
This is a repository copy of Run-time verification of behavioural conformance for

conversational web services.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/10851/

Proceedings Paper:
Dranidis, Dimitris, Ramollari, Ervin and Kourtesis, Dimitrios (2009) Run-time verification of
behavioural conformance for conversational web services. In: 2009 Seventh IEEE
European Conference on Web Services. 2009 Seventh IEEE European Conference on
Web Services, 09-11 Nov 2009, Eindhoven, The Netherlands. IEEE Computer Society ,
pp. 139-147. ISBN 978-0-7695-3854-9

https://doi.org/10.1109/ECOWS.2009.19

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Run-time Verification of Behavioural Conformance for

Conversational Web Services

Dimitris Dranidis

Computer Science Department, CITY College

Affiliated Institution of the University of Sheffield

Thessaloniki, Greece

dranidis@city.academic.gr

Ervin Ramollari, Dimitrios Kourtesis

South East European Research Centre (SEERC)

Research Centre of the University of Sheffield and

CITY College

Thessaloniki, Greece

erramollari@seerc.org, dkourtesis@seerc.org

Abstract— Web services exposing run-time behaviour that

deviates from their behavioural specifications represent a

major threat to the sustainability of a service-oriented

ecosystem. It is therefore critical to verify the behavioural

conformance of services during run-time. This paper

discusses a novel approach for run-time verification of Web

services. It proposes the utilisation of Stream X-machines

for constructing formal behavioural specifications of Web

services which can be exploited for verifying that a service’s

run-time behaviour does not deviate from what is defined in

the specification. Our approach allows for checking both the

control flow of a Web service and the values of the data in

the generated responses. The paper also proposes a

classification of Web services and discusses how different

types of services can be verified at run-time. Finally, it

presents a run-time monitoring and verification architecture

and discusses how it can be integrated into different types of

service-oriented infrastructures.

Keywords-Run-time verification; behavioural conformace;

Web services; monitoring; formal methods; Stream X-

machines

I. INTRODUCTION

Web services are typically accompanied by some form
of technical specifications that explicate various functional
or non-functional aspects of a service’s operation. The
most elementary and well-known example of such
technical specifications is the description of a SOAP Web
service’s interface that is encoded using WSDL (Web
Service Description Language). The specifications of a
Web service are indispensable for carrying out a variety of
activities throughout the service’s lifecycle, such as
discovery and composition, and the degree of formality in
the specifications determines the extent to which these
activities can be automated.

Often, however, the behavioural specification of a
service and its implementation may prove to be
inconsistent. Even in cases where a Web service has been
demonstrated to conform to its specification before
deployment, it is possible that the service is eventually
found to deviate from its specification at run-time. This
can happen for several reasons. One reason could be that
the service provider has inadvertently or intentionally
modified the Web service implementation at some point
after its initial deployment without reflecting this change in
the specification. Another reason could be that the Web
service is composite and depends on other services which

eventually become unavailable, get replaced, or have their
behaviour modified. In all these cases the Web service’s
functionality can become affected in a way that prevents it
from conforming to its original specification.

The introduction of such “defective” Web services
within a highly dynamic service-oriented environment can
have a devastating effect that puts the sustainability of the
whole infrastructure at risk. Therefore, being able to
ensure that the run-time behaviour of services does not
deviate from their advertised specifications is considered
critical.

Run-time verification is a verification technique which
is based on program execution and ensures that the
program conforms to its intended behaviour at run-time.
Service run-time verification consists of observing and
logging the input/output traces of service execution and
verifying that the observed behaviour satisfies given
requirements. The intended behaviour of the service needs
to be described in the service specification and be
expressed in some formal language.

Previous work by the authors has focused on
specifying the behaviour of stateful and conversational
Web services using Stream X-machines (SXMs) [15, 11],
which are computational models constituting a type of
Extended Finite State Machines. SXM models are utilised
for the automated generation of exhaustive test cases,
which, under well defined conditions, can guarantee to
reveal all inconsistencies among the implementation of a
Web service and its expected behaviour [6]. In [19] an
approach is proposed for reliable Web service discovery
through behavioural verification and validation based on
SXMs. In [13] and [14] the authors put forward the
development of an extended service registry which
receives the SXM specification of a Web service upon
publication, and subsequently performs test generation and
test execution in order to verify that the service
implementation conforms to its specification. In [20], an
approach is proposed for specifying the behaviour of
services in terms of inputs, outputs, preconditions, and
effects utilising ontology-based (OWL-DL) and rule-based
descriptions (RIF-PRD), and deriving SXM specifications
for functional testing and validation.

In this paper we propose a novel approach for verifying
the conformance of conversational Web services at run-
time. The novelty of this approach lies in the utilisation of
Stream X-machines for specifying expected service
behaviour and guiding the monitoring process through
SXM model animation. To the best of our knowledge this

2009 Seventh IEEE European Conference on Web Services

978-0-7695-3854-9/09 $26.00 © 2009 IEEE

DOI 10.1109/ECOWS.2009.19

141

2009 Seventh IEEE European Conference on Web Services

978-0-7695-3854-9/09 $26.00 © 2009 IEEE

DOI 10.1109/ECOWS.2009.19

139

is the first work using some form of Extended Finite State
Machines for run-time verification of Web services. In
contrast with other approaches which are discussed in the
related work, SXM modelling does not only allow the
checking of the control-flow of operation invocations
(protocol checking) but also verifies the correct
implementation of the operations (functional
conformance). Furthermore, we believe that the proposed
state-based formalism is more intuitive to the software
engineer for the description of stateful services than other
formalisms utilised in other approaches. Additionally, we
suggest a classification of stateful Web services, which
allows us to identify different types of services for which
we can perform monitoring and run-time verification. We
also propose a conceptual architecture for the
implementation of run-time monitoring and verification
infrastructure, and discuss how it is integrated into
different scenarios of Service-Oriented Architecture (SOA)
configurations involving the service consumer, provider,
and broker. Compared to other Web service run-time
monitoring approaches the proposed solution allows the
integration of the monitoring architecture both at the
consumer’s and the provider’s site, as well as at the
broker’s site.

The rest of the paper is structured as follows. In
section 2 we present a classification of Web services for
the purposes of run-time verification. Section 3 provides
an overview of the SXM modelling formalism along with
an example for the purposes of illustration. Section 4
describes in detail how run-time verification is performed
for different types of services. Section 5 discusses the
integration of run-time monitoring into different SOA
infrastructures. Finally, in section 6 we provide an
overview of some related work, and in the conclusions we
summarise the main points from our work and provide an
outlook for future research.

II. CLASSIFICATION OF WEB SERVICES

Web Services can be generally distinguished among
stateless and stateful ones. By the term stateless, we refer
to services that do not exhibit any observable state. In a
stateless service the response of any operation depends
solely on the provided input arguments; the same result is
delivered for the same arguments every time the operation
is invoked (e.g. in some service offering mathematical
calculations). The functional behaviour of such an
operation can be specified by a contract, in terms of pre-
conditions on operation inputs and post-conditions on
operation outputs, and its run-time behaviour can be
monitored in isolation from other operations. In contrast,
in a stateful service, the response of an operation depends
not only on the input arguments but also on the internal
state of the service. This is why pre-conditions on
operation inputs and post-conditions on operation outputs
do not suffice for monitoring the observable behaviour of a
stateful service. This work focuses on the run-time
verification of stateful services, for which we propose
three further classifications.

Firstly, stateful services can be distinguished into
conversational and non-conversational services:

• In a non-conversational service all operations can
be accepted (terminate successfully without
producing any error) at all states. This means that

all operations will return some result when
invoked, independently of the state in which the
service is found at the time of invocation.

• In a conversational service only specific operation
sequences are accepted. This is because some
operations may have preconditions which depend
on the state of the service. The set of all
acceptable operation sequences is called the
protocol or choreography of the interaction.

A shopping cart service is a typical example of a
stateful and conversational service. Items cannot be
removed from the cart if they were not added in the cart in
a previous step. A currency converter service and a
random number generator consisting of a single
“getNextRandomNumber” operation are examples of
stateful and non-conversational services: their operations
will return different results for the same inputs at different
times of invocation, but no particular protocol is imposed.

Secondly, we differentiate among cases where the state
of a service-instance (spawned to serve a particular client
during a session) can be modified only by that specific
service-instance, or by other service-instances and external
systems. Therefore, stateful services can be further
categorised depending on the type of state modifiability to:

• Private-state services: the state of each service
instance depends exclusively upon and is fully
determined by the sequence of previous operation
invocations. Thus, the behaviour of the service
depends only on the current local state resulting
exclusively from the interactions among the client
and the service-instance.

• Shared-state services: the state of the service
cannot be fully determined by the sequence of
service invocations. The behaviour of the service
instance depends on some state variables which
may be modified by other service instances or
applications.

The previously mentioned non-conversational random
number generator service is a private-state service, since
the value to be returned whenever an operation is invoked
is determined fully and solely by the history of previous
invocations. In contrast, the non-conversational currency
converter service is a shared-state service, since the value
to be returned upon invocation is determined by the state
of externally controlled and dynamic exchange rates.

A conversational shopping cart service can be a
private-state service or a shared-state service, depending
on its implementation. A shopping cart service whose
behaviour is affected only by the state of the internal
shopping basket information is a private-state service. In
contrast, a shopping cart service whose behaviour also
depends on externally-controlled inventory information is
a shared-state service. In the first case, the addition of an
item to the cart would always be successful, unlike the
second case, where trying to add an item to the cart could
fail if the item was not available in stock or unknown in
the inventory list.

It should be noted that from the observer’s point of
view the behaviour of a shared-state service is always non-
deterministic. This is because the actual result of an
operation cannot be known in advance. Therefore, the
formalism employed for modelling the behaviour of such
services and the mechanism used for monitoring them

142140

should allow for non-determinism. A non-deterministic
model of a service should be able to describe the set of all
possible permitted behaviours and responses. The
implications for supporting non-determinism in the
monitoring mechanism are examined in section IV.

TABLE I. EXAMPLES OF STATEFUL SERVICES.

 Non-conversational Conversational

Private-

state
Random number

generator
Shopping cart without

inventory lookup

Shared-

state
Currency converter Shopping cart with

inventory lookup

In [3] a slightly different classification is used, naming

the private-state and shared-state services as conversational
and global shared resource services, respectively. In our
classification, however, shared state services can also be
conversational. Our classification of private-state versus
shared-state services closely matches with the private-data-
driven versus public-data-driven Web service categories
described in [4].

Thirdly, we propose distinguishing among services that
operate on:

• Transient-state: the state information is volatile,
i.e. initialised at the beginning of each session of a
service-instance and destroyed upon completion.

• Persistent-state: The state information outlasts the
duration of a session. The service “remembers” its
state even after the end of a session. Different
service instances from the same client can thus
interrupt service usage and continue at a later point
in time.

An example of a transient-state service is a shopping
cart service in which the client always begins with an
empty shopping cart, whereas a persistent-state shopping
cart service “remembers” old additions in the shopping
cart. In the latter case, the client needs to identify the
shopping cart by providing its id as part of the operation
arguments.

Note that persistent-state services require some way of
client identification so that a newly created service-
instance can restore its saved state for the specific client.
This is also important for run-time monitoring. Monitors
should be able to save their state and restore it at a later
point of time in order to be able to continue monitoring.

From the classification presented in this section it
becomes clear that different types of Web services require
different treatment for the purpose of run-time verification.
In this paper we mainly focus on the run-time monitoring
of conversational services, i.e. those services which follow
a protocol. These can be either private-state or shared-
state and either transient-state or persistent-state. In
section IV we present how these different types are
handled in our monitoring framework.

III. MODELLING WEB SERVICES WITH SXMS

A. Stream X-machines

Stream X-machines (SXMs) are a computational model
capable of representing both the data and the control of a
system. SXMs are special instances of the X-machines

introduced in 1974 by Samuel Eilenberg [8]. They employ
a diagrammatic approach of modelling control flow by
extending the expressive power of finite state machines. In
contrast to finite state machines, SXMs are capable of
modelling non-trivial data structures by employing a
memory attached to the state machine. Moreover,
transitions between states are not labelled with simple
input symbols but with processing functions. Processing
functions receive input symbols and read memory values,
and produce output symbols while modifying memory
values. Adding the memory construct allows the model
designer to reduce the number of states to those states
which are considered critical for the correct behavioural
verification of the system; in other words the states and
transitions that are modelled are those that need to be
verified. A divide-and-conquer approach to design allows
the model to hide some of the complexity in the transition
functions, which can be later exposed as simpler SXMs at
the next level.

A Stream X-machine is defined as an 8-tuple, (, , Q,
M, , F, q0, m0) where:

• and is the input and output finite alphabet
respectively;

• Q is the finite set of states;

• M is the (possibly) infinite set called memory;

• , which is called the type of the machine, is a
finite set of partial functions (processing functions)

 that map an input and a memory state to an
output and a new memory state, : × M ×
M;

• F is the next-state partial function that given a
state and a function from the type , provides the
next state, F : Q × Q;

• q0 and m0 are the initial state and memory
respectively.

Apart from being formal as well as proven to possess
the computational power of Turing machines, SXMs offer
a highly effective testing method for verifying the
conformance of a system’s implementation against a
specification [11]. This method generates test sequences
whose application ensures that the system behaviour is
identical to that of the implementation, provided that the
system is made of fault-free components and some explicit
design-for-test conditions (controllability and
observability) are met. Although testing can increase the
confidence that the system is behaving in the right way it
cannot guarantee fault free operation during run-time,
especially in the case of a highly dynamic environment as
that of Web services.

B. Supporting tools

Stream X-machine models can be represented in a
number of languages. XMDL (X-Machine Definition
Language) is a special-purpose mark-up language
introduced in [12]. XMDL-O is an object based extension
of XMDL introduced in [5]. Both languages are supported
by a Prolog-based tool named X-system. The X-system
facilitates the modelling of SXMs by providing a parser
and an animator.

Recently a new suite of supporting tools has been
developed in Java (JSXM) to support automated model-
based test generation [7]. The JSXM tool introduces a new
syntax for SXM specifications based on XML and Java

143141

inline code. The XML-based specifications in JSXM
facilitate easier integration with Web technologies and
related XML-based Web service standards.

JSXM supports animation of SXM models, model-
based test generation and test transformation. The test
generation is based on the SXM testing theory and given
an SXM model it generates a set of test cases in XML
format. As such, the test cases are independent of the
programming language of the implementation. Test
transformation is used for transforming the general test
cases to concrete test cases in the underlying technology of
the implementation. Currently, a Java test transformer is
available which automatically generates JUnit test cases.

The animator tool enables the execution (or simulation)
of SXM models. This is the main part of our monitoring
architecture which is presented in section IV. Once the
animator is launched, it initialises the SXM model and
then repeatedly accepts an input, feeds the input to the
SXM model, and retrieves the produced output. In that
sense the animator can serve as an oracle that provides the
expected outputs for the purpose of run-time monitoring.
The animator can be executed in interactive mode or in
batch mode by receiving an XML file of the inputs. An
API is also provided which allows calling the animator’s
methods programmatically. This API is utilised in the
implementation of the run-time verification architecture
described in section IV.

C. Modelling Web services

In order to model the behaviour of a Web service using
a Stream X-machine, the modeller must perform data-level
and behaviour-level analysis to derive the appropriate
SXM modelling constructs. Parallels can be drawn
between a stateful Web service and a Stream X-machine,
since they both accept inputs and produce outputs, while
moving from one internal state to another. SXM inputs
correspond to SOAP request messages, outputs correspond
to SOAP response messages, and processing functions
correspond to Web service operation invocations in
specific contexts (an operation may map to more than one
processing functions because of the potentially different
input parameters and the different state). SXM-based
modelling is applicable in the context of complex
conversational Web services where the result obtained
from invoking a Web service operation depends not only
on the consumer’s input, but also on the internal state of
the service.

Fig. 1 illustrates the state transition diagram from an
SXM model of a stateful Web service that allows
performing basic operations on a bank account. This
service is another example of a private-persistent state
conversational service. For simplicity, let us assume that
the Web service interface comprises five operations: open,
deposit, withdraw, getBalance, and close. The service
normally manages several bank accounts, so each
operation takes an account ID as a parameter. However
the model is abstracted by focusing on a single account
instance, identified by the same ID in all operations. This
modelling approach is based on the Manager Pattern
described in [2]. When an account is created it is
initialised as inactive and therefore needs to be set to active
(opened) before any transaction can be performed. The
deposit of an amount results in increasing the balance of

the account as appropriate, while the withdrawal of an
amount can take place only if the amount does not exceed
the balance, and results in reducing the balance
accordingly. Finally, an account can be closed only if its
balance is zero, and once closed it cannot be re-activated.

Figure 1. A state transition diagram for a Stream X-machine modelling

a bank account Web service.

The corresponding code for representing the state
transition diagram in JSXM is provided below:

<SXM name="Account">
 <states>

 <state name="initial" />
 <state name="activated" />

 <state name="closed" />

 <state name="normal" />
 </states>

 <initialState state="initial" />

 <transitions>

 <transition from="initial" function="open" to="activated" />

 <transition from="activated" function="close" to="closed" />
 <transition from="activated" function="deposit" to="normal" />

 <transition from="normal" function="deposit" to="normal" />

 <transition from="normal" function="withdrawAll" to="normal" />
 <transition from="normal" function="withdraw" to="activated" />

 <transition from="activated" function="getBalance" to="activated"/>

 <transition from="normal" function="getBalance" to="normal" />

 </transitions>

The memory of the account SXM just stores the
current balance of the account. In the following the integer
memory variable balance is declared and initialised:

 <memory>
 <declaration>

 int balance
 </declaration>

 <initial>

 balance = 0
 </initial>

 </memory>

The inputs correspond to SOAP request messages and
may consist of arguments:

 <inputs>
 <input name="openRequest" />

 <input name="closeRequest" />
 <input name="getBalanceRequest" />

 <input name="depositRequest">

 <arg name="amount" type="Int" />
 </input>

 <input name="withdrawRequest">

 <arg name="amount" type="Int"/>
 </input>

 </inputs>

144142

The outputs correspond to SOAP response messages
and are structured in a similar way to inputs:

<outputs>
 <output name="openResponse" />

 <output name="closeResponse" />

 <output name="depositResponse">
 <result name="amount" type="Int" />

 </output>

 <output name="withdrawResponse">
 <result name="amount" type="Int" />

 </output>

 <output name="getBalanceResponse">
 <result name="amount" type="Int" />

 </output>

 </outputs>

Processing functions are specified by defining their

inputs, outputs, preconditions and effects on the SXM
memory. Note that two processing functions may be
triggered by withdrawRequest messages. However, their
complementary guard conditions make sure that they
cannot be triggered at the same time (deterministic choice).

 <functions>
 <function name="open" input="openRequest"
 output="openResponse"/>

 <function name="close" input="closeRequest"
 output="closeResponse" />

 <function name="deposit" input="depositRequest"
 output="depositResponse">

 <precondition>

 depositRequest.amount > 0
 </precondition>

 <effect>

 balance = balance + depositRequest.amount;
 depositResponse.amount = depositRequest.amount;

 </effect>

 </function>

 <function name="withdraw" input="withdrawRequest"

 output="withdrawResponse">
 <precondition>

 withdrawRequest.amount > 0 &&

 balance > withdrawRequest.amount
 </precondition>

 <effect>

 balance = balance - withdrawRequest.amount;
 withdrawResponse.amount = withdrawRequest.amount;

 </effect>

 </function>

 <function name="withdrawAll" input="withdrawRequest"

 output="withdrawResponse">
 <precondition>

 withdrawRequest.amount > 0 &&

 balance == withdrawRequest.amount
 </precondition>

 <effect>

 balance = balance - withdrawRequest.amount;
 withdrawResponse.amount = withdrawRequest.amount;

 </effect>
 </function>

 <function name="getBalance" input="getBalanceRequest"
 output="getBalanceResponse">

 <effect>

 getBalanceResponse.amount = balance;
 </effect>

 </function>

 </functions>

The process of deriving the SXM specification of a
Web service is usually manual. However, in [20] a
method is presented to semi-automatically derive an SXM
specification from a semantically annotated Web service
utilising ontology-based and rule-based descriptions.

Once completed, the SXM model can be used for both
verification through testing and verification through
monitoring. As already discussed the focus of this paper
is on the latter type of verification. In the next section we
will see how SXM models can be utilised for this purpose,
for different kinds of Web services.

IV. RUN-TIME VERIFICATION

Run-time verification involves logging the traces of
service execution and comparing the actual execution
traces to the expected execution traces, i.e. monitoring.
Monitoring can be performed on-line or off-line. In both
cases the animator of the SXM model acts as an oracle for
determining the expected execution traces. An execution
trace for a Web service is a sequence of request-response
(input-output) pairs. The JSXM animator acts as an
oracle; it is provided with the request and it returns the
expected response.

Fig. 2 depicts the different components and their
interactions in the proposed run-time verification
architecture. This architecture is implemented by a
mediator intercepting the communication between the
service client and the service provider. As discussed in the
next section, this mechanism can be incorporated into the
infrastructures of all different types of SOA stakeholders,
i.e. service providers, service consumers, and service
brokers.

Figure 2. Run-time verification architecture.

When monitoring is carried out in on-line mode, the
framework intercepts SOAP request messages and feeds
them to the animator which runs an instance of the SXM
model in parallel with the actual monitored service. Client
requests, service responses and animator responses are
saved in a log file. The behaviour analyser module
performs the comparison of the service and animator
responses and reports deviations. On-line monitoring can
be useful in the case that the interested stakeholder wishes
to be informed about discrepancies immediately and
potentially take initiative to interrupt the interaction. In
off-line monitoring mode the framework intercepts and
logs client requests and service responses, while animation
and validation are performed at a later point based on the
logs. The following provides an extract of the XML log
file which is created during run-time verification:

145143

 <call>
 <input name="openRequest" />

 <output name="openResponse" />
 <expected name="openResponse" />

 </call>

 <call>
 <input name="depositRequest">

 <arg name="amount" type="Int" value="1000" />

 </input>
 <output name="depositResponse">

 <result name="amount" type="Int" value="1000" />

 </output>
 <expected name="depositResponse">

 <result name="amount" type="Int" value="1000" />
 </expected>

 <input name="withdrawRequest">

 <arg name="amount" type="Int" value="2000" />
 </input>

 <output name="withdrawResponse">

 <result name="amount" type="Int" value="2000" />
 </output>

 <expected name="withdrawError"/>

 </call>

The extract illustrates 3 requests: open, deposit, and
withdraw and the corresponding actual and expected
responses. Note that a violation occurs at the withdraw
request; the animator produces a withdrawError since the
withdraw input cannot be accepted (its guard condition
balance > withdrawRequest.amount evaluates to false),
whereas the actual (faulty) implementation has accepted
the over-withdrawal.

 The run-time verification framework spawns a
different animator instance for each service instance. It is
necessary that the service provider characterises
beforehand the provided service using the classification
provided in a previous section. The framework utilises
this information in order to properly initialise the animator
instance as follows.

For private-transient-state services the animator begins
animating the SXM from its initial state and memory,
since each service instance works on initialised state. In
the private-transient state shopping cart example the
shopping cart will be initially empty every time the service
is invoked.

For private-persistent-state services (as the bank
account example from the previous section) the animator
needs to start animation from the last saved state and
memory for the specific client or animate the previously
saved log. This is illustrated in the sequence diagram of
Fig. 3, where a new instance of the Animator is created
and the saved log file is “replayed” in order to bring the
animator to the last saved state. As already mentioned
private-persistent state services require some kind of
identification. This identification should also be used for
loading the state of the animator or the log. After each
transition the animator saves its current state and its
current memory values associated with the identifier of the
service client.

Shared-state services require a different treatment than
private-state services. In these cases it is rather impractical
if not impossible to model external factors that affect state
variables. In the shopping cart with inventory support, one
would need to model the whole inventory of existing and
available items with their quantities. Even this would not
suffice since other service clients will be able to change

inventory quantities by purchasing items. So, complete
modelling of shared-state services becomes intractable and
unrealistic. In this case non-deterministic SXMs [10] are
deployed. For operations operating on shared data all
possible responses, memory updates and state transitions
are modelled as different transitions which may occur non-
deterministically; the same operation with identical input
values can cause different behaviour (trigger different
transitions which lead to different states or change the
memory in a different way) and produce different outputs.
Since the animator is not able to determine which
transition should be triggered it needs to wait for the actual
response from the service implementation. By matching
the actual response with the outputs of one of the possible
transitions (this is possible due to a property of SXM
models called output-distinguishability) the JSXM
animator can continue the animation of the SXM model by
selecting the corresponding transition. If the response does
not match any of the expected responses then non-
conformance is reported. For example, the addItem(id,
quantity) operation of a shopping cart, could either return
the response “Item Added” or “Item Not Available”
depending on whether the quantity for the item is available
on stock or not. Both behaviours need to be modelled in a
non-deterministic manner, as two possible transitions with
the same precondition but possibly different post-states,
outputs and memory updates. Depending on the response
of the Web service, the animator will choose the transition
to be followed in order to continue with the animation.

Figure 3. Sequence diagram of interactions between architecture

components during run-time verification.

V. INTEGRATION OF RUN-TIME VERIFICATION INTO

SOA INFRASTRUCTURES

Run-time verification of Web service behaviour can
find applications in a wide range of contexts, and can be
integrated within service-oriented infrastructures in a
variety of configurations. One of the advantages of the
run-time verification method that is introduced in this
paper, in contrast to other approaches found in the
literature, is that it can be utilised by all types of

146144

stakeholders in a SOA environment, i.e. by service
providers, service consumers, and service brokers. In the
following subsections we examine some of the different
reasons that motivate the incorporation of run-time
verification in the infrastructures of different types of SOA
stakeholders, and discuss some implementation
alternatives for carrying out the integration.

A. Consumer-based monitoring and verification

In general, the incorporation of monitoring capabilities
in the infrastructure of an entity that consumes Web
services provided by some other entity allows the first to
continuously verify if the latter meets certain requirements
with regard to functional and non-functional aspects of
service operation at all times. As already mentioned, in
this paper we specifically focus on monitoring functional
aspects of a service’s operation (i.e. its behaviour) rather
than non-functional ones (i.e. its response times,
availability, etc). A typical situation where an entity
would be interested in continuously monitoring and
verifying the behaviour of a service it consumes is when
that service needs to conform to a specific industry
standard that prescribes a particular interaction protocol for
the parties engaged in a business process. An example
could be conformance to standardised or bespoke business
processes such as those defined via ebXML Business
Process Specification Schema or RosettaNet Partner
Interface Process (e.g. defining how a stock replenishment
business process should be realised).

There are several ways in which run-time monitoring
and verification capabilities can be incorporated in the
technical infrastructure of service consumers. The one that
appears to be the most effective, since it requires no
changes to the service provider’s end, and trivial changes
to the client application, is to create local wrapper Web
services – one for each of the actual remote Web services
that need to be monitored - and deploy them on a Web
application server at the consumer’s site. Instead of
binding to the actual remote Web services the client
application must be modified in order to bind to the
wrapper services, which will in turn bind to the actual
ones. The rationale is illustrated in Fig. 4.

Figure 4. Integration of run-time verification at the consumer's site

During execution the wrapper service receives the
incoming request messages, logs them, forwards them to
both the real service being monitored and to the oracle
(SXM animator), logs the obtained responses, and
forwards the response of the monitored service to the
consumer. The logs can be analysed during execution (on-

line) or at a later stage (off-line), and appropriate actions
can be taken automatically, such as terminating all
interactions with a particular faulty service.

B. Provider-based monitoring and verification

Another possibility is to integrate our proposed
approach for run-time monitoring and verification at the
provider’s infrastructure. The main motivation is being
able to detect potential lapses in conformance with
prescribed interaction protocols as early as possible, in
order to take corrective actions that mitigate the effects of
the situation before all consumers of a faulty service
become affected. A conformance lapse of this kind may
result from the release of a new version of a particular
Web service in which defects were accidentally introduced
but went undetected during regression testing, or from
reasons beyond the control of the service provider, such as
dependence on some faulty third party Web service.
Continuous monitoring of the behaviour of all of their Web
services enables providers to not only detect such errors,
but also be able to present evidence of correct behaviour in
case consumers raise misinformed claims when no errors
actually exist.

Run-time monitoring and verification capabilities can
be incorporated in the infrastructure of service providers
by modifying and extending the functionality of the Web
application servers that host the Web services (Tomcat,
JBoss, etc). The rationale is illustrated in Fig. 5.

Figure 5. Integration of run-time verification at the provider's site

The application server intercepts incoming request
messages, logs them, forwards them to the service being
monitored and to the oracle (animator), and logs the
obtained responses. Once again the logs can be analysed
in an on-line or off-line mode. In case of detected
deviation from expected behaviour the embedded
monitoring component of the application server can alert
the administrator so as to take corrective action and
possibly also stop the service.

C. Broker-based monitoring and verification

An additional possibility is the incorporation of run-
time verification in the infrastructure of a broker which
acts as a trusted entity for both providers and consumers.
Broker-based monitoring can be employed for preventing
defective or non-compliant Web services from being
discovered and reused. This is a particularly appealing
scenario in the case of brokers which also act as
certification authorities for published Web services, as in
the approach proposed in [13, 14]. Run-time verification
can complement publication-time verification and can

147145

enable brokers to revoke the certification status from a
non-compliant service before further damage is caused to
prospective consumers.

Integration of run-time monitoring and verification at
the broker’s end can be achieved following the same
approach as in consumer-based monitoring, i.e. through
binding to intermediary wrapper Web services. The only
difference is that the wrapper services are not to be hosted
at the consumer’s site, but at the broker’s site (see Fig. 6).

Figure 6. Integration of run-time verification at the broker's site

The service consumer is once again not meant to
communicate with the actual services of the provider
directly, but through the broker-based wrapper services
which enable end-to-end monitoring. Nonetheless it
should be noticed that such a scheme can potentially result
in the creation of processing bottlenecks which would
impair the scalability of the broker’s infrastructure, so
addressing performance-related aspects during the design
of such a solution is crucial.

VI. RELATED WORK

Different approaches have been proposed on run-time
monitoring and behavioural conformance checking of
conversational Web services. In general, these
approaches are based on abstract specifications of expected
service behaviour, which are used for conformance
verification of the observed behaviour.

Mahbub and Spanoudakis [18] describe an approach
for monitoring Web services in which properties to be
monitored are expressed using event calculus.
Behavioural properties of the services are automatically
extracted from a BPEL process that orchestrates the
services. The authors propose an architectural framework,
consisting of a requirements editor, an events receiver, and
a monitor. Conformance evaluation is performed offline
(post-mortem), by exploiting techniques for integrity
constraint checking in temporal deductive databases. This
approach focuses on the behavioural properties of
composition processes expressed in BPEL rather than on
individual Web services.

Van der Aalst et al [1] and Rozinat et al [21] describe
an approach to run-time monitoring and conformance
evaluation based on Petri nets and message logs recorded
during monitoring. Initially, the expected Web service
behaviour is specified in an abstract BPEL process model.
The BPEL specification is translated to a WF-net, which is
a subclass of Petri nets. Also, the authors propose an
approach to monitor and to correlate SOAP messages in

order to construct events logs. Protocol conformance
checking is performed by comparing the obtained event
logs with the Petri net. Li et al [16] use pattern and scope
operators from a language called Specification Pattern
System (SPS) to express service interaction constraints
regarding both the occurrence of individual events and
sequences of events. These constraints are then
represented as finite state automata (FSA) in order to
facilitate analysis. A framework is described for validating
the behaviour of the monitored Web service against the
predefined constraints. In both previously mentioned
approaches [1, 21, 16] Web service monitoring focuses on
checking the fulfilment of control flow dependencies such
as a missing response after a request. Input and output
values or state variables are not considered. As a
consequence, the operation invocation sequence open(),
deposit(1000), withdraw(2000) is accepted as valid if only
control flow dependencies are considered. In our
approach, however, the same sequence is identified as
invalid since the modelled bank account does not allow
over-withdrawals; the state variable balance holds the
actual account balance and the guard of the withdraw
operation makes sure that the balance never becomes
negative.

Lohman et al [17] propose run-time monitoring of Web
service behaviour as part of a reliable service life-cycle,
including reliable service registration and service
discovery. Expected Web service behaviour is specified at
the level of operations. They model data types visible at a
service interface with class diagrams, while the behaviour
of each operation is specified by graph transformation
(GT) rules. Each GT rule describes the manipulation of
object structures over the class diagram. Monitors are then
generated automatically based on a model-driven
approach, as described in Engels et al [9]; class diagrams
are translated to Java code and GT rules are translated to
JML assertions. The service operations are invoked by
wrapper methods, which throw exceptions whenever pre-
conditions or post-conditions are violated. The thrown
exceptions are caught by the Web service client who then
decides on the appropriate reaction. Preconditions and
post-conditions which are expressed as conditions on
operation inputs are adequate for expressing the functional
behaviour of stateless services, but the behaviour of
stateful services also depends on internal state variables.
Thus their approach for monitoring stateful services is only
applicable using server-side monitors which have access to
Web service state. The extended finite state-based
approach that we propose overcomes this obstacle by
modelling the encapsulated state variables and thus allows
the integration of the monitoring architecture both at
consumer’s site and at the provider’s site.

Bianculli and Ghezzi [3] use algebraic specifications,
to specify the expected service behaviour. The algebraic
specifications consist of rewrite rules describing the
behaviour of individual service operations. Interpreters
such as CafeOBJ and Heureka are used for the symbolic
execution of the specifications. Then, the outputs obtained
from the Web service are compared with the evaluation
results returned by the interpreter, in order to check for
deviations. The authors also propose an architectural
framework to enable run-time monitoring of individual
conversational services orchestrated by a BPEL engine.

148146

They weave aspects (using AspectJ) to the ActiveBPEL
engine to extend it with a main interceptor, a specifications
registry, and a monitor. The aspect oriented approach is
utilised in order not to intervene in the business logic of
the BPEL process. In this approach, as in our approach,
apart from protocol checking the actual returned values
from operation invocations are compared to the expected
outputs. In contrast however with our state-based
specifications, Web service state is modelled implicitly by
using axioms which specify the equivalence of sequences
of operations.

Furthermore, an important characteristic of our
approach compared to all of the aforementioned
approaches is its intuitiveness to the software engineer.
We believe that a state-based description of service
behaviour that is usually represented using a UML state-
diagram or a UML Protocol State Machine can easily be
transformed to a Stream X-machine model.

VII. CONCLUSIONS AND FUTURE WORK

Service-oriented systems have an open architecture,
which allows third-party services to be incorporated
dynamically, raising the need for continuous verification.
Testing Web services before deployment cannot guarantee
that they will not deviate from their advertised behaviour
during execution. Therefore, run-time verification of Web
service behavioural conformance is considered critical. In
this paper we proposed a novel run-time verification
approach that utilises Stream X-machine models for
specifying Web service behaviour. We presented a
classification of Web services and investigated the
application of run-time monitoring in different classes. In
addition, we proposed an architecture that allows run-time
verification of behavioural conformance for conversational
Web services. Our presented approach has some
significant advantages compared to other approaches for
run-time monitoring and verification. Firstly, it allows for
checking both the control flow of a Web service and the
values of the data in the generated responses. Secondly, it
can be utilised by all types of stakeholders in a SOA
environment, i.e. by service providers, service consumers,
and service brokers. Thirdly, it employs a state-based
behavioural modelling formalism that is arguably more
intuitive to the software engineer than other formalisms
utilised by other approaches. As future work we intend to
work on the validation of the approach with realistic
conversational Web services falling into different
categories.

REFERENCES

[1] W.M.P.V.D. Aalst, M. Dumas, C. Ouyang, A. Rozinat, and E.
Verbeek, “Conformance checking of service behavior,” ACM
Trans. Interet Technol., vol. 8, 2008, pp. 1-30.

[2] C. Atkinson, D. Stoll, H. Acker, P. Dadam, M. Lauer, and M.
Reichert, “Separating per-client and pan-client views in service
specification,” Proceedings of the 2006 international workshop on
Service-oriented software engineering, Shanghai, China: ACM,
2006, pp. 47-53.

[3] D. Bianculli and C. Ghezzi, “Monitoring conversational Web
services,” 2nd international workshop on Service oriented software

engineering: in conjunction with the 6th ESEC/FSE joint meeting,
Dubrovnik, Croatia: ACM, 2007, pp. 15-21.

[4] D. Brenner, C. Atkinson, O. Hummel, and D. Stoll, “Strategies
for the Run-Time Testing of Third Party Web Services,”
Proceedings of the IEEE International Conference on Service-
Oriented Computing and Applications, IEEE Computer Society,
2007, pp. 114-121.

[5] D. Dranidis, G. Eleftherakis and P. Kefalas, “Object-based
Language for Generalized State Machines,” Annals of
Mathematics, Computing and Teleinformatics (AMCT), 1 (3),
2005, 8-17.

[6] D. Dranidis, D. Kourtesis, and E. Ramollari, “Formal
verification of Web service behavioural conformance through
testing,” Annals Of Mathematics, Computing & Teleinformatics,,
vol. 1, 2007, pp. 36-43.

[7] D. Dranidis, “JSXM: A Suite of Tools for Model-Based
Automated Test Generation: User Manual.” Technical Report WP-
CS01-09, CITY College, 2009.

[8] S. Eilenberg, Automata, Languages and Machines, Academic
Press, 1974.

[9] G. Engels, M. Lohmann, S. Sauer, and R. Heckel, “Model-
Driven Monitoring: An Application of Graph Transformation for
Design by Contract,” Graph Transformations, 2006, pp. 336-350.

[10] R.M. Hierons and M. Harman, “Testing conformance of a
deterministic implementation against a non-deterministic stream X-
machine,” Theor. Comput. Sci., vol. 323, 2004, pp. 191-233.

[11] M. Holcombe and F. Ipate, Correct systems: Building a business
process solution, Springer-Verlag, 1998.

[12] E. Kapeti and P. Kefalas, “A Design Language and Tool for X-
Machine Specification,” Advances in Informatics, Proceedings of
the 7th Hellenic Conference on Informatics (HCI '99), 2000.

[13] D. Kourtesis, E. Ramollari, D. Dranidis, and I. Paraskakis,
“Discovery and Selection of Certified Web Services Through
Registry-Based Testing and Verification,” Pervasive Collaborative
Networks, 2008, pp. 473-482.

[14] D. Kourtesis, E. Ramollari, D. Dranidis, and I. Paraskakis,
“Increased Reliability in SOA Environments through Registry-
Based Conformance Testing of Web Services,” Special issue of
Journal on Production Planning & Control on Engagement in
Collaborative Networks, Taylor & Francis, 2009,(in press).

[15] G. Laycock, “The Theory and Practice of Specification-Based
Software Testing,” Thesis (PhD). Department of Computer
Science, University of Sheffield, 1993.

[16] Z. Li, Y. Jin, and J. Han, “A Runtime Monitoring and Validation
Framework for Web Service Interactions,” Proceedings of the
Australian Software Engineering Conference, IEEE Computer
Society, 2006, pp. 70-79.

[17] M. Lohmann, L. Mariani, and R. Heckel, “A Model-Driven
Approach to Discovery, Testing and Monitoring of Web Services,”
Test and Analysis of Web Services, 2007, pp. 173-204.

[18] K. Mahbub and G. Spanoudakis, “A framework for requirents
monitoring of service based systems,” Proceedings of the 2nd
international conference on Service oriented computing, New
York, NY, USA: ACM, 2004, pp. 84-93.

[19] E. Ramollari, D. Kourtesis, D. Dranidis, and A.J. Simons,
“Towards reliable Web service discovery through behavioural
verification and validation,” Proceedings of the 3rd European
Young Researchers Workshop on Service Oriented Computing,
London: 2008.

[20] E. Ramollari, D. Kourtesis, D. Dranidis and A.J.H. Simons,
“Leveraging Semantic Web Service Descriptions for Validation by
Automated Functional Testing, The Semantic Web: Research and
Applications, Springer LNCS 5554, 2009, 3-607.

[21] A. Rozinat and W.M.P.V.D. Aalst, “Conformance checking of
processes based on monitoring real behavior,” Inf. Syst., vol. 33,
2008, pp. 64-95.

149147

