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Abstract—Direction of arrival (DOA) estimation from the per-
spective of sparse signal representation has attracted tremendous
attention in past years, where the underlying spatial sparsity
reconstruction problem is linked to the compressive sensing (CS)
framework. Although this is an area with ongoing intensive
research and new methods and results are reported regularly,
it is time to have a review about the basic approaches and
methods for CS-based DOA estimation, in particular for the
underdetermined case. We start from the basic time-domain CS-
based formulation for narrowband arrays and then move to the
case for recently developed methods for sparse arrays based on
the co-array concept. After introducing two specifically designed
structures (the two-level nested array and the co-prime array) for
optimizing the virtual sensors corresponding to the difference co-
array, this CS-based DOA estimation approach is extended to the
wideband case by employing the group sparsity concept, where
a much larger physical aperture can be achieved by allowing
a larger unit inter-element spacing and therefore leading to
further improved performance. Finally, a specifically designed
ULA structure with associated CS-based underdetermined DOA
estimation is presented to exploit the difference co-array concept
in the spatio-spectral domain, leading to a significant increase in
DOFs. Representative simulation results for typical narrowband
and wideband scenarios are provided to demonstrate their
performance.

Index Terms—Compressive sensing, direction of arrival es-
timation, underdetermined, difference co-array, sparse array
structures.

I. INTRODUCTION

Direction of arrival (DOA) estimation, as a fundamental
problem in array signal processing [1]–[4], has been studied
extensively over the past decades, playing a very important
role in various applications including radar, sonar, speech
enhancement and wireless communications, etc. Many high-
resolution methods such as MUSIC [5], ESPRIT [6], and their
extensions including Tensor-MUSIC [7], Tensor-ESPRIT [8],
and Tensor-MODE [9] have been proposed for narrowband
DOA estimation. Very recently, DOA estimation in the pres-
ence of nonuniform noise was studied in [10]. For the wide-
band case, some representative methods include the incoherent
signal subspace method (ISSM) [11], the coherent signal
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subspace method (CSSM) [12], and the test of orthogonality
of projected subspaces (TOPS) method [13].

In the past few years, DOA estimation has attracted further
attention due to its connection with the theory of sparse signal
representation, where the underlying spatial sparsity recon-
struction problem is linked to the compressive sensing (CS)
framework [14], [15]. Compared with those aforementioned
traditional estimation methods, performing DOA estimation
from the perspective of sparse signal reconstruction bring
benefits such as smaller number of data samples required,
lower sensitivity to SNR, and ability to deal with highly
correlated and coherent sources. In [16], a CS-based scheme
is applied to DOA estimation with a single snapshot and a
reduced dimension method called ℓ1-SVD is proposed for
multiple snapshots. A lot of applications related to the di-
rection finding problem under the CS framework has been
investigated [16]–[22], and the performance analysis with
both lower bounds and upper bounds on the probability of
incorrect sparse support recovery is studied in [23]. DOA
estimation based on a sparse representation of array covariance
vectors with a presented explicit error-suppression criterion
is proposed in [24], but the computational complexity is
extremely high by jointly recovering the sparsest coefficients
corresponding to the DOAs. In [25], DOA estimation through
Bayesian compressive sensing strategies is proposed, and a
novel compressive MUSIC algorithm is presented in [26]. In
[27], sparse spectrum fitting (SpSF) for DOA estimation is
proposed, which is proved to be asymptotically consistent for
infinite number of snapshots.

Among the studied DOA estimation problems, the case for
which the number of sources is larger than the number of
physical sensors has proved to be much more difficult [28]–
[30]. For such an underdetermined DOA estimation task,
various sparse array structures have been proposed as possible
solutions [31]–[35]. Recently, two classes of sparse arrays,
namely nested arrays and co-prime arrays, have been proposed
[36]–[38]. A virtual array structure with increased number of
virtual uniform linear array (ULA) sensors is generated based
on the difference co-array concept, leading to an increased
number of degrees of freedom (DOFs) which can be exploited
for DOA estimation. Apart from the spatial smoothing based
subspace approaches [36]–[40], signal reconstruction methods
under the CS framework based on the difference co-array
concept are employed for narrowband DOA estimation [41]–
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[45], and the performance of sparse support recovery using
correlation information is analyzed in [46]. A novel sparse
reconstruction method is proposed for DOA estimation of
a mixture of coherent and uncorrelated targets using active
nonuniform arrays [47], where a virtual array with sensors
distributed at the difference co-array of the sum co-array is
generated, offering significant enhancement in DOFs based
on the co-array equivalence. Furthermore, super nested arrays
are proposed in [48], [49] to reduce mutual coupling, and
high-order difference co-arrays are employed in [50]–[52]
to further increase the DOFs with limited physical sensors.
Then in [53], group sparsity based DOA estimation methods
for wideband co-prime arrays with reduced computational
complexity is proposed, allowing a much larger unit inter-
element spacing than the standard co-prime array and therefore
leading to further improved performance. In fact, these CS-
based underdetermined DOA estimation methods employing
the co-array equivalence principle can be applied to arbitrary
linear arrays.

For both aforementioned classes of sparse arrays, at least
two uniform linear sub-arrays are needed in their configura-
tions to optimize the virtual sensor positions corresponding to
the difference co-array. In [42], [54], a single ULA is used with
two continuous-wave signals of co-prime frequencies. Instead
of employing two uniform linear sub-arrays, the single ULA
acts as two equivalent sub-arrays in a co-prime array structure
at the two co-prime frequencies and CS-based DOA estimation
method is employed to handle the underdetermined DOA esti-
mation problem. The idea with multiple frequencies is further
considered in [55]–[57], and the same philosophy applies for
the detection of multiple-frequency sources, assuming that
the signal DOAs remain unchanged across all the frequency
band. Then in [58], it is extended to the wideband case and
a novel design for wideband ULAs with associated group
sparsity based sparse signal reconstruction method exploiting
the difference co-array concept in the spatio-spectral domain
is proposed. The linear frequency modulated continuous wave
(LFMCW) signal is chosen as the transmitted waveform to
ensure the correlation characteristic among different frequen-
cies of the received signals, which is required for difference
co-array generation in the spatio-spectral domain. With a
specifically designed ULA structure according to the frequency
band of interest, a significantly increased number of detectable
targets is achieved by employing the group sparsity based
wideband DOA estimation method across multiple frequency
pairs.

One common issue with CS-based DOA estimation is the
dictionary mismatch problem, i.e. DOAs of the source signals
may not exactly fall onto the values of the finite search grid
[59]–[62]. One straightforward solution to this problem is to
use a denser search grid with a smaller step size. However, this
increases the computational complexity of the optimisation

process significantly. One solution is to adaptively refine the
search grid only around the region where the sources are
located [16], [62], while a joint sparse recovery method is
developed for underdetermined off-grid DOA estimation of
narrowband signals in [63], [64], with a two-step off-grid
approach proposed in [65] for the wideband case.

Motivated by these rich research results under the CS
framework for DOA estimation, especially for underdeter-
mined DOA estimation, in this paper, we first review DOA
estimation with sensor arrays from the perspective of sparse
signal reconstruction in the time domain [16]. Due to the high
complexity introduced by the estimation approach for multi-
ple snapshots, the difference co-array based DOA estimation
method is then extended to arbitrary linear arrays, where the
CS-based sparse signal reconstruction method is applied to
exploit the increased DOFs only available in the signal and
noise power domain. Then two specifically designed classes
of sparse arrays (nested arrays [36] and co-prime arrays [37],
[38]) are presented, optimizing the virtual sensor positions
corresponding to the difference co-array. Secondly, the CS-
based DOA estimation method is extended to the wideband
case based on the group sparsity concept, and except for all
the advantages shared by DOA estimation under the CS frame-
work, this group sparsity based wideband method is capable of
allowing a much larger unit inter-element spacing, translated
to a further improved performance. Finally, with a specifically
designed ULA structure where LFMCW signal is chosen as the
transmitted waveform, an associated underdetermined DOA
estimation method under the CS framework is presented to
exploit the difference co-array concept in the spatio-spectral
domain, leading to a significant increase in DOFs.

This review paper is organized as follows. The review
on the time domain DOA estimation and the difference co-
array based DOA estimation under the CS framework with
specifically designed sparse array structures are presented in
Section II. The group sparsity based sparse signal reconstruc-
tion method for the wideband case is introduced in Section
III, where further performance improvement with large unit
spacing is also presented. The method for wideband ULAs em-
ploying the difference co-array concept in the spatio-spectral
domain is studied in Section IV. Representative simulation
results demonstrating the performance of the reviewed DOA
estimation methods are provided in Section V, and conclusions
are drawn in Section VI.

II. NARROWBAND DOA ESTIMATION UNDER THE CS
FRAMEWORK

A. Narrowband signal model

Consider an N -sensor arbitrary linear array with its sensor
positions distributed in the set S, expressed as

S =
{
α0 · d, α1 · d, . . . , αN−1 · d

}
, (1)
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where d is the unit spacing, αn · d is the position of the n-th
sensor, 0 ≤ n ≤ N − 1

∩
n ∈ Z, and Z is the set of all

integers.
Assume that there are K mutually uncorrelated far-field

narrowband signals sk(t) impinging from incident angles
θk, k = 1, 2, . . . ,K, respectively. After sampling with a fre-
quency fs, we use x[i] to represent the observed discrete signal
vector, and the narrowband array output model in discrete form
is given by

x[i] = A(θ)s[i] + n[i] , (2)

where the source signal vector s[i] = [s1[i], . . . , sK [i]], and
n[i] is the vector for spatially white noise. The steering matrix
A(θ) = [a(θ1), . . . ,a(θK)], with each column vector a(θk)

as the steering vector corresponding to the k-th source signal,
expressed as

a(θk) =
[
e−j

2πα0d
λ sin(θk), . . . , e−j

2παN−1d

λ sin(θk)
]T

, (3)

where λ is the signal wavelength and {·}T represents the
transpose operation.

B. CS-based DOA estimation for a single snapshot

For the i-th snapshot, the CS based signal reconstruction
approach is employed to explore the advantages of the sparse
distribution of the spatial source signals [16]. A search grid
of Kg (Kg ≫ K) potential incident angles θg,0, . . . , θg,Kg−1

is first generated, and an overcomplete representation of A(θ)

is then constructed, given by

A(θg) =
[
a(θg,0), . . . ,a(θg,Kg−1)

]
. (4)

It is noted that in A(θg), the steering vector at each column
corresponds to one potential incident angle. In this framework,
the constructed steering matrix A(θg) is independent of the
actual source directions θ.

We also construct a Kg × 1 column vector sg[i], with each
entry representing a potential source signal at the correspond-
ing incident angle. Then, the signal model from the perspective
of sparse signal reconstruction can be updated to

x[i] = A(θg)sg[i] + n[i] . (5)

The estimation problem can be solved by the following
constrained optimisation:

min ∥sg[i]∥0
subject to ∥x[i]−A(θg)sg[i]∥2 ≤ ε

(6)

where ∥·∥0 is the ℓ0 norm, ∥·∥2 represents the ℓ2 norm, and
ε is the allowable error bound.

Due to difficulty in solving the ℓ0 norm based problem in
(6), an ℓ1 norm is employed instead as an approximation [16],

[66], and the CS-based DOA estimation for a single snapshot
can be finally formulated as [16]

min ∥sg[i]∥1
subject to ∥x[i]−A(θg)sg[i]∥2 ≤ ε

(7)

where ∥·∥1 is the ℓ1 norm. The entries in sg[i] represent the
DOA results over Kg search grids.

Different from l0 norm which uniformly penalises all non-
zero valued coefficients, the l1 norm penalises larger weight
coefficients more heavily than smaller ones. To make the l1
norm a closer approximation to the l0 norm, a reweighted
l1 norm minimisation method can be adopted here [67]–
[70], where a larger weighting term is introduced to those
coefficients with smaller non-zero values and a smaller weight-
ing term to those coefficients with larger non-zero values.
This weighting term will change according to the resultant
coefficients at each iteration. This iterative reweighted l1
minimization approach can be applied to all l1 norm based
formulation in this review paper.

C. CS-based DOA estimation for multiple snapshots

When multiple data snapshots are available, we could
perform DOA estimation by (7) for each snapshot i and
then combine these independent estimates by some kind of
averaging/fusion to obtain a more accurate result. However,
a more effective approach to achieve higher accuracy and
robustness to noise is to jointly estimate the DOA of the
impinging signals across multiple snapshots employing the
group sparsity concept, since they all have the same spatial
support.

Denote X =
[
x[0], . . . ,x[P−1]

]
, where P is the number of

snapshots. Similarly, we can define S =
[
s[0], . . . , s[P − 1]

]
and N =

[
n[0], . . . ,n[P − 1]

]
. Then the signal model for

multiple snapshots can be obtained by

X = A(θ)S+N , (8)

Note that the matrix S is not generally sparse in time
domain. To introduce spatial sparsity in the formulation,
similar to the single-snapshot case, we construct Sg =[
sg[0], . . . , sg[P − 1]

]
, and use the row vector sg,kg , 0 ≤

kg ≤ Kg − 1 to represent the kg-th row of the matrix Sg.
Then a new Kg×1 column vector is generated by performing
ℓ2 norm to each row in Sg, expressed as

ŝg =
[∥∥sg,0∥∥2, ∥∥sg,1∥∥2, . . . , ∥∥sg,Kg−1

∥∥
2

]T
. (9)

Finally the CS-based optimization problem for multiple
snapshots can be formulated as [16]

min
Sg

∥ŝg∥1

subject to ∥x̃−A(θ)s̄g∥2 ≤ ε ,
(10)

where x̃ = vec{X} and s̄g = vec{Sg} with vec{·} repre-
senting the vectorizing operation. The column vector ŝg are
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the corresponding DOA estimation results over the Kg search
grids.

However, one problem with the above group sparsity based
formulation is its high computational complexity, especially
when a large number of snapshots P are available. To reduce
the complexity, we can perform singular value decomposition
(SVD) to the received data matrix X and project the data to the
signal subspace which has a lower dimension than the original
one [16].

In the next, we move to another approach for this problem,
which is more related to the recently proposed difference co-
array concept for underdetermined DOA estimation.

D. CS-based DOA estimation employing the difference co-
array concept

For two classes of sparse arrays, namely nested arrays
[36] and co-prime arrays [37], a virtual array is generated
with its sensor positions corresponding to the difference
co-array concept. Except for the spatial smoothing based
subspace approaches [29], [36]–[40], [50], CS-based signal
reconstruction methods are also proposed for underdetermined
DOA estimation [41]–[45] in the narrowband case. Moreover,
these estimation methods under the CS framework can be
extended to arbitrary arrays with the ability of exploiting the
increased DOFs by exploring the difference co-array of any
array structures.

We consider the linear array with sensor positions given in
the set S in (1). The second-order difference co-array (also
known as difference co-array) set is defined as

C = ΦS · d , (11)

where ΦS is the set of difference co-array lags, given by

ΦS = {αn1 − αn2 , 0 ≤ n1, n2 ≤ N − 1} . (12)

The consecutive lags in ΦS represent virtual sensors in a
virtual ULA, and DOFs provided by this virtual ULA can be
easily exploited by various DOA estimation methods. For the
output signal model in (2), we can calculate the correlation
matrix, given by

Rxx = E
{
x[i]xH [i]

}
=

K∑
k=1

σ2
ka(θk)a

H(θk) + σ2
nIN ,

(13)

where E{·} is the expectation operator, {·}H denotes the
Hermitian transpose, σ2

k is the power of the k-th signal, σ2
n is

the noise power, and IN is an N ×N identity matrix.
Then by vectorizing the correlation matrix Rxx, we obtain

a virtual array model given by

z = vec {Rxx} = Ã(θ)s̃+ σ2
nĨN2 , (14)

where Ã(θ) = [ã(θ1), . . . , ã(θK)] is the equivalent steering
matrix of the generated virtual array, with each column vector

d 2d N1d

• • · · · • ◦ ◦ · · · ◦
(N1 + 1)d 2(N1 + 1)d N2(N1 + 1)d

Fig. 1. Structure of a general two-level nested array, consisting of two
uniform linear sub-arrays.

ã(θk) = a∗(θk)⊗a(θk) being the corresponding steering vec-
tor (⊗ represent the Kronecker product). s̃ =

[
σ2
1 , . . . , σ

2
K

]T
is the equivalent impinging source signals. The N2×1 column
vector ĨN2 is obtained by vectorizing IN .

In the virtual array model, the number of virtual sensors
corresponding to the difference co-array is much more than
that of physical sensors, and the equivalent source signals
share the same spatial sparsity with the original impinging
signals. Therefore, the increased DOFs are only available in
the signal and noise power domain, and can be exploited
for underdetermined DOA estimation from the perspective of
difference co-array concept.

The virtual model in (14) is similar to the case of only a
single snapshot, and can be rewritten as

z = Ã(θ)s̃+ σ2
nĨN2 = Ã◦(θ)s̃◦ , (15)

where Ã◦(θ) =
[
Ã(θ), ĨN2

]
and s̃◦ =

[
s̃T , σ2

n

]T
.

With the same Kg search grids, we construct a N2 ×
Kg matrix as Ã(θg) =

[
ã(θg,0), . . . , ã(θg,Kg−1)

]
. Denote

Ã◦(θg) =
[
Ã(θg), ĨN2

]
, the DOA estimation method explor-

ing the difference co-array concept is formulated as [41]

min
s̃◦g

∥∥s̃◦g∥∥1
subject to

∥∥∥z− Ã◦(θg)s
◦
g

∥∥∥
2
≤ ε ,

(16)

where s̃g is a constructed Kg × 1 column vector, and s̃◦g =

[s̃Tg , σ
2
n]

T . Note that the last element σ2
n in s◦g can also be

considered as an unknown variable to be estimated. The first
Kg elements in s̃◦g are the corresponding DOA results over
the Kg search grids.

To avoid estimating the noise power in the formulation and
reduce the computational complexity, we could remove the
zero-lag value of the covariance matrix and also merge those
entries with the same lag [53].

E. Specifically designed sparse array structures based on the
difference co-array concept

To fully exploit the advantages of the difference co-array,
two classes of sparse array structures (nested arrays [36] and
co-prime arrays [37]) have been proposed.

With a given unit spacing d ≤ λ/2, a general two-level
nested array consisting of two uniform linear sub-arrays is
shown in Fig. 1, where the first sub-array has N1 sensors
starting from the position 1d with d as the inter-element



2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2628869, IEEE Access

5

0 N1d 2N1d (N2 − 1)N1d

• • • · · · •
◦ ◦ ◦ ◦ · · · · · · ◦
0 N2d 2N2d (2N1 − 1)N2d

Fig. 2. Structure of a general co-prime array, consisting of two sub-arrays
with the shared 0-th sensor.

spacing between adjacent physical sensors, while there are
N2 sensors in the second sub-array starting from the position
(N1 + 1)d with the inter-element spacing (N1 + 1)d. The
number of physical sensors in a two-level nested array is
N1 + N2, and the achieved difference co-array lags in the
set ΦS is expressed as

ΦS = {µ,−N2(N1 + 1) + 1 ≤ µ ≤ N2(N1 + 1)− 1} .

(17)

From the virtual array perspective based on the difference
co-array concept, a ULA with 2N2(N1+1)−1 virtual sensors
can be generated corresponding to the consecutive integers
from −N2(N1 + 1) + 1 to N2(N1 + 1) − 1 in ΦS , leading
to a significant increase in DOFs by employing the DOA
estimation method introduced in (16).

Co-prime arrays are another class of sparse arrays designed
for DOFs improvement based on the difference co-array
concept. There are also two uniform linear sub-arrays in a
standard co-prime array. For a given unit spacing d, the first
sub-array has N2 sensors with an inter-element spacing of
N1d, while the second sub-array has 2N1 sensors with N2d

as its spacing between adjacent sensors. As shown Fig. 2, the
sensor at the zeroth position is shared by the two sub-arrays.
Therefore, there are 2N1 +N2 − 1 sensors in total.

According to [37], [53], the difference co-array lags in
ΦS of a standard co-prime array can reach every integer
from −N1N2 to N1N2, corresponding to a virtual ULA
of 2N1N2 + 1 senors with an increased number of DOFs.
Furthermore, there are several non-consecutive lags in the set
ΦS , and it has been verified in [45] that the CS-based DOA
estimation method can achieve a better performance compared
with the spatial smoothing based subspace method due to the
exploration of all the unique lags.

There are several structure extensions based on the standard
co-prime arrays, such as two generalized extensions based on
the standard co-prime arrays introduced in [45], namely co-
prime arrays with compressed inter-element spacing (CACIS)
and co-prime arrays with displaced sub-array (CADiS). How-
ever, for all array structures designed for optimising the
difference co-array lags, the CS-based DOA estimation method
employing the difference co-array concept (16) can be applied
with good performance achieved.

Remarks on the Cramér-Rao Bounds (CRB) for sparse ar-
rays: It is noted that for the overdetermined case (less sources

than physical sensors), the root mean square error (RMSE) of
MUSIC will converge to zero as input SNR tends to infinity.
However, for the underdetermined case, according to Theorem
4 in [71], the CRB has an asymptotic expression which does
not decay to zero for sufficiently large SNR as SNR tends
to infinity. This Theorem is also verified by the numerical
results provided in [71], [72], and the performance result of our
discussed underdetermined DOA estimation method provided
in Section V is consistent with the analysis in [71], [72].

III. WIDEBAND DOA ESTIMATION UNDER THE CS
FRAMEWORK

A. Wideband signal model

Consider the same N -sensor arbitrary linear array with its
sensor positions distributed in the set S as given in (1). Assume
that there are K mutually uncorrelated far-field wideband sig-
nals sk(t) impinging from incident angles θk, k = 1, 2, . . . ,K,
respectively. Then, the signals observed from the n-th sensor
of the given array structure can be expressed as

xn(t) =
K∑

k=1

sk [t− τn(θk)] + nn(t) , (18)

where 0 ≤ n ≤ N − 1. Take the zeroth position of the given
array as the reference. Then we have τ0(θk) = 0. τn(θk)

represents the time delay of the k-th impinging signal from
incident angle θk arriving at the n-th sensor, and nn(t) is the
white Gaussian noise at the corresponding sensor.

After sampling with a frequency fs, an L-point discrete
Fourier transform (DFT) is applied. The array output model
in the DFT domain can be expressed as

X[l, p] = A(l,θ)S[l, p] +N[l, p] , (19)

where X[l, p] is the observed signal vector at the l-th fre-
quency bin, S[l, p] is a column vector holding all signals
at the l-th frequency bin, and N[l, p] is the noise vector.
A(l,θ) = [a(l, θ1), . . . , a(l, θK)] represent the steering matrix
at frequency fl corresponding to the l-th frequency bin, with
each column vector a(l, θk) representing the steering vector
corresponding to the k-th source signal at frequency fl,
expressed as

a(l, θk) =

[
e
−j

2πα0d
λl

sin(θk), . . . , e
−j

2παN−1d

λl
sin(θk)

]T
,

(20)

where λl = c/fl and c is the wave propagation speed.

B. Group sparsity based wideband DOA estimation

To exploit the increased DOFs introduced by the difference
co-array, we first generate a virtual array corresponding to the
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difference co-array. For the l-th frequency bin, the correlation
matrix is calculated by

Rxx[l] = E
{
X[l, p] ·XH [l, p]

}
=

K∑
k=1

σ2
k[l]a(l, θk)a

H(l, θk) + σ2
n[l]IN ,

(21)

where σ2
k[l] is the power of the k-th impinging signal at the

l-th frequency bin, and σ2
n[l] represents the corresponding

noise power. In practice, the correlation matrix Rxx[l] can
be estimated within P samples in each frequency bin.

Then the virtual array with sensors corresponding to the
difference co-array is obtained by vectorizing Rxx[l], given
as

z[l] = vec {Rxx[l]} = Ã[l]̃s[l] + σ2
n̄[l]̃IN2

= Ã◦[l]̃s◦[l] ,
(22)

with

Ã◦[l] =
[
Ã[l], ĨN2

]
,

s̃◦[l] =
[
s̃T [l], σ2

n̄[l]
]T

,

where the equivalent steering matrix of the generated virtual
array Ã[l] = [ã(l, θ1), . . . , ã(l, θK)] with each column vector
ã(l, θk) = a∗(l, θk)⊗ a(l, θk) representing the corresponding
steering vector, and the equivalent source signals s̃[l] =[
σ2
1 [l], . . . , σ

2
K [l]

]T
.

With a generated search grid of Kg potential incident
angles θg,0, . . . , θg,Kg−1, an overcomplete representation of
the equivalent steering matrix is constructed by Ãg[l] =[
ã(l, θg,0), . . . , ã(l, θg,Kg−1)

]
. Denote Ã◦

g[l] =
[
Ãg[l], Ĩ

2
N

]
and s̃◦g[l] =

[
s̃Tg [l], σ

2
n[l]

]T , where the column vector s̃g[l] has
Kg elements with each being a potential source signal at the
corresponding incident angle.

Then the CS-based narrowband DOA estimation method in
(16) can be applied to the l-th frequency bin, given by [43],
[53]

min
∥∥s̃◦g[l]∥∥1

subject to
∥∥∥z[l]− Ã◦

g[l]̃s
◦
g[l]

∥∥∥
2
≤ ε .

(23)

Instead of combining the DOA estimation results across the
entire frequency range of interest to obtain the final DOA,
a more effective approach is to estimate the wideband DOA
across all frequency bins of interest simultaneously based
on the group sparsity concept, in the same way as in the
narrowband case with multiple snapshots. Due to the same
spatial support, a better performance and higher accuracy can
be achieved.

Assume that the bandwidth of the impinging source signals
covers Q frequency bins in the DFT domain, where Q ≤ L.
We use lq , 0 ≤ q ≤ Q − 1, to represent the index of these
interested frequency bins, and lq may or may not be adjacent to
each other. With the same search grid of Kg potential incident

angles for different frequency bins, a block diagonal matrix B̃◦
g

is generated using Ã◦
g[lq], expressed as

B̃◦
g = blkdiag

{
Ã◦

g[l0], Ã
◦
g[l1], . . . , Ã

◦
g[lQ−1]

}
. (24)

Another matrix U◦
g with size of (Kg + 1) × Q is then

constructed, given as

U◦
g =

[
s̃◦g[l0], s̃

◦
g[l1], . . . , s̃

◦
g[lQ−1]

]
. (25)

Denote row vector u◦
g,kg

, 0 ≤ kg ≤ Kg , as the kg-th row
of the matrix U◦

g. By performing ℓ2 norm to each row vector
u◦
g,kg

, a new column vector is formed as

û◦
g =

[∥∥u◦
g,0

∥∥
2
, . . . ,

∥∥u◦
g,Kg

∥∥
2

]T
. (26)

Finally, the wideband DOA estimation method employing
the group sparsity concept is formulated as follows

min
ũ◦

g

∥∥û◦
g

∥∥
1

subject to
∥∥∥z̃− B̃◦

gũ
◦
g

∥∥∥
2
≤ ε ,

(27)

where z̃ =
[
zT [l0], . . . , z

T [lQ−1]
]T

, and ũ◦
g is obtained by

vectorizing U◦
g, expressed as ũ◦

g = vec
(
U◦

g

)
. The first

Kg elements of the column vector r̂◦g are the corresponding
wideband DOA estimation results over the Kg search grids.

The main drawback of the group sparsity based method
is its high computational complexity. In [53], the redundant
entries are combined together to form a formulation with
significantly reduced dimension for low-complexity wideband
DOA estimation.

C. Performance improvement with large unit spacing employ-
ing the group sparsity based wideband DOA estimation method

Normally, the unit spacing should satisfy the relationship
of d ≤ λmin/2 to avoid spatial aliasing, where λmin is the
minimum wavelength within the frequency range of interest.
However, the unit spacing d is able to be larger than λmin/2,
while accurate DOA results without spatial aliasing could still
be obtained by applying the group sparsity based wideband
DOA estimation method in (27).

For the wideband case, the aliasing locations are different at
different frequency bins. The group sparsity based wideband
method is capable of forcing a common sparsity location
across the entire frequency band simultaneously, correspond-
ing to the true incident angles of the impinging source signals
under the same spatial sparsity. Therefore, a larger unit spacing
can be achieved compared with the standard array structure
when performing the group sparsity based method, leading to
a larger physical array aperture as well as a larger virtual array
aperture, and finally translated to better performance with more
accurate estimation results.

However, we expect that there is a threshold value, and the
estimation performance will degrade when the unit spacing



2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2628869, IEEE Access

7

is larger than the threshold. We can still perform the group
sparsity based DOA estimation effectively at d = λmax/2 with
λmax as the maximum wavelength within the frequency range,
where the largest array aperture (both physical array aperture
and the virtual array aperture) is achieved under the condition
of no spatial aliasing only for the minimum frequency of
interest.

IV. WIDEBAND DOA ESTIMATION FOR ULAS BASED ON

THE DIFFERENCE CO-ARRAY CONCEPT

A. Signal model

For further increase in DOFs, a novel design for wideband
ULAs with associated DOA estimation method under the CS
framework based on the difference co-array concept in the
spatio-spectral domain is proposed in [58], where only a single
ULA structure is designed to achieve a larger number of
detectable targets.

We consider applications such as radar, and the linear
frequency modulated continuous wave (LFMCW) signal is
chosen as the transmitted waveform to ensure the correlation
characteristic among different frequencies of the received
signals, and this characteristic is required for difference co-
array generation in the spatio-spectral domain. The transmitted
LFMCW signal is given as

s(t) = Aej(2πfct+πα·mod(t+τ,T )2+φ) , (28)

where A is the signal amplitude, fc is an initial frequency,
τ is an initial time-offset, and φ represents the initial phase.
α = B/T is the chirp rate with B as the signal bandwidth and
T as the modulation period. mod(·) is the modulo operator.

Consider an N -sensor ULA with the set of sensor positions
S given by

S =
{
nd̃, 0 ≤ n ≤ N − 1, n ∈ Z

}
, (29)

where d̃ is the adjacent sensor spacing, and the design of d̃

will be shown later.
Assume that there are K far-field targets distributed at

incident angles θk, k = 1, 2, . . . ,K, respectively. Then, the
echo signals observed at the n-th sensor can be expressed as

xn(t) =

K∑
k=1

γk(t) · s [t− τn(θk)] + nn(t) , (30)

where the reflection coefficient γk(t) is time-varying due to
target motion or radar cross section (RCS) fluctuations, and
it is in general frequency-dependent since the phase delay
varies with frequency and the target reflectivity at different
frequencies may be different.

After sampling with a frequency fs and applying an L-point
DFT, the array output model in the DFT domain is obtained,
given as

X[l, p] = A(l,θ)S[l, p] +N[l, p] , (31)

where the model is similar to the one in (19), the only
difference is that S[l, p] =

[
S1[l, p], . . . , SK [l, p]

]T is the
column signal vector at the l-th frequency bin, with each entry
Sk[l, p] being the DFT of the p-th group discrete-time echo
signals γk[i]s[i].

Define f∆ = fs/L as the frequency interval between
adjacent frequency bins. The spacing d̃ between adjacent
physical sensors is designed as

d̃ =
c

2f∆
· δ , (32)

where δ is a variable used to adjust the spacing of the array. To
avoid spatial aliasing, δ should be less than 1 according to the
difference co-array concept in the spatio-spectral domain, and
the best estimation performance is achieved at δ = 1. Then,
the steering vector a(l, θk) corresponding to the l-th column
vector in A(l,θ) is expressed as

a(l, θk) =
[
1, e−jπlδ sin(θk), . . . , e−jπ(N−1)lδ sin(θk)

]T
. (33)

B. Virtual array generation in the spatio-spectral domain

We also assume that the echo signal bandwidth covers Q

frequency bins with the index of frequency bins lq ∈ ΦL,
0 ≤ q ≤ Q − 1, where ΦL is the set including Q frequency
bin indexes. Then we select M frequency pairs, where the
m-th, 0 ≤ m ≤ M − 1, pair consists of the frequency bins
lm1 and lm2 with lm1 , lm2 ∈ ΦL. Then the auto-correlation
matrices are calculated by

Rx[lm1 , lm1 ] = E
{
X[lm1 , p] ·XH [lm1 , p]

}
=

K∑
k=1

σ2
k[lm1 , lm1 ]a(lm1 , θk)a

H(lm1 , θk) + σ2
n[lm1 , lm1 ]IN ,

Rx[lm2 , lm2 ] = E
{
X[lm2 , p] ·XH [lm2 , p]

}
=

K∑
k=1

σ2
k[lm2 , lm2 ]a(lm2 , θk)a

H(lm2 , θk) + σ2
n[lm2 , lm2 ]IN ,

where σ2
k[lm1 , lm1 ] and σ2

k[lm2 , lm2 ] represent the powers
of the echo signal from the k-th target at the correspond-
ing frequency bins, respectively, whereas σ2

n[lm1 , lm1 ] and
σ2
n[lm2 , lm2 ] are the corresponding noise powers. These pow-

ers are all real and positive.
The cross-correlation matrices across the two frequency bins

are shown as

Rx[lm1
, lm2

] =E
{
X[lm1

, p] ·XH [lm2
, p]

}
=

K∑
k=1

σ2
k[lm1 , lm2 ]a(lm1 , θk)a

H(lm2 , θk) ,

Rx[lm2
, lm1

] =E
{
X[lm2

, p] ·XH [lm1
, p]

}
=

K∑
k=1

σ2
k[lm2 , lm1 ]a(lm2 , θk)a

H(lm1 , θk) .
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where owing to the phase shift between different frequencies
caused by the LFMCW echo signal and the reflection com-
ponent at different frequency, σ2

k[lm1
, lm2

] and σ2
k[lm2

, lm1
]

are in general complex values. Note that Rx[lm1 , lm2 ] =

RH
x [lm2 , lm1 ]. Therefore, only the former one is used for DOA

estimation.
Vectorizing these correlation matrices yields several virtual

arrays, expressed as

z[lm1 , lm1 ] = vec {Rx[lm1 , lm1 ]}
= Ã[lm1 , lm1 ]̃s[lm1 , lm1 ] + σ2

n[lm1 , lm1 ]̃IN2 ,

z[lm2 , lm2 ] = vec {Rx[lm2 , lm2 ]}
= Ã[lm2 , lm2 ]̃s[lm2 , lm2 ] + σ2

n[lm2 , lm2 ]̃IN2 ,

z[lm1 , lm2 ] = vec {Rx[lm1 , lm2 ]}
= Ã[lm1 , lm2 ]̃s[lm1 , lm2 ] ,

with equivalent steering matrices

Ã[lm1 , lm1 ] = [ã(lm1 , lm1 , θ1), . . . , ã(lm1 , lm1 , θK)] ,

Ã[lm2 , lm2 ] = [ã(lm2 , lm2 , θ1), . . . , ã(lm2 , lm2 , θK)] ,

Ã[lm1 , lm2 ] = [ã(lm1 , lm2 , θ1), . . . , ã(lm1 , lm2 , θK)] ,

where each column vector ã(lm1 , lm1 , θk) = a∗(lm1 , θk) ⊗
a(lm1 , θk), ã(lm2 , lm2 , θk) = a∗(lm2 , θk) ⊗ a(lm2 , θk), and
ã(lm1 , lm2 , θk) = a∗(lm2 , θk)⊗a(lm1 , θk). The equivalent sig-
nal vectors s̃[lm1 , lm1 ] =

[
σ2
1 [lm1 , lm1 ], . . . , σ

2
K [lm1 , lm1 ]

]T ,
s̃[lm2 , lm2 ] =

[
σ2
1 [lm2 , lm2 ], . . . , σ

2
K [lm2 , lm2 ]

]T , and
s̃[lm1 , lm2 ] =

[
σ2
1 [lm1 , lm2 ], . . . , σ

2
K [lm1 , lm2 ]

]T
.

Different difference co-array in the spatio-spectral do-
main can be obtained under different combinations of lm1

and lm2
, with the set of difference co-array lags achieving

{±(lm1n1 − lm2n2), 0 ≤ n1, n2 ≤ N − 1}. For special cases
that lm1 and lm2 are chosen to be co-prime or nested, the
received signals at the two frequency bins can be considered
as signals received by a co-prime array or a nested array, and
the increased DOFs can be exploited for DOA estimation.

C. Group sparsity based DOA estimation for a single fre-
quency pair

For the m-th frequency pair with the same search grid of Kg

potential incident angles, we generate the following matrices

Ãg[lm1 , lm1 ] =
[
ã(lm1 , lm1 , θg,0), . . . , ã(lm1 , lm1 , θg,Kg−1)

]
,

Ãg[lm2 , lm2 ] =
[
ã(lm2 , lm2 , θg,0), . . . , ã(lm2 , lm2 , θg,Kg−1)

]
,

Ãg[lm1 , lm2 ] =
[
ã(lm1 , lm2 , θg,0), . . . , ã(lm1 , lm2 , θg,Kg−1)

]
,

and then a block diagonal matrix is constructed by Ãg[m] =

blkdiag
{
Ãg[lm1 , lm1 ], Ãg[lm2 , lm2 ], Ãg[lm1 , lm2 ]

}
.

Denote z[m] =
[
zT [lm1 , lm1 ], z

T [lm2 , lm2 ], z
T [lm1 , lm2 ]

]T
,

and we construct a Kg × 3 matrix S̃g[m] with each column
vector representing the potential source signals over the Kg

search grids. Then, according to the same spatial support, the
following formulation can be obtained

z[m] = Ãg[m]̃sg[m] + Ĩw[m]

= Ã◦
g[m]̃s◦g[n]

(34)

where Ĩ =
[
Ĩ1, Ĩ2

]
is a 3N2 × 2 matrix with Ĩ1 =

[̃ITN2 ,0T
N2 ,0T

N2 ]T and Ĩ2 = [0T
N2 , ĨTN2 ,0T

N2 ]T (0N2 is a
N2 × 1 column vector consisting of all zeros). s̃g[m] is a
3Kg × 1 column vector obtained by vectorizing S̃g[m], and
w[m] =

[
σ2
n[lm1 , lm1 ], σ

2
n[lm2 , lm2 ]

]T
. In addition, Ã◦

g[m] =[
Ãg[m], Ĩ

]
and s̃◦g[m] =

[
s̃Tg [m],wT [m]

]T
.

Row vector sg,kg [m] is used to represent the kg-th row of
the matrix S̃g[m]. By performing ℓ2 norm to each row, a new
column vector is formed as given below

ŝg[m] =
[∥∥sg,0[m]

∥∥
2
,
∥∥sg,1[m]

∥∥
2
, . . . ,

∥∥sg,Kg−1[m]
∥∥
2

]T
.

(35)
Then, the group sparsity based DOA estimation for a single

frequency pair is formulated as [58]

min
s̃◦g[m]

∥ŝg[m]∥1

subject to
∥∥∥z[m]− Ã◦

g[m]̃s◦g[m]
∥∥∥
2
≤ ε .

(36)

D. Group sparsity based DOA estimation employing multiple
frequency pairs

The group sparsity concept is expanded to jointly exploit
multiple frequency pairs for wideband DOA estimation across
the frequency band of interest.

For the selected M frequency pairs, a block diagonal matrix
is generated by B̃◦

g = blkdiag
{
Ã◦

g[0], Ã
◦
g[1], . . . , Ã

◦
g[M −

1]
}

. Construct a Kg × 3M matrix Ug and a (3Kg +2)M × 1

column vector u◦
g, given by

Ug =
[
S̃g[0], S̃g[1], . . . , S̃g[M − 1]

]
,

u◦
g =

[
s̃◦Tg [0], s̃◦Tg [1], . . . , s̃◦Tg [M − 1]

]T
.

(37)

Based on the group sparsity concept, we define

ûg =
[∥∥ug,1

∥∥
2
,
∥∥ug,2

∥∥
2
, . . . ,

∥∥ug,Kg

∥∥
2

]T
, (38)

with the row vector ug,kg
, 1 ≤ kg ≤ Kg representing the

kg-th row of the matrix Ug.
Finally, the wideband DOA estimation employing M fre-

quency pairs is formulated as [58]

min
u◦

g

∥ûg∥1

subject to
∥∥∥zg − B̃◦

gu
◦
g

∥∥∥
2
≤ ε ,

(39)

where zg =
[
zT [0], zT [1], . . . , zT [M − 1]

]T
.
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V. SIMULATION RESULTS

In this part, we provide some representative simulation re-
sults to show the performance of the discussed CS-based DOA
estimation methods. There are K mutually uncorrelated far-
field sources/targets with incident angles uniformly distributed
from −60◦ to 60◦, where different K is chosen for different
examples. A search grid of Kg = 3601 potential incident
angles is generated within the full range from −90◦ to 90◦

with a step size of 0.05◦. The allowable error bound ε is
chosen to give the best DOA estimation results through trial-
and-error in every experiment. CVX, a software package for
specifying and solving convex programs [73], [74], is used to
solve all these optimisation problems in this section.

A. Narrowband DOA estimation results

For the first set of simulations in this part, we consider a
ULA with 9 sensors, and the unit spacing d is set to be λ/2.
The input signal-to-noise ratio (SNR) is fixed at 0dB, and the
number of sources K = 8. The DOA results obtained by the
CS-based narrowband estimation method for a single snapshot
(7) and the method exploiting multiple snapshots (10) is shown
in Fig. 3, where the dotted lines represent the actual incident
angles of the impinging source signals, while the solid lines
represent the estimation results, and the number of snapshots
P is set to be 100 for (10). Clearly, all the 8 sources have
been distinguished successfully by the two methods.

In our second set of simulations in this part, we consider
examples of two recently proposed classes of sparse arrays
with (N1, N2) = (4, 5) chosen for the two-level nested array
and (N1, N2) = (3, 4) chosen for the co-prime array. Then
there are 9 physical sensors for both array structures. The
DOA estimation method based on the difference co-array
concept (16) is employed to find the DOAs, and the number
of snapshots for estimating the correlation matrix P = 1000.
With K = 12 sources, the DOA results are shown in Fig. 4. It
is clear that for the underdetermined case, the difference co-
array based DOA estimation method is capable of resolving
all the 12 sources for both the two array structures with 9

sensors.
For the third set of simulations, we compare the estimation

accuracy with respect to a varied input SNR through Monte
Carlo simulations of 500 trials. We set the number of sources
K = 12, and the number of snapshots P = 1000. The root
mean square error (RMSE) results obtained by the CS-based
method (16) and the spatial smoothing based MUSIC (SS-
MUSIC) method [36]–[38], [50] with different array structures
are shown in Fig. 5. Obviously, a higher estimation accuracy is
achieved with a higher input SNR. The RMSEs with the two-
level nested array consistently outperform the one with the
co-prime array, since the physical array aperture of the nested
array is 24d, which is larger than the aperture of 20d for the
co-prime array. Furthermore, it is clear that for the same array
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(a) DOA estimation results of CS-based narrowband estimation method for a
single snapshot.
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(b) DOA estimation results of CS-based narrowband estimation method for
multiple snapshots.

Fig. 3. Narrowband DOA estimation results obtained by the CS-based
methods for a single snapshot and for multiple snapshots.

structure, the CS-based method outperforms the SS-MUSIC
method for low input SNRs. For high input SNRs, the CS-
based method and the SS-MUSIC share a similar performance
for the nested array with the CS-based method being slightly
more accurate, while much better performance can be achieved
by the CS-based method for the co-prime array. It is noted
that for the co-prime array there are non-consecutive integers
in its set of difference co-array lags [45], [52], and the better
performance of the CS-based method is due to exploration of
all unique difference co-array lags including non-consecutive
part, while the SS-MUSIC method only exploits the virtual
ULA part.

For the fourth set of simulations, we fix the SNR to 0 dB,
the number of sources is set to be K = 12, and the number of
snapshots P = 1000. The sensitivity of the CS-based method
(16) to the allowable error bound ε is explored based on the
9-sensor co-prime array with (N1, N2) = (3, 4), as shown in
Fig. 6. It is clear that the most accurate result can be obtained
only around an appropriate value of ε. Roughly speaking, this
appropriate value is related to the noise level of the system
and also various array and data model errors in the convex
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(a) DOA estimation results for a nested array.
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(b) DOA estimation results for a co-prime array.

Fig. 4. Narrowband DOA estimation results obtained by the difference co-
array based method for different structures.
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Fig. 5. RMSEs with different narrowband array structures versus input SNR.
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Fig. 6. RMSEs with respect to the allowable error bound.
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Fig. 7. RMSEs with respect to the step size.

optimization problem.
For the fifth set of simulations, we study the sensitivity of

the CS-based method (16) to the step size r of the search
grid. For different r, a search grid of Kg = 180

r + 1 potential
incident angles is generated within the full range from −90◦

to 90◦. The input SNR is set to be 0 dB, while K = 12

and P = 1000. With the same co-prime array, the RMSE
results versus step size r is shown in Fig. 7. Evidently, the
performance becomes worse with the increase of the step size
due to the dictionary mismatch problem caused by the off-
grid sources whose true DOAs may not necessarily fall on the
exact discrete finite grids.

Finally, with SNR fixed at 0 dB, P = 1000, and step
size r = 0.05, the RMSE results with respect to the DOA
separation ~ between adjacent sources are shown in Fig. 8,
where K = 2 uncorrelated far-field sources arrive from −~

2

◦

and ~
2

◦
, respectively. It is clear that the estimation performance

improves with the increase of DOA separation ~.

B. Wideband DOA estimation results

We perform DOA estimation based on a 9-sensor co-prime
array with (N1, N2) = (3, 4) in this part. The normalized
frequency band of the impinging wideband signals covers the
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Fig. 8. RMSEs with respect to the DOA separation ~ between adjacent
sources.
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Fig. 9. RMSEs of different estimation methods versus input SNR.

range from 0.5π to π. After applying a DFT of L = 64 points,
there are Q = 15 frequency bins of interest in total with
indexes from 17 to 31. The unit spacing d is equal to λmin/2,
where λmin = 2c/fs and fs is the sampling frequency. The
number of samples in the time domain is set to be 64000.
Then the number of samples P at each frequency bin is 1000.
For the DOA estimation employing a single frequency bin, the
best results is achieved at the highest frequency bin l = 31,
where the relative spacing compared to signal wavelength is
the largest among all frequencies of interest.

We first analyse the RMSE results with respect to a varied
input SNR. There are K = 12 sources with incident angles
uniformly distributed from −60◦ to 60◦, and the estimation
accuracy is shown in Fig. 9. We can see that the group sparsity
based wideband estimation method consistently outperform
the narrowband one due to exploration of all information
provided by frequencies of interest simultaneously.

Then we increase the number of sources K to be 15 and let
these K sources uniformly distributed from −55◦ to 55◦ to
test the DOA estimation performance under a much tougher
setting with reduced separation between incident angles of
adjacent sources. The SNR is 0dB, and Fig. 10 gives the
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(a) DOA estimation results of narrowband method for a single frequency (l =
31).
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(b) DOA estimation results of group sparsity based wideband method.

Fig. 10. DOA estimation results of different estimation methods.

DOA estimation results obtained by the narrowband method
for the single frequency (l = 31) and the group sparsity based
wideband method. We can see that, the narrowband method
clearly fails in detecting so many sources while the wideband
method is capable of resolving all the sources.

Finally in this part, we analyze the performance improve-
ment with large unit spacing co-prime array. Define d =

df · λmin/2, where df is the factor for adjusting the unit
spacing. For df > 1, note that not all the frequency bins
within the range 17 ≤ lq ≤ 31 satisfy the relationship of
d ≤ λlq/2. We fix the SNR at 0dB and study the performance
improvement versus df with the RMSE results shown in Fig.
11. In this example where the normalized frequency range is
from 0.5π to π, the maximum wavelength within the frequency
range satisfies λmax = 2λmin, and d = λmax/2 corresponds to
df = 2. Then we can expect that a good performance should
still be obtained at df = 2, as verified in Fig. 11. As well
known, the increase in d will lead to a larger physical aperture
corresponding to a higher accuracy. On the other hand, aliasing
problems at all frequencies when d ≥ λmax/2 will result in a
more difficult DOA estimation problem. Therefore, a threshold
is expected that the performance improvement introduced by
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Fig. 11. RMSEs versus the unit spacing adjustment factor df .

the increased aperture will be offset by the loss caused by
increased difficulty when d beyond the threshold. As shown in
Fig 11, a better performance is achieved for about 2 ≤ df ≤ 3,
where the performance is quite flat, indicating that df = 2

corresponding to d = λmax/2 is a reasonable choice.

C. Wideband DOA estimation results for a single ULA

Consider a 9-sensor ULA with δ = 1, and DFT of L =

64 points is applied. For the transmitted LFMCW signal, the
initial frequency, time-offset, and phase are set to be 0, and
the modulation period T = 64/fs. To simplify the selection
the frequency pairs, we set the bandwidth of interest cover
Q = 10 frequency bins with indexes given in the set Φl =

{1, 2, . . . , 10}. All these 10 frequency bins are divided into
M = 5 pairs with 1 and 10, 2 and 9, 3 and 8, 4 and 7, as
well as 5 and 6.

In the first set of simulations for wideband DOA estimation
employing a single ULA, we compare the estimation accuracy
based on a single frequency pair and multiple frequency pairs.
With K = 20, Fig. 12 gives the RMSE results obtained by
different methods with respect to input SNR, where one pair
consisting of the 5-th and 6-th frequency bins are exploited
in the single frequency pair based method. It is clear that the
method based on multiple pairs of frequency bins consistently
outperforms the one exploiting only a single co-prime fre-
quency pair by a big margin.

Then we give an example where the DOA estimation
method for a single frequency pair clearly fails while the one
with multiple frequency pairs can still obtain good results.
The setting is the same as the first set except that now there
are K = 40 targets. The SNR is set to be 0 dB, and the
results are shown in Fig. 13, which again verifies the superior
performance of the wideband method by jointly exploiting the
information provided by multiple frequency pairs simultane-
ously due to the same shared spatial distribution. Furthermore,
with the same number of physical sensors, a larger number of
detectable sources is achieved compared with the nested array
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Fig. 12. RMSEs of different estimation methods versus input SNR.
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(a) Estimation results for a single frequency pair (the 5-th and 6-th frequency
bins).
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(b) Estimation results for multiple frequency pairs.

Fig. 13. DOA estimation results obtained by different number of frequency
pairs.

structure and the co-prime array structure.

VI. CONCLUSION

A review for compressive-sensing based underdetermined
DOA estimation methods recently proposed in literature has
been provided. The most general time-domain approach for
narrowband arrays with single data snapshot and multiple
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snapshots was presented first, followed by covariance matrix
based approaches for multiple snapshots with a focus on
underdetermined DOA estimation based on the difference co-
array concept. Two specifically designed sparse structures,
namely two-level nested arrays and co-prime arrays, were
introduced in this context with optimized virtual sensor posi-
tions corresponding to the difference co-array. We then moved
to the wideband DOA estimation problem by employing the
group sparsity concept, where it has been shown that improved
performance can be achieved by allowing a large unit spacing.
Finally, for a specifically designed ULA structure, group
sparsity based signal reconstruction method is employed for
DOA estimation across the multiple frequency pairs, with a
large number of DOFs achieved. Representative simulation
results for typical scenarios were provided, all showing that
the CS-based approach can provide an effective solution to the
traditionally very difficult underdetermined DOA estimation
problem.
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