005) does not 

affect GFP-PTS1 levels after shutdown (Fig. 2 A).

The number of peroxisomes per cell under a given condi-

tion is relatively stable, with rapidly growing cells on glucose 

medium containing 5–10 peroxisomes per cell. This means that 

with every cell division, the number of peroxisomes doubles. 

Peroxisomes have been suggested to multiply either by de novo 

formation from the ER or by fi ssion of existing peroxisomes. 

We argued that if peroxisomes multiply by de novo formation 

from the ER, the fl uorescence intensity of prelabeled peroxi-

somes will remain constant over time, but the number of fl uores-

cent peroxisomes per cell will decrease with each cell division. 

On the other hand, if peroxisomes multiply by the fi ssion of 

existing peroxisomes, the number of fl uorescent peroxisomes 

per cell will remain constant, but the fl uorescence intensity per 

 peroxisome will halve with every cell division. In the experi-

ment described in Fig. 2 A, the cells were dividing at a rate 

of once every 2 h. Analysis of cells 2 and 6 h after shutdown 

 revealed that the number of fl uorescent peroxisomes per cell 

 remained constant, but the fl uorescence intensity of individual 

peroxisomes markedly decreased (Fig. 2 B). These observations 

support the model whereby peroxisomes multiply by fi ssion of 

preexisting peroxisomes.

Development of a mating assay to study 
peroxisome dynamics
However, if peroxisomes fuse and divide continuously, a de-

crease of fl uorescence intensity per peroxisome does not rule 

out the possibility that peroxisomes form de novo, fuse with ex-

isting peroxisomes, and divide (thus diluting out the GFP). In 

mitochondria, fusion and fi ssion are balanced in a dynamic 

equilibrium. Mitochondrial fusion was shown convincingly by 

the demonstration of contents mixing after cells with differen-

tially labeled mitochondria were mated (Nunnari et al., 1997). 

We have developed a similar assay to study peroxisome dynamics. 

S. cerevisiae has two haploid mating types: MATa and MATα. 

After mixing, cells of opposite mating type fuse with each other, 

upon which cytoplasmic contents, including organelles, are ex-

changed, and a diploid zygote buds from the fused cells. It takes 

�3 h between the fusion of haploid cells and budding of the 

 zygote (Maddox et al., 1999).

Expression from conditional reporter constructs was in-

duced by growing cells on galactose medium for 3 h and was 

shut off by switching to glucose medium for 2 h. Mating was ini-

tiated by mixing the two partners, and cells were fi xed at 2-h in-

tervals after mixing. For dual labeling experiments, a conditional 

HcRed-PTS1 construct was used (see Materials and methods).

Figure 2. Pulse-chase analysis of GFP-PTS1–labeled peroxi-
somes. (A) Western blot analysis of a GFP-PTS1 pulse-chase 
experiment. Cells transformed with GFP-PTS1–expressing 
plasmids under the control of either the inducible GAL1 pro-
moter or the constitutive TPI1 promoter were grown overnight 
on glucose, shifted to galactose medium for 3 h (pulse), and 
subsequently transferred to glucose medium (chase) for 6 h. 
Samples of equal culture volume (1 ml) were collected during 
the chase and analyzed at each time point. At t = 0, 1 ml 
contains 0.05 OD600 units. Whereas GAL1-regulated expres-
sion is shut off and the level of GFP-PTS1 remains constant, 
TPI1-regulated expression increases. For the overnight glucose-
grown sample, 0.15 OD units were loaded. (B) Fluores-
cence micrograph of pulse-labeled cells at t = 120 min and 
t = 360 min (left and middle). The same exposure time was 
used without enhancement of the signal. Note the decrease in 
fl uorescence intensity. (right) GFP signal is enhanced to illustrate 
that the number of fl uorescent peroxisomes per cell remains 
constant. Bar, 5 μm.
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In the fi rst experiment, cells containing GFP-PTS1–labeled 

peroxisomes were mated with cells containing HcRed-PTS1–

labeled peroxisomes. Mating cells were easily identifi ed by their 

distinct dumbbell shape and the presence of both red and green 

peroxisomes. We found peroxisomes from each of the parental 

cells in the zygote, with some remaining in the parental cells. 

Also, some peroxisomes were exchanged between the two pa-

rental cells. Although an occasional coincidence was observed 

in the merged image, analysis of individual z stacks showed the 

peroxisomes to be in different planes. Therefore, no overlap 

between red and green peroxisomes was observed (Fig. 3 A), in-

dicating there was no mixing of peroxisomal contents. Analysis 

of >100 mated cells at later time points, when large zygotes 

were observed (Fig. 3 A, fourth row), or even in diploid cells 

(not depicted) still did not reveal any contents mixing. We con-

clude from this that peroxisomes do not fuse. Furthermore, these 

results confi rm that fl uorescent reporter protein expression is 

shut down properly; had there been any residual expression, a 

low level of red would have been observed in the green peroxi-

somes and vice versa. We conclude that we are able to label dis-

tinct peroxisome populations and follow their fate with time.

In the next experiment, we tested whether all peroxisomes 

in a cell are import competent. WT cells expressing GFP-PTS1 

were grown on galactose medium for 3 h, transferred to glucose 

medium for 2 h to shut down expression, and mated with pex3∆ 

cells expressing HcRed-PTS1. Peroxisomes formed after the 

shutdown of GFP-PTS1 will not contain GFP-PTS1 but will be 

identifi ed after mating with pex3∆ cells by their ability to im-

port HcRed-PTS1. 2 h after mating, once cytoplasmic mixing 

had occurred, all peroxisomes in mated cells contained both 

GFP and HcRed. We did not detect any newly formed peroxi-

somes (red only) or any peroxisomes that had lost import com-

petence (green only; Fig. 3 B).

Subsequently, we tested whether we could use our mating 

assay to study de novo peroxisome formation by mating a pex19∆ 

mutant with a pex3∆ mutant constitutively expressing HcRed-

PTS1. Both mating partners are devoid of peroxisomes. Forma-

tion of peroxisomes by the complementation of pex3∆ cells has 

revealed that this process is slow. We obtained similar kinetics 

with our mating assay (Fig. 3 C). 5 h after mating, less than half 

of the mating cells displayed cytoplasmic labeling indicative of 

the absence of import-competent peroxisomes. However, after 

7 h, 80% of mating cells had formed peroxisomes de novo.

Collectively, these experiments show that all peroxisomes 

are import competent and that they do not fuse with each other. 

Therefore, we can follow individual peroxisome populations 

with time. We are also able to monitor de novo formation, thus 

establishing our pulse-chase and mating assays as useful tools 

to study peroxisome biogenesis.

De novo formation occurs only in cells 
lacking peroxisomes
We wanted to determine the extent to which de novo peroxisome 

formation contributes to the total number of peroxisomes in a cell. 

We induced GFP-PTS1 in WT cells for 3 h on galactose medium 

to pulse label the peroxisome population at that moment and 

shut down expression by incubation on glucose medium for 2 h. 

These cells were also expressing HcRed-PTS1 constitutively. 

Any peroxisomes that are formed de novo after the shutdown of 

GFP-PTS1 expression will label with HcRed only.

We seeded the cells thinly onto a glucose medium–

 containing agarose pad on a microscope slide and incubated 

them at 30°C to allow colony formation. In this way, we can 

follow descendants of a single budding cell. Colonies were photo-

graphed after 6–8 h (8–10 h after shutdown). The GFP signal in 

WT cells was weak and had to be enhanced to be made visible. 

As seen in Fig. 4 A, all cells in the WT control colony contain 

peroxisomes that label with both GFP and HcRed. This indi-

cates that peroxisomes have divided and segregated during cell 

division. However, GFP and HcRed do not overlap completely, 

and because the colonies could not be fi xed, we were unable 

to determine whether any peroxisomes had formed de novo. 

Therefore, we repeated the aforementioned experiment in liquid 

culture and fi xed the cells before imaging. All HcRed-labeled 

peroxisomes also labeled with GFP (Fig. 4 B), indicating that 

all peroxisomes are derived from the peroxisomes that were pre-

sent before GFP expression was shut down.

We also used a mating experiment to test for the de novo 

formation of peroxisomes (Fig. 4 C). GFP-PTS1 expression 

was induced for 3 h in WT cells followed by a 5-h chase on 

glucose. Preperoxisomal structures, as proposed by the matura-

tion model, would have ample time to mature into import-

competent peroxisomes, and these de novo–formed peroxisomes 

would import HcRed-PTS1 supplied by the pex3∆ mating partner. 

They would not contain GFP as they become import competent 

after shutdown. No red-only peroxisomes were observed (Fig. 4 C). 

Therefore, we conclude that peroxisomes do not form de novo 

in WT cells.

Strikingly, the situation is completely different in inp2∆ 

cells, which are defi cient in peroxisome segregation: in these 

cells, peroxisomes do not move from the mother cell into the 

bud, as they lack the Myo2p receptor (Fagarasanu et al., 2006). 

In most of the inp2∆ colonies, there were only one or two cells 

that contained both GFP and HcRed-PTS1. None of the other 

cells in the colony contained GFP, which confi rms that the orig-

inal GFP-containing cells (from which the colony was derived) 

failed to segregate their peroxisomes. However, almost half of 

the cells in the colony had multiple peroxisomes that contained 

HcRed (Fig. 4 D). We have quantifi ed this in Fig. 4 E, where we 

show that after 6–8 h on the agarose pad, 38% of cells in inp2∆ 

colonies had formed peroxisomes de novo, with 47% of cells 

still without peroxisomes.

This is indicative of the de novo formation of peroxi-

somes. As these de novo–formed peroxisomes are found in only 

about half of the cells, we conclude that de novo formation is 

a slow process (taking more than one cell generation time) and 

results in cells that are temporarily devoid of peroxisomes.

The ER to peroxisome pathway
Deletion of PEX3 or PEX19 results in a complete absence of 

peroxisomal structures (Hettema et al., 2000). When PEX3 is 

reintroduced, peroxisomes are formed de novo from the ER. 

Pex3p is fi rst detected in the ER, where it concentrates in an ER 

subdomain called the peroxisomal ER. Subsequently,  peroxisomal 
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Figure 3. Mating assay to study peroxisome dynamics and formation. (A) Peroxisomes do not fuse with each other. Peroxisomes were fl uorescently pulse 
labeled with either GFP or HcRed in WT cells of opposite mating types by growth on galactose medium for 3 h followed by a chase on glucose medium 
for 2 h. Subsequently, cells were allowed to mate for 2 h (fi rst to third rows) or 4 h (fourth row) before fi xing. Cells were imaged at different stages of 
mating. No colocalization between GFP and HcRed was seen. (B) All peroxisomes are import competent. WT and pex3∆ cells were pulse labeled with 
GFP-PTS1 and HcRed-PTS1, respectively, chased for 2 h, and mated and processed for imaging as in A. Upon cytoplasmic mixing, all GFP-labeled peroxi-
somes import HcRed-PTS1, although to a varying extent. No peroxisomes were seen that contained HcRed-PTS1 only. (C) De novo peroxisome formation 
upon mating is a slow process. pex3∆ cells constitutively expressing HcRed-PTS1 were mated with pex19∆ cells. From left to right, the panels show images 
of cells taken 3, 5, and 7 h after mating. (D) Quantitation of the rate of de novo peroxisome formation (see C). The number of mating cells containing 
peroxisomes was counted at each time point and expressed as a percentage of total mating cells containing HcRed-PTS1. For each time point, at least 100 
mating cells were analyzed. Bars, 5 μm.
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ER structures are thought to be severed from the ER and to fuse 

with each other to form a precompartment, which matures into 

import-competent peroxisomes (Hoepfner et al., 2005). Exit of 

Pex3p from the ER requires Pex19p (Hoepfner et al., 2005; Tam 

et al., 2005). Pex3p has also been shown to pass through the ER 

in WT cells before ending up in peroxisomes. The de novo syn-

thesis of peroxisomes is a slow process. However, the kinetics of 

Pex3p association with peroxisomes in WT cells is much faster 

(South et al., 2000; Hoepfner et al., 2005). This has been attrib-

uted to a rapid fl ux through the maturation pathway in WT cells 

and a slow fl ux during complementation of the pex3∆ mutant 

because in this mutant, the entire pathway has to be resurrected 

(Hoepfner et al., 2005). Our data support an alternative explana-

tion for their fi ndings. We propose that the reason for the dif-

ferent kinetics of Pex3p arrival in peroxisomes is that peroxisomes 

do not arise de novo from the ER in WT cells but that Pex3-GFP 

is delivered to existing peroxisomes.

We tested this hypothesis by labeling peroxisomes con-

stitutively with HcRed-PTS1 and inducing the expression of 

Pex3p-GFP. Initially, we observed a very faint ER-labeling pat-

tern (unpublished data), as has been seen previously (Hoepfner 

et al., 2005; Tam et al., 2005). At later time points, we found 

Pex3-GFP in all peroxisomes present in the cell (Fig. 5 A). 

This is in agreement with Pex3p being transported to exist-

ing peroxisomes. 

Because it is diffi cult to visualize Pex3p passing through 

the ER, we developed an alternative assay whereby we fi rst trap 

and accumulate Pex3-GFP in the ER and subsequently release 

the block to follow its traffi cking. To this end, we performed 

a mating experiment. Because Pex3p accumulates in the ER in 

pex19∆ cells, we anticipated that upon mating with a WT cell, 

the soluble Pex19p in the WT mating partner will diffuse into the 

pex19∆ cell and initiate the exit of Pex3p-GFP from the ER. First, 

we pulse-labeled peroxisomes in WT cells with HcRed-PTS1 

and shut down expression so that only the existing peroxisome 

population is labeled. In parallel, we pulse-labeled pex19∆ 

cells with Pex3p-GFP and shut down expression so that the 

Pex3-GFP that is trapped in the ER before mating is followed. 

Figure 4. Peroxisomes are formed de novo only in the absence of preexisting peroxisomes. (A and D) WT (A) and inp2∆ (D) cells constitutively expressing 
HcRed-PTS1 and conditionally expressing GFP-PTS1 were pulse labeled for 3 h on galactose medium and chased for 2 h on glucose medium. Cells were 
then seeded thinly onto a glucose-containing agarose pad on a microscope slide and allowed to grow for 6–8 h before imaging, which is long enough to 
allow single budding cells to give rise to a colony. Any peroxisomes that are formed de novo after the shutdown of GFP-PTS1 expression will label with 
HcRed only. The level of GFP signal was enhanced relative to the level of RFP. (A) All cells in the WT colony contain peroxisomes that label with both GFP 
and HcRed. However, GFP and HcRed do not overlap completely because the colonies could not be fi xed. (B) Analysis of WT cells grown in liquid culture 
after 6 h of chase. All HcRed-labeled peroxisomes also labeled with GFP (Fig. 4 B), indicating that all peroxisomes are derived from those present before 
GFP expression was shut down. (C) Mating assay to test for de novo–formed peroxisomes. GFP-PTS1 expression was induced for 3 h in WT cells followed 
by a 5-h chase on glucose. WT cells were then mated with pex3∆ cells expressing HcRed-PTS1. No red-only peroxisomes were detected, indicating that 
no peroxisomes are formed de novo during the 5-h chase. (D) In inp2∆ colonies, usually only one or two cells contained GFP, these cells comprising the 
original GFP-expressing cells from which the rest of the colony was derived. Approximately half of the cells in each colony contain peroxisomes that are 
 labeled with HcRed-PTS1. (E) Bar graph showing the proportion of cells (>150 cells were counted) that had formed peroxisomes de novo 6–8 h after seeding 
onto agarose (see A). Colonies were examined for the presence of cells with no peroxisomes, red/green (preexisting) peroxisomes, or exclusively red-only 
(de novo formed) peroxisomes. Bars, 5 μm.
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As expected, before cell fusion, Pex3p-GFP labeling displayed 

a typical ER pattern in pex19∆ cells (Fig. 5 A). In addition to 

the ER labeling, there are some faint dots, which, during the 

2-h chase, become more pronounced, whereas the typical ER 

labeling becomes weaker (Fig. 5 B). The dots have been seen 

previously (Tam et al., 2005) and are thought to comprise the 

peroxisomal ER. Upon cell fusion, Pex3p-GFP left the ER and 

associated with the (prelabeled) peroxisomes in the WT mating 

partner. All of the prelabeled peroxisomes acquired Pex3p-GFP, 

although to a varying extent. This experiment shows that ER-

localized Pex3-GFP can be transported to existing peroxisomes 

soon after cell fusion (before zygote formation). At later time 

points after fusion, as indicated by the size of the zygote, the 

extent of Pex3-GFP association with peroxisomes increases 

(Fig. 5 B, second row) until it almost completely overlaps 

with the preexisting peroxisomes (Fig. 5 B, third row). These 

experiments show that Pex3-GFP is sorted from the ER to 

existing peroxisomes.

Peroxisome fi ssion is Vps1p dependent
Mutants lacking the Drp Vps1p contain reduced numbers of 

peroxisomes (Hoepfner et al., 2001). A further reduction in 

peroxisome number is found in cells lacking both Vps1p and 

Dnm1p (Kuravi et al., 2006). This could be caused by a lack of 

fi ssion of existing peroxisomes, as has been suggested  previously, 

but defi nitive evidence is still lacking. Because Vps1p is par-

tially localized to the cytosol (Hoepfner et al., 2001; Vizeacoumar 

et al., 2006), we hypothesized that we could use the mating 

assay to test whether Vps1p is involved in the fi ssion of existing 

peroxisomes. For this purpose, we used cells devoid of peroxi-

somal structures (pex3∆ cells) as a source of Vps1p. These 

cells were labeled with HcRed-PTS1. The mating partner was 

a vps1∆/dnm1∆ mutant expressing GFP-PTS1.

Cells were pulse labeled by the expression of reporter 

constructs on galactose medium for 3 h and glucose medium for 

2 h, mixed to initiate mating, and fi xed after 2 h. Mated cells 

were easily identifi able by the presence of both HcRed and GFP 

and by their distinct morphology. In mated cells, HcRed co-

localized with GFP-labeled peroxisomal structures. Hardly any 

of the fused cells showed the typical elongated peroxisomal 

structures found in vps1∆/dnm1∆ cells, but, instead, the peroxi-

somes were small and numerous, as found in WT cells (compare 

mated with nonmated cells; Fig. 6 A). In contrast, when pex3∆/
vps1∆ cells were used as the mating partner with vps1∆/dnm1∆ 

cells, peroxisomal structures remained elongated but still labeled 

with both PTS1 reporter proteins (Fig. 6 B). Time-lapse micros-

copy of a mating experiment clearly showed that the elongated 

structures undergo fi ssion into multiple peroxisomes (Fig. 6 D). 

These experiments show that upon cell fusion, existing peroxi-

somes divide rapidly in a Vps1p-dependent process.

Figure 5. Pex3-GFP is targeted to existing peroxisomes. 
(A) Newly synthesized Pex3-GFP associates with all peroxi-
somes present in WT cells. Pex3-GFP expression was induced 
for 3 h in cells constitutively expressing HcRed-PTS1. Pex3-
GFP colocalizes completely with peroxisomes in cells with low 
Pex3-GFP expression. In some cells with higher expression, 
faint additional Pex3-GFP punctae were observed. It is not 
clear whether these Pex3-GFP punctae are an early stage of 
de novo peroxisome formation induced by the overexpression 
of Pex3p or whether they are aggregates that will later be 
degraded. (B) Pex3-GFP trapped in the ER in pex19∆ cells is 
released upon mating with WT cells and associates with pre-
existing peroxisomes. pex19∆ cells pulse labeled with Pex3-
GFP (3 h of galactose and 2 h of glucose) were mated with 
WT cells pulse labeled with HcRed-PTS1 (3 h of galactose 
and 2 h of glucose). Cells were fi xed after 2 h. The Pex3-GFP 
signal that colocalizes with HcRed becomes stronger with time 
after mating. Bars, 5 μm.
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Dnm1-dependent peroxisome fi ssion
We wanted to test whether Dnm1 is involved in the fi ssion of 

existing peroxisomes in a process analagous to that of Vps1p. 

Because Dnm1p is mainly membrane bound and no large cyto-

plasmic pool is available (Otsuga et al., 1998; Cerveny et al., 2001), 

we reasoned that fi ssion is unlikely to occur unless Dnm1p levels 

in the cell are increased. We overexpressed Dnm1p in vps1∆/pex3∆ 

cells and mated them with vps1∆/dnm1∆ cells containing pre-

labeled peroxisomes. Upon mating, existing peroxisomes were 

divided into multiple small peroxisomes (Fig. 6 C). This shows 

that Dnm1p can substitute for Vps1p in peroxisome fi ssion.

 Furthermore, Dnm1p overexpression increases peroxi-

some number in a haploid vps1∆/dnm1∆ mutant, showing 

that Dnm1p can substitute for Vps1p in haploid cells as well 

(unpublished data). We conclude that the reduced number of 

per oxisomes in vps1∆/dnm1∆ cells is caused by a decrease in 

the fi ssion of peroxisomes.

ER to peroxisome sorting of Pex3-GFP 
occurs independently of Drps
The molecular mechanisms involved in exit of Pex3p from the 

ER are still poorly defi ned. However, it has been postulated that 

the peroxisomal ER is severed from the rest of the ER and, via 

homotypic fusion and maturation, can form new peroxisomes. 

However, our data show that Pex3-GFP travels from the ER to 

existing peroxisomes. To investigate whether Drps are required 

for the transport of Pex3-GFP from the peroxisomal ER to per-

oxisomes, we analyzed the traffi cking of Pex3-GFP in a vps1∆/
dnm1∆ mutant. We induced the expression of Pex3-GFP and 

saw it accumulate temporarily in structures different from per-

oxisomes in WT and vps1∆/dnm1∆ cells. Whereas it remained 

in the ER in pex19∆ cells (Fig. 5 A), Pex3-GFP accumulated in 

prelabeled peroxisomes in WT cells (Fig. 5 A) and in the typical 

elongated peroxisomes in vps1∆/dnm1∆ cells (Fig. 7 A). Again, 

it was diffi cult to record the ER staining of Pex3-GFP in WT or 

vps1∆/dnm1∆ cells because the residence time of Pex3p-GFP 

in the ER is so short and its level in the ER is very low at any 

point in time.

We conclude that the ER to peroxisome pathway is opera-

tional in vps1∆/dnm1∆ cells and that Drps are not essential for 

the transport of Pex3p to peroxisomes. This is in line with the 

observation that a block in the ER to peroxisome pathway re-

sults in a complete lack of peroxisomes, whereas vps1∆/dnm1∆ 

cells contain peroxisomes.

To investigate whether Drps are required for de novo 

peroxisome formation, we constructed a vps1∆/dnm1∆/inp2∆ 

Figure 6. Vps1p is required for fi ssion of existing peroxi-
somes. Peroxisomes in vps1∆/dnm1∆ cells were pulse la-
beled with GFP-PTS1 (3 h of galactose and 2 h of glucose). 
(A–C) pex3∆ (A), pex3∆/vps1∆ (B), and pex3∆/vps1∆ cells 
overexpressing Dnm1p (C) were pulse labeled with HcRed-
PTS1 in the same way. Cells were mated for 2 h before fi xing 
and imaging. After cell fusion and cytoplasmic mixing, HcRed-
PTS1 is imported into the GFP-labeled peroxisomal structures 
(A–C), which, in the presence of Vps1p (A) or overexpressed 
Dnm1p (C), are divided into multiple peroxisomes. No fi ssion 
occurs in the absence of Vps1p (B). (D) Time-lapse microscopy 
of fi ssion after vps1∆/dnm1∆ cells were mated with pex3∆ 
cells. Bars, 5 μm.
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mutant and compared it with the vps1∆/dnm1∆ mutant using 

the same methodology as described in Fig. 4. First, GFP-PTS1 

was induced in vps1∆/dnm1∆ cells constitutively expressing 

HcRed-PTS1. Cells were seeded on a microscope slide and 

grown into colonies. As can be seen in Fig. 7 B, GFP-labeled 

peroxisomes were observed throughout the colony, indicat-

ing that the single peroxisome had segregated during cell 

division. However, in 17% of the dividing cells, either the bud 

or the mother cell was temporarily devoid of a peroxisomal 

structure. Compare the green and red panels in Fig. 7 B. This 

has been observed previously. In most vps1∆/dnm1∆ cells, 

the single peroxisome extends from the mother cell into the 

daughter cell and is split in two around the time of cytokinesis 

(Hoepfner et al., 2001; Kuravi et al., 2006). The molecular 

basis of this fi ssion event is unknown. As the peroxisomal 

structures moved during imaging, the overlap is not complete. 

However, cells grown in liquid culture followed by fi xing and 

imaging show a complete overlap between GFP- and HcRed-

labeled peroxisomes (unpublished data). These results indi-

cate that peroxisomes segregate in vps1∆/dnm1∆ cells and 

that peroxisomes do not form de novo, as no red-only peroxi-

somes were observed.

In the vps1∆/dnm1∆/inp2∆ mutant, however, the result is 

different. Only one peroxisomal structure in the whole colony 

was labeled with GFP, whereas half of the cells were showing 

multiple HcRed-labeled peroxisomes. We have quantifi ed this 

in Fig. 7 D, where we show that after �8 h on the agarose pad, 

only 35% of vps1∆/dnm1∆/inp2∆ cells had formed peroxi-

somes de novo, with 53% of the cells still without peroxisomes. 

As expected, some of the other cells showed very weak cyto-

plasmic labeling (Fig. 7 C, red-only panel).

This shows us three things. First, multiple peroxisomes 

have formed de novo in those cells that failed to inherit peroxi-

somes. Second, in the cell with the single GFP-labeled peroxi-

some, no peroxisomes were formed de novo. Third, the preexisting 

peroxisomal structure failed to divide, showing that Inp2p is re-

quired for fi ssion of the peroxisomal structure present in vps1∆/
dnm1∆ cells. We conclude that Drps are not required for the 

de novo formation of peroxisomes and that peroxisomes only 

form de novo if no peroxisomes are already present in the cell.

Figure 7. Drps are not required for the ER to peroxisome transport of Pex3-GFP or for de novo peroxisome formation. (A) Newly synthesized Pex3-GFP 
associates with the single peroxisomal structure present in vps1∆/dnm1∆ cells. In cells labeled with HcRed-PTS1, the expression of Pex3-GFP was induced 
for 3 h. Most GFP colocalizes with peroxisomes, although some faint additional punctae were observed. (B and C) vps1∆/dnm1∆ (B) and vps1∆/dnm1∆/
inp2∆ (C) cells constitutively expressing HcRed-PTS1 and conditionally expressing GFP-PTS1 were pulse labeled for 3 h on galactose and chased for 2 h 
on glucose medium. Cells were then seeded onto a glucose-containing agarose pad on a microscope slide and allowed to grow for 8 h before imaging. 
In vps1∆/dnm1∆/inp2∆ colonies, peroxisomes form independently of Vps1p and Dnm1p. GFP labeled a single peroxisomal structure in a single cell 
in each colony, whereas approximately half of the cells contain multiple peroxisomes that label with HcRed-PTS1, which is indicative of de novo–formed 
peroxisomes. As expected, with high exposure time, a very faint cytoplasmic labeling is visible in some of the cells that lack peroxisomes (C, arrowhead; 
red-only panel). (D) Bar graph showing the proportion of cells (>150 cells were counted) that had formed peroxisomes de novo �8 h after seeding onto 
agarose (see B). Colonies were examined for the presence of cells with no peroxisomes, red/green (preexisting) peroxisomes, or exclusively red-only 
(de novo formed) peroxisomes. Bars, 5 μm.
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Discussion
We have shown that peroxisomes in WT cells multiply by the 

growth and division of existing peroxisomes. One of our goals 

was to study the contribution of de novo peroxisome formation 

to the multiplication of peroxisomes. We have found that only 

under conditions in which peroxisomes are (temporarily) absent 

are they formed de novo from the ER. When peroxisomes are 

present, the ER to peroxisome pathway provides them with 

membrane constituents. We have also reexamined the role of 

the Drps Vps1p and Dnm1p in peroxisome biogenesis. We have 

found that the Drps are required for the fi ssion of existing per-

oxisomes but that both the transport of Pex3p from the ER to 

existing peroxisomes and the de novo formation of peroxisomes 

can operate independently of Drps. From the three models of 

peroxisome multiplication that we tested, our fi ndings are com-

patible only with model 3 (Fig. 1).

Multiplication of peroxisomes
Peroxisomes can be formed de novo from the ER by a matura-

tion process. This has been observed after expression of the 

PEX3 gene in pex3∆ cells. Pex3p was shown to be inserted fi rst 

into the ER, after which it was sorted to an intermediate com-

partment termed the peroxisomal ER. This compartment ma-

tured into peroxisomes that import GFP-PTS1 (Hoepfner et al., 

2005). We fi nd that in WT cells, Pex3p travels from the ER to 

peroxisomes relatively quickly (within 1–2 h). The different 

kinetics of Pex3-GFP reaching peroxisomes in WT cells versus 

pex3∆ cells after complementation has been observed before in 

yeast and mammalian cells (South and Gould, 1999; Hoepfner 

et al., 2005). This difference has been attributed to a slow matu-

ration of peroxisomes after the complementation of pex3∆ cells, 

as the entire ER to peroxisome pathway has to be resurrected 

(Hoepfner et al., 2005).

We were surprised to fi nd that the experiments designed to 

detect the de novo formation of peroxisomes were negative. Our 

data show that peroxisomes keep on dividing. This is illustrated 

by pulse-chase experiments in which GFP-PTS1 is diluted out 

(during the chase) over an ever-increasing number of peroxi-

somes. We have shown that peroxisomes do not fuse homotypi-

cally (Fig. 2). Therefore, the dilution effect we see is not caused 

by contents mixing as a result of fusion between labeled peroxi-

somes (which were present during GFP-PTS1 expression) and 

peroxisomes formed later (de novo). We conclude that the GFP 

signal is diluted out as a result of fi ssion of existing peroxi-

somes followed by segregation between mother and daughter 

cells. Indeed, in a mutant defi cient in both fi ssion and inheri-

tance of peroxisomes, GFP pulse-labeled peroxisomes remain 

intensely labeled over very long periods.

If de novo peroxisome formation does not occur to a de-

tectable level in WT cells, when does it occur? It is only after 

expression of Pex3p in pex3∆ cells (which have no peroxisomal 

structures) that peroxisomes have been shown to form from the 

ER in yeast (Hoepfner et al., 2005). This process is a gradual 

maturation that takes at least 5 h. We show that cells that fail to 

inherit peroxisomes as a result of a defect in segregation are 

able to form these organelles de novo. Although the process of 

peroxisome formation is unaffected in these mutants, peroxi-

somes reappear only slowly. The timescale of peroxisome ap-

pearance in these two mutants (pex3∆ and inp2∆) suggests that 

de novo peroxisome formation from the ER by a process of 

maturation is an intrinsically slow process.

As the ER to peroxisome pathway does not produce per-

oxisomes de novo in WT cells, what is its role in peroxisome 

biogenesis? We found that all preexisting peroxisomes obtained 

Pex3-GFP during pulse-chase experiments. This was confi rmed 

using a mating assay whereby Pex3-GFP trapped in the ER in 

one mating partner was released upon mating with WT cells; 

after cell fusion, Pex3-GFP left the ER and was found to associ-

ate with all preexisting peroxisomes in the WT partner. This is 

not compatible with a maturation model whereby peroxisomes 

form de novo from the ER but is in favor of a process whereby 

the ER to peroxisome pathway provides existing peroxisomes 

with membrane constituents. This also explains the difference 

in the time it takes for Pex3-GFP to reach peroxisomes in WT 

cells compared with cells that rely on de novo formation.

Our data indicate that although the ER-derived Pex3-

GFP–containing structures are able to mature into peroxisomes, 

in WT cells, they fuse with preexisting peroxisomes long before 

they mature. We conclude this from the relatively fast associa-

tion of newly synthesized Pex3p-GFP with peroxisomes in WT 

cells. Why the ER-derived Pex3-GFP–containing structures do 

not mature into peroxisomes in WT cells but rather fuse with 

existing peroxisomes is an interesting question that remains to 

be addressed.

Interestingly, in animal cells, peroxisomes have been shown 

to form de novo even in the presence of existing peroxisomes 

(Kim et al., 2006). Whether this represents a difference between 

organisms or whether under certain conditions the matura-

tion intermediates do not fuse with existing peroxisomes is un-

clear at this moment. It is possible that under conditions of 

peroxisome proliferation, the de novo formation of peroxisomes 

is induced and makes a substantial contribution to the peroxi-

some population.

Drp-dependent and independent fi ssion
Evidence that peroxisomes can divide has been provided by 

live cell imaging studies in a multitude of organisms, including 

plants, fungi, and animals. An essential role for Drps in this pro-

cess has been suggested as a result of the presence of large elon-

gated peroxisomal structures in Drp-defi cient cells. Drps have 

been found associated with peroxisomal membranes, suggesting 

a role for these proteins in the fi ssion process. Our data indeed 

show that fi ssion of existing peroxisomal structures is Drp 

dependent. However, it remains uncertain whether Drps have a 

direct role in fi ssion. A second mode of peroxisome fi ssion is evi-

dent in Drp-defi cient cells. This Drp-independent fi ssion occurs 

at around the time of cytokinesis and takes place in most cells, 

as vps1∆/dnm1∆ mutant cells inherit peroxisomes effi ciently 

(our unpublished data). During that time, the single peroxisomal 

structure extends between mother and daughter cell. The mole-

cular basis of the ensuing fi ssion is unknown but could result 

from Myo2p/Inp2p pulling the peroxisome into the daughter cell 

while the other end remains anchored in the mother cell.
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Alternatively, during cytokinesis, the peroxisome may be 

split in two by the closure of the bud neck, with Inp2 being 

involved in proper positioning of the peroxisome. Our experi-

ments do not discriminate between these two possibilities. The 

complete lack of fi ssion of peroxisomal structures in vps1∆/
dnm1∆/inp2∆ triple mutants is compatible with either of the 

aforementioned explanations, as the structures no longer bridge 

the bud neck.

Based on the roles of Drps in membrane remodeling 

events, it has been suggested that Drps could also function in 

the ER to peroxisome pathway (for reviews see Kunau, 2005; 

Thoms and Erdmann, 2005). Our studies show that Drps are not 

required for exit of Pex3-GFP from the ER or for the de novo 

formation of peroxisomes. It will be interesting to determine the 

composition of the Pex3-GFP–containing structures and the 

molecular events that result in their severing from the ER.

Materials and methods
Strains and plasmids
Yeast strains were derivatives of BY4741 (MATA his3-∆1 leu2-∆0 met15-
∆0 ura3-∆0) or BY4742 (MATα his3-∆1 leu2-∆0 lys2-∆0 ura3-∆0) ob-
tained from the EUROSCARF consortium. Double or triple gene deletions 
were made by replacing the entire coding sequence of the mutated genes 
with a marker (Schizosaccharomyces pombe HIS5 or the Klebsiella pneu-
moniae hygromycin B phosphotransferase gene cassette that confers resis-
tance to hygromycin B; Goldstein and McCusker, 1999). The double mutants 
pex3∆/vps1∆ and dnm1∆/vps1∆ were made by replacing the entire 
VPS1 reading frame with the hygromycin B cassette. The INP2 gene was 
replaced by the HIS5 cassette in the dnm1∆/vps1∆ mutant to create 
dnm1∆/vps1∆/inp2∆. The mutants pex19∆ and pex3∆ and its derivatives 
are MATA, whereas the other strains are MATa. The pex3∆ strain used in 
Fig. 3 C was MATα. URA3 and LEU2 centromere plasmids were derived 
from Ycplac33 and Ycplac111 (Gietz and Sugino, 1988). GFP-PTS1 is a per-
oxisomal luminal GFP marker protein appended with the well-characterized 
PTS1 (Gould et al., 1988). A far-red peroxisomal luminal marker was made 
by appending a variant of the Heteractis crispa chromoprotein (HcRed) with 
the PTS1. As a source of HcRed, we used HcRed-Tandem with optimized 
yeast codon usage (Evrogen). As a marker for the ER to peroxisome pathway, 
Pex3-GFP was used (Hoepfner et al., 2005).

The constitutive expression of GFP-PTS1 and HcRed-PTS1 was under 
the control of the TPI1 promoter and HIS3 promoter, respectively. Dnm1p 
overexpression was achieved using the TPI1 promoter. All constitutive ex-
pression constructs contained the PGK1 terminator. Conditional expression 
constructs contained the GAL1 promoter. To reduce the half life of the 
transcript, we replaced the PGK1 terminator with the MFA2 terminator 
(LaGrandeur and Parker, 1999; Duttagupta et al., 2003).

Growth conditions and mating assay
Cells were grown overnight in selective glucose medium and transferred 
to selective galactose medium at an OD600 of 0.1 to allow the induction of 
reporter proteins for 3 h. Depending on the experiment, cells were either 
prepared for mating or were grown on selective glucose medium for the 
time indicated in the fi gures and text.

For mating, after induction for 3 h on selective galactose medium, 
expression was shut down by switching cells to selective glucose medium 
for 2 h (unless indicated otherwise). The cells were collected by fi ltration 
onto a 0.22-μm nitrocellulose fi lter (type GS; 25-mm diameter; Millipore), 
and this fi lter was incubated cells side up on a prewarmed YPD plate at 
30°C. 107 cells of each strain were collected per 25-mm fi lter.

After 2 h (or longer when indicated in text and fi gures), cells were 
harvested by vortexing the fi lter in selective glucose medium and fi xed 
for 5 min by adding formaldehyde to 3.6%. Free aldehyde groups were 
quenched in 0.1 M ammonium chloride/1× PBS. Cells were imaged 
within 1 h of fi xing, as loss of fl uorescence intensity and increase of auto-
fl uorescence was seen in fi xed cells left for extended periods. Growth of 
cells into colonies on an agarose pad was performed as described previ-
ously (Hoepfner et al., 2001). For each experiment, >100 cells were 
examined, and images are representative of the fi ndings.

Image acquisition
Live and fi xed cells were analyzed with a microscope (Axiovert 200M; 
Carl Zeiss MicroImaging, Inc.) equipped with an Exfo X-cite 120 excitation 
light source, band pass fi lters (Carl Zeiss MicroImaging, Inc. and Chroma 
Technology Corp.), an α plan-Fluar 100×/1.45 NA or A-plan 40×/0.65 
NA Ph2 objective lens (Carl Zeiss MicroImaging, Inc.), and a digital cam-
era (Orca ER; Hamamatsu). Image acquisition was performed using Open-
lab software (Improvision) at 21°C. Live cells were imaged in minimal 
medium. Fluorescence images were collected as 0.2-μm z stacks, merged 
into one plane after contrast enhancing in Openlab, and processed further 
in Photoshop (Adobe) except when stated differently in the text or fi gure 
legends. Brightfi eld images were collected in one plane. In Figs. 3–7, the 
brightfi eld image was added into the blue channel in Photoshop (Adobe). 
The level of the brightfi eld images was modifi ed, and the image was 
blurred, sharpened, and blurred again before one more round of level 
adjustment so that only the circumference of the cell was visible.

Other methods
Yeast glass bead lysates were prepared using a bead beater and 50-μm 
glass beads at full speed for 45 s in the presence of a protease inhibitor 
cocktail (Roche Diagnostics). Equal culture volumes were analyzed using 
Western blotting with anti-GFP (Roche Diagnostics). Standard methods were 
used for genetic manipulations.
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