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Abstract— Web services exposing run-time behaviour that 

deviates from their behavioural specifications represent a 

major threat to the sustainability of a service-oriented 

ecosystem.  It is therefore critical to verify the behavioural 

conformance of services during run-time.  This paper 

discusses a novel approach for run-time verification of Web 

services.  It proposes the utilisation of Stream X-machines 

for constructing formal behavioural specifications of Web 

services which can be exploited for verifying that a service’s 

run-time behaviour does not deviate from what is defined in 

the specification.  Our approach allows for checking both the 

control flow of a Web service and the values of the data in 

the generated responses. The paper also proposes a 

classification of Web services and discusses how different 

types of services can be verified at run-time.  Finally, it 

presents a run-time monitoring and verification architecture 

and discusses how it can be integrated into different types of 

service-oriented infrastructures. 

Keywords-Run-time verification; behavioural conformace; 

Web services; monitoring; formal methods; Stream X-

machines 

I.  INTRODUCTION  

Web services are typically accompanied by some form 
of technical specifications that explicate various functional 
or non-functional aspects of a service’s operation.  The 
most elementary and well-known example of such 
technical specifications is the description of a SOAP Web 
service’s interface that is encoded using WSDL (Web 
Service Description Language).  The specifications of a 
Web service are indispensable for carrying out a variety of 
activities throughout the service’s lifecycle, such as 
discovery and composition, and the degree of formality in 
the specifications determines the extent to which these 
activities can be automated.   

Often, however, the behavioural specification of a 
service and its implementation may prove to be 
inconsistent.  Even in cases where a Web service has been 
demonstrated to conform to its specification before 
deployment, it is possible that the service is eventually 
found to deviate from its specification at run-time.  This 
can happen for several reasons.  One reason could be that 
the service provider has inadvertently or intentionally 
modified the Web service implementation at some point 
after its initial deployment without reflecting this change in 
the specification.  Another reason could be that the Web 
service is composite and depends on other services which 

eventually become unavailable, get replaced, or have their 
behaviour modified.  In all these cases the Web service’s 
functionality can become affected in a way that prevents it 
from conforming to its original specification.   

The introduction of such “defective” Web services 
within a highly dynamic service-oriented environment can 
have a devastating effect that puts the sustainability of the 
whole infrastructure at risk.  Therefore, being able to 
ensure that the run-time behaviour of services does not 
deviate from their advertised specifications is considered 
critical. 

Run-time verification is a verification technique which 
is based on program execution and ensures that the 
program conforms to its intended behaviour at run-time.  
Service run-time verification consists of observing and 
logging the input/output traces of service execution and 
verifying that the observed behaviour satisfies given 
requirements.  The intended behaviour of the service needs 
to be described in the service specification and be 
expressed in some formal language.   

Previous work by the authors has focused on 
specifying the behaviour of stateful and conversational 
Web services using Stream X-machines (SXMs) [15, 11], 
which are computational models constituting a type of 
Extended Finite State Machines.  SXM models are utilised 
for the automated generation of exhaustive test cases, 
which, under well defined conditions, can guarantee to 
reveal all inconsistencies among the implementation of a 
Web service and its expected behaviour [6].  In [19] an 
approach is proposed for reliable Web service discovery 
through behavioural verification and validation based on 
SXMs.  In [13] and [14] the authors put forward the 
development of an extended service registry which 
receives the SXM specification of a Web service upon 
publication, and subsequently performs test generation and 
test execution in order to verify that the service 
implementation conforms to its specification.  In [20], an 
approach is proposed for specifying the behaviour of 
services in terms of inputs, outputs, preconditions, and 
effects utilising ontology-based (OWL-DL) and rule-based 
descriptions (RIF-PRD), and deriving SXM specifications 
for functional testing and validation.   

In this paper we propose a novel approach for verifying 
the conformance of conversational Web services at run-
time.  The novelty of this approach lies in the utilisation of 
Stream X-machines for specifying expected service 
behaviour and guiding the monitoring process through 
SXM model animation.  To the best of our knowledge this 
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is the first work using some form of Extended Finite State 
Machines for run-time verification of Web services.  In 
contrast with other approaches which are discussed in the 
related work, SXM modelling does not only allow the 
checking of the control-flow of operation invocations 
(protocol checking) but also verifies the correct 
implementation of the operations (functional 
conformance).  Furthermore, we believe that the proposed 
state-based formalism is more intuitive to the software 
engineer for the description of stateful services than other 
formalisms utilised in other approaches.  Additionally, we 
suggest a classification of stateful Web services, which 
allows us to identify different types of services for which 
we can perform monitoring and run-time verification.  We 
also propose a conceptual architecture for the 
implementation of run-time monitoring and verification 
infrastructure, and discuss how it is integrated into 
different scenarios of Service-Oriented Architecture (SOA) 
configurations involving the service consumer, provider, 
and broker.  Compared to other Web service run-time 
monitoring approaches the proposed solution allows the 
integration of the monitoring architecture both at the 
consumer’s and the provider’s site, as well as at the 
broker’s site.   

The rest of the paper is structured as follows.  In 
section 2 we present a classification of Web services for 
the purposes of run-time verification.  Section 3 provides 
an overview of the SXM modelling formalism along with 
an example for the purposes of illustration.  Section 4 
describes in detail how run-time verification is performed 
for different types of services.  Section 5 discusses the 
integration of run-time monitoring into different SOA 
infrastructures.  Finally, in section 6 we provide an 
overview of some related work, and in the conclusions we 
summarise the main points from our work and provide an 
outlook for future research. 

II. CLASSIFICATION OF  WEB SERVICES 

Web Services can be generally distinguished among 
stateless and stateful ones.  By the term stateless, we refer 
to services that do not exhibit any observable state.  In a 
stateless service the response of any operation depends 
solely on the provided input arguments; the same result is 
delivered for the same arguments every time the operation 
is invoked (e.g. in some service offering mathematical 
calculations).  The functional behaviour of such an 
operation can be specified by a contract, in terms of pre-
conditions on operation inputs and post-conditions on 
operation outputs, and its run-time behaviour can be 
monitored in isolation from other operations.  In contrast, 
in a stateful service, the response of an operation depends 
not only on the input arguments but also on the internal 
state of the service.  This is why pre-conditions on 
operation inputs and post-conditions on operation outputs 
do not suffice for monitoring the observable behaviour of a 
stateful service.  This work focuses on the run-time 
verification of stateful services, for which we propose 
three further classifications.   

Firstly, stateful services can be distinguished into 
conversational and non-conversational services: 

• In a non-conversational service all operations can 
be accepted (terminate successfully without 
producing any error) at all states.  This means that 

all operations will return some result when 
invoked, independently of the state in which the 
service is found at the time of invocation.   

• In a conversational service only specific operation 
sequences are accepted.  This is because some 
operations may have preconditions which depend 
on the state of the service.  The set of all 
acceptable operation sequences is called the 
protocol or choreography of the interaction.   

A shopping cart service is a typical example of a 
stateful and conversational service.  Items cannot be 
removed from the cart if they were not added in the cart in 
a previous step.  A currency converter service and a 
random number generator consisting of a single 
“getNextRandomNumber” operation are examples of 
stateful and non-conversational services:  their operations 
will return different results for the same inputs at different 
times of invocation, but no particular protocol is imposed.   

Secondly, we differentiate among cases where the state 
of a service-instance (spawned to serve a particular client 
during a session) can be modified only by that specific 
service-instance, or by other service-instances and external 
systems.  Therefore, stateful services can be further 
categorised depending on the type of state modifiability to: 

• Private-state services: the state of each service 
instance depends exclusively upon and is fully 
determined by the sequence of previous operation 
invocations.  Thus, the behaviour of the service 
depends only on the current local state resulting 
exclusively from the interactions among the client 
and the service-instance.    

• Shared-state services: the state of the service 
cannot be fully determined by the sequence of 
service invocations.  The behaviour of the service 
instance depends on some state variables which 
may be modified by other service instances or 
applications. 

The previously mentioned non-conversational random 
number generator service is a private-state service, since 
the value to be returned whenever an operation is invoked 
is determined fully and solely by the history of previous 
invocations.  In contrast, the non-conversational currency 
converter service is a shared-state service, since the value 
to be returned upon invocation is determined by the state 
of externally controlled and dynamic exchange rates.   

A conversational shopping cart service can be a 
private-state service or a shared-state service, depending 
on its implementation.  A shopping cart service whose 
behaviour is affected only by the state of the internal 
shopping basket information is a private-state service.  In 
contrast, a shopping cart service whose behaviour also 
depends on externally-controlled inventory information is 
a shared-state service.  In the first case, the addition of an 
item to the cart would always be successful, unlike the 
second case, where trying to add an item to the cart could 
fail if the item was not available in stock or unknown in 
the inventory list.   

It should be noted that from the observer’s point of 
view the behaviour of a shared-state service is always non-
deterministic.  This is because the actual result of an 
operation cannot be known in advance.  Therefore, the 
formalism employed for modelling the behaviour of such 
services and the mechanism used for monitoring them 
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should allow for non-determinism.  A non-deterministic 
model of a service should be able to describe the set of all 
possible permitted behaviours and responses.  The 
implications for supporting non-determinism in the 
monitoring mechanism are examined in section IV. 

TABLE I.  EXAMPLES OF STATEFUL SERVICES. 

 Non-conversational Conversational

Private-

state 
Random number 

generator 
Shopping cart without 

inventory lookup 

Shared-

state 
Currency converter Shopping cart with 

inventory lookup 

 
In [3] a slightly different classification is used, naming 

the private-state and shared-state services as conversational 
and global shared resource services, respectively.  In our 
classification, however, shared state services can also be 
conversational.  Our classification of private-state versus 
shared-state services closely matches with the private-data-
driven versus public-data-driven Web service categories 
described in [4]. 

Thirdly, we propose distinguishing among services that 
operate on: 

• Transient-state: the state information is volatile, 
i.e. initialised at the beginning of each session of a 
service-instance and destroyed upon completion.   

• Persistent-state: The state information outlasts the 
duration of a session.  The service “remembers” its 
state even after the end of a session.  Different 
service instances from the same client can thus 
interrupt service usage and continue at a later point 
in time. 

An example of a transient-state service is a shopping 
cart service in which the client always begins with an 
empty shopping cart, whereas a persistent-state shopping 
cart service “remembers” old additions in the shopping 
cart.  In the latter case, the client needs to identify the 
shopping cart by providing its id as part of the operation 
arguments. 

Note that persistent-state services require some way of 
client identification so that a newly created service-
instance can restore its saved state for the specific client.  
This is also important for run-time monitoring.  Monitors 
should be able to save their state and restore it at a later 
point of time in order to be able to continue monitoring. 

From the classification presented in this section it 
becomes clear that different types of Web services require 
different treatment for the purpose of run-time verification.  
In this paper we mainly focus on the run-time monitoring 
of conversational services, i.e. those services which follow 
a protocol.  These can be either private-state or shared-
state and either transient-state or persistent-state.  In 
section IV we present how these different types are 
handled in our monitoring framework. 

III. MODELLING WEB SERVICES WITH SXMS 

A. Stream X-machines 

Stream X-machines (SXMs) are a computational model 
capable of representing both the data and the control of a 
system.  SXMs are special instances of the X-machines 

introduced in 1974 by Samuel Eilenberg [8].  They employ 
a diagrammatic approach of modelling control flow by 
extending the expressive power of finite state machines.  In 
contrast to finite state machines, SXMs are capable of 
modelling non-trivial data structures by employing a 
memory attached to the state machine.  Moreover, 
transitions between states are not labelled with simple 
input symbols but with processing functions.  Processing 
functions receive input symbols and read memory values, 
and produce output symbols while modifying memory 
values.  Adding the memory construct allows the model 
designer to reduce the number of states to those states 
which are considered critical for the correct behavioural 
verification of the system; in other words the states and 
transitions that are modelled are those that need to be 
verified.  A divide-and-conquer approach to design allows 
the model to hide some of the complexity in the transition 
functions, which can be later exposed as simpler SXMs at 
the next level.   

A Stream X-machine is defined as an 8-tuple, ( , , Q, 
M, , F, q0, m0) where: 

•  and  is the input and output finite alphabet 
respectively; 

• Q is the finite set of states; 

• M is the (possibly) infinite set called memory; 

• , which is called the type of the machine, is a 
finite set of partial functions (processing functions) 

 that map an input and a memory state to an 
output and a new memory state,  :  × M   × 
M; 

• F is the next-state partial function that given a 
state and a function from the type , provides the 
next state, F : Q ×   Q; 

• q0 and m0 are the initial state and memory 
respectively. 

Apart from being formal as well as proven to possess 
the computational power of Turing machines, SXMs offer 
a highly effective testing method for verifying the 
conformance of a system’s implementation against a 
specification [11].  This method generates test sequences 
whose application ensures that the system behaviour is 
identical to that of the implementation, provided that the 
system is made of fault-free components and some explicit 
design-for-test conditions (controllability and 
observability) are met.  Although testing can increase the 
confidence that the system is behaving in the right way it 
cannot guarantee fault free operation during run-time, 
especially in the case of a highly dynamic environment as 
that of Web services.   

B. Supporting tools 

Stream X-machine models can be represented in a 
number of languages.  XMDL (X-Machine Definition 
Language) is a special-purpose mark-up language 
introduced in [12].  XMDL-O is an object based extension 
of XMDL introduced in [5].  Both languages are supported 
by a Prolog-based tool named X-system.  The X-system 
facilitates the modelling of SXMs by providing a parser 
and an animator.   

Recently a new suite of supporting tools has been 
developed in Java (JSXM) to support automated model-
based test generation [7].  The JSXM tool introduces a new 
syntax for SXM specifications based on XML and Java 
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inline code.  The XML-based specifications in JSXM 
facilitate easier integration with Web technologies and 
related XML-based Web service standards.   

JSXM supports animation of SXM models, model-
based test generation and test transformation.  The test 
generation is based on the SXM testing theory and given 
an SXM model it generates a set of test cases in XML 
format.  As such, the test cases are independent of the 
programming language of the implementation.  Test 
transformation is used for transforming the general test 
cases to concrete test cases in the underlying technology of 
the implementation.  Currently, a Java test transformer is 
available which automatically generates JUnit test cases. 

The animator tool enables the execution (or simulation) 
of SXM models.  This is the main part of our monitoring 
architecture which is presented in section IV.  Once the 
animator is launched, it initialises the SXM model and 
then repeatedly accepts an input, feeds the input to the 
SXM model, and retrieves the produced output.  In that 
sense the animator can serve as an oracle that provides the 
expected outputs for the purpose of run-time monitoring.  
The animator can be executed in interactive mode or in 
batch mode by receiving an XML file of the inputs.  An 
API is also provided which allows calling the animator’s 
methods programmatically.  This API is utilised in the 
implementation of the run-time verification architecture 
described in section IV.   

C. Modelling Web services 

In order to model the behaviour of a Web service using 
a Stream X-machine, the modeller must perform data-level 
and behaviour-level analysis to derive the appropriate 
SXM modelling constructs.  Parallels can be drawn 
between a stateful Web service and a Stream X-machine, 
since they both accept inputs and produce outputs, while 
moving from one internal state to another.  SXM inputs 
correspond to SOAP request messages, outputs correspond 
to SOAP response messages, and processing functions 
correspond to Web service operation invocations in 
specific contexts (an operation may map to more than one 
processing functions because of the potentially different 
input parameters and the different state).  SXM-based 
modelling is applicable in the context of complex 
conversational Web services where the result obtained 
from invoking a Web service operation depends not only 
on the consumer’s input, but also on the internal state of 
the service.   

Fig. 1 illustrates the state transition diagram from an 
SXM model of a stateful Web service that allows 
performing basic operations on a bank account.  This 
service is another example of a private-persistent state 
conversational service.  For simplicity, let us assume that 
the Web service interface comprises five operations: open, 
deposit, withdraw, getBalance, and close.  The service 
normally manages several bank accounts, so each 
operation takes an account ID as a parameter.  However 
the model is abstracted by focusing on a single account 
instance, identified by the same ID in all operations.  This 
modelling approach is based on the Manager Pattern 
described in [2].  When an account is created it is 
initialised as inactive and therefore needs to be set to active 
(opened) before any transaction can be performed.  The 
deposit of an amount results in increasing the balance of 

the account as appropriate, while the withdrawal of an 
amount can take place only if the amount does not exceed 
the balance, and results in reducing the balance 
accordingly.  Finally, an account can be closed only if its 
balance is zero, and once closed it cannot be re-activated. 

 
Figure 1.  A state transition diagram for a Stream X-machine modelling  

a bank account Web service. 

The corresponding code for representing the state 
transition diagram in JSXM is provided below: 

   
<SXM name="Account"> 
 <states> 

  <state name="initial" /> 
  <state name="activated" /> 

  <state name="closed" /> 

  <state name="normal" /> 
 </states> 

 <initialState state="initial" /> 

  
 <transitions> 

  <transition from="initial" function="open" to="activated" /> 

  <transition from="activated" function="close" to="closed" /> 
  <transition from="activated" function="deposit" to="normal" /> 

  <transition from="normal" function="deposit" to="normal" /> 

  <transition from="normal" function="withdrawAll" to="normal" /> 
  <transition from="normal" function="withdraw" to="activated" /> 

  <transition from="activated" function="getBalance" to="activated"/> 

  <transition from="normal" function="getBalance" to="normal" /> 

 </transitions> 

  

The memory of the account SXM just stores the 
current balance of the account.  In the following the integer 
memory variable balance is declared and initialised: 

 

 <memory> 
  <declaration> 

   int balance 
  </declaration> 

  <initial> 

      balance = 0  
  </initial> 

 </memory> 

  

The inputs correspond to SOAP request messages and 
may consist of arguments: 

 

 <inputs> 
  <input name="openRequest" /> 

  <input name="closeRequest" /> 
  <input name="getBalanceRequest" /> 

  <input name="depositRequest"> 

   <arg name="amount" type="Int" /> 
  </input> 

  <input name="withdrawRequest"> 

   <arg name="amount" type="Int"/> 
  </input> 

 </inputs> 
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The outputs correspond to SOAP response messages 
and are structured in a similar way to inputs: 

 
<outputs> 
  <output name="openResponse" /> 

  <output name="closeResponse" /> 

  <output name="depositResponse"> 
   <result name="amount" type="Int" /> 

  </output> 

  <output name="withdrawResponse"> 
   <result name="amount" type="Int" /> 

  </output> 

  <output name="getBalanceResponse"> 
   <result name="amount" type="Int" /> 

  </output> 

 </outputs> 

 
Processing functions are specified by defining their 

inputs, outputs, preconditions and effects on the SXM 
memory.  Note that two processing functions may be 
triggered by withdrawRequest messages.  However, their 
complementary guard conditions make sure that they 
cannot be triggered at the same time (deterministic choice). 
  

 <functions> 
  <function name="open" input="openRequest"  
         output="openResponse"/> 

 

  <function name="close" input="closeRequest"  
         output="closeResponse" /> 

   

  <function name="deposit" input="depositRequest"  
         output="depositResponse"> 

   <precondition> 

    depositRequest.amount > 0 
   </precondition> 

   <effect> 

    balance = balance + depositRequest.amount; 
    depositResponse.amount = depositRequest.amount; 

   </effect> 

  </function> 
   

  <function name="withdraw" input="withdrawRequest"  

      output="withdrawResponse"> 
   <precondition> 

    withdrawRequest.amount > 0 &&  

    balance > withdrawRequest.amount 
   </precondition> 

   <effect> 

    balance = balance - withdrawRequest.amount; 
    withdrawResponse.amount = withdrawRequest.amount; 

   </effect> 

  </function> 
   

  <function name="withdrawAll" input="withdrawRequest"  

      output="withdrawResponse"> 
   <precondition> 

    withdrawRequest.amount > 0 &&  

    balance == withdrawRequest.amount 
   </precondition> 

   <effect> 

    balance = balance - withdrawRequest.amount; 
    withdrawResponse.amount = withdrawRequest.amount; 

   </effect> 
  </function> 

   

  <function name="getBalance" input="getBalanceRequest"  
      output="getBalanceResponse"> 

   <effect> 

    getBalanceResponse.amount = balance; 
   </effect> 

  </function>   

 </functions> 

The process of deriving the SXM specification of a 
Web service is usually manual.  However, in [20] a 
method is presented to semi-automatically derive an SXM 
specification from a semantically annotated Web service 
utilising ontology-based and rule-based descriptions.   

Once completed, the SXM model can be used for both 
verification through testing and verification through 
monitoring.  As already discussed the focus of this paper 
is on the latter type of verification.  In the next section we 
will see how SXM models can be utilised for this purpose, 
for different kinds of Web services. 

IV. RUN-TIME VERIFICATION  

Run-time verification involves logging the traces of 
service execution and comparing the actual execution 
traces to the expected execution traces, i.e. monitoring.   
Monitoring can be performed on-line or off-line.  In both 
cases the animator of the SXM model acts as an oracle for 
determining the expected execution traces.  An execution 
trace for a Web service is a sequence of request-response 
(input-output) pairs.  The JSXM animator acts as an 
oracle; it is provided with the request and it returns the 
expected response. 

Fig. 2 depicts the different components and their 
interactions in the proposed run-time verification 
architecture.  This architecture is implemented by a 
mediator intercepting the communication between the 
service client and the service provider.  As discussed in the 
next section, this mechanism can be incorporated into the 
infrastructures of all different types of SOA stakeholders, 
i.e. service providers, service consumers, and service 
brokers. 

 

 
Figure 2.  Run-time verification architecture. 

When monitoring is carried out in on-line mode, the 
framework intercepts SOAP request messages and feeds 
them to the animator which runs an instance of the SXM 
model in parallel with the actual monitored service.  Client 
requests, service responses and animator responses are 
saved in a log file.  The behaviour analyser module 
performs the comparison of the service and animator 
responses and reports deviations.  On-line monitoring can 
be useful in the case that the interested stakeholder wishes 
to be informed about discrepancies immediately and 
potentially take initiative to interrupt the interaction.  In 
off-line monitoring mode the framework intercepts and 
logs client requests and service responses, while animation 
and validation are performed at a later point based on the 
logs.  The following provides an extract of the XML log 
file which is created during run-time verification: 
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 <call> 
  <input name="openRequest" /> 

  <output name="openResponse" /> 
  <expected name="openResponse" /> 

 </call> 

 <call> 
  <input name="depositRequest"> 

   <arg name="amount" type="Int" value="1000" /> 

  </input> 
  <output name="depositResponse"> 

   <result name="amount" type="Int" value="1000" /> 

  </output> 
  <expected name="depositResponse"> 

   <result name="amount" type="Int" value="1000" /> 
  </expected> 

  <input name="withdrawRequest"> 

   <arg name="amount" type="Int" value="2000" /> 
  </input> 

  <output name="withdrawResponse"> 

   <result name="amount" type="Int" value="2000" /> 
  </output> 

  <expected name="withdrawError"/> 

 </call> 

 

The extract illustrates 3 requests: open, deposit, and 
withdraw and the corresponding actual and expected 
responses.  Note that a violation occurs at the withdraw 
request; the animator produces a withdrawError since the 
withdraw input cannot be accepted (its guard condition 
balance > withdrawRequest.amount evaluates to false), 
whereas the actual (faulty) implementation has accepted 
the over-withdrawal. 

 The run-time verification framework spawns a 
different animator instance for each service instance.  It is 
necessary that the service provider characterises 
beforehand the provided service using the classification 
provided in a previous section.  The framework utilises 
this information in order to properly initialise the animator 
instance as follows. 

For private-transient-state services the animator begins 
animating the SXM from its initial state and memory, 
since each service instance works on initialised state.  In 
the private-transient state shopping cart example the 
shopping cart will be initially empty every time the service 
is invoked. 

For private-persistent-state services (as the bank 
account example from the previous section) the animator 
needs to start animation from the last saved state and 
memory for the specific client or animate the previously 
saved log.  This is illustrated in the sequence diagram of 
Fig. 3, where a new instance of the Animator is created 
and the saved log file is “replayed” in order to bring the 
animator to the last saved state.  As already mentioned 
private-persistent state services require some kind of 
identification.  This identification should also be used for 
loading the state of the animator or the log.  After each 
transition the animator saves its current state and its 
current memory values associated with the identifier of the 
service client. 

Shared-state services require a different treatment than 
private-state services.  In these cases it is rather impractical 
if not impossible to model external factors that affect state 
variables.  In the shopping cart with inventory support, one 
would need to model the whole inventory of existing and 
available items with their quantities.  Even this would not 
suffice since other service clients will be able to change 

inventory quantities by purchasing items.  So, complete 
modelling of shared-state services becomes intractable and 
unrealistic.  In this case non-deterministic SXMs [10] are 
deployed.  For operations operating on shared data all 
possible responses, memory updates and state transitions 
are modelled as different transitions which may occur non-
deterministically; the same operation with identical input 
values can cause different behaviour (trigger different 
transitions which lead to different states or change the 
memory in a different way) and produce different outputs.  
Since the animator is not able to determine which 
transition should be triggered it needs to wait for the actual 
response from the service implementation.  By matching 
the actual response with the outputs of one of the possible 
transitions (this is possible due to a property of SXM 
models called output-distinguishability) the JSXM 
animator can continue the animation of the SXM model by 
selecting the corresponding transition.  If the response does 
not match any of the expected responses then non-
conformance is reported.  For example, the addItem(id, 
quantity) operation of a shopping cart, could either return 
the response “Item Added” or “Item Not Available” 
depending on whether the quantity for the item is available 
on stock or not.  Both behaviours need to be modelled in a 
non-deterministic manner, as two possible transitions with 
the same precondition but possibly different post-states, 
outputs and memory updates.  Depending on the response 
of the Web service, the animator will choose the transition 
to be followed in order to continue with the animation.   

 

 
Figure 3.  Sequence diagram of interactions between architecture 

components during run-time verification. 

V. INTEGRATION OF RUN-TIME VERIFICATION INTO 

SOA INFRASTRUCTURES  

Run-time verification of Web service behaviour can 
find applications in a wide range of contexts, and can be 
integrated within service-oriented infrastructures in a 
variety of configurations.  One of the advantages of the 
run-time verification method that is introduced in this 
paper, in contrast to other approaches found in the 
literature, is that it can be utilised by all types of 

146144



stakeholders in a SOA environment, i.e. by service 
providers, service consumers, and service brokers.  In the 
following subsections we examine some of the different 
reasons that motivate the incorporation of run-time 
verification in the infrastructures of different types of SOA 
stakeholders, and discuss some implementation 
alternatives for carrying out the integration.   

A. Consumer-based monitoring and verification 

In general, the incorporation of monitoring capabilities 
in the infrastructure of an entity that consumes Web 
services provided by some other entity allows the first to 
continuously verify if the latter meets certain requirements 
with regard to functional and non-functional aspects of 
service operation at all times.  As already mentioned, in 
this paper we specifically focus on monitoring functional 
aspects of a service’s operation (i.e. its behaviour) rather 
than non-functional ones (i.e. its response times, 
availability, etc).  A typical situation where an entity 
would be interested in continuously monitoring and 
verifying the behaviour of a service it consumes is when 
that service needs to conform to a specific industry 
standard that prescribes a particular interaction protocol for 
the parties engaged in a business process.  An example 
could be conformance to standardised or bespoke business 
processes such as those defined via ebXML Business 
Process Specification Schema or RosettaNet Partner 
Interface Process (e.g. defining how a stock replenishment 
business process should be realised). 

There are several ways in which run-time monitoring 
and verification capabilities can be incorporated in the 
technical infrastructure of service consumers.  The one that 
appears to be the most effective, since it requires no 
changes to the service provider’s end, and trivial changes 
to the client application, is to create local wrapper Web 
services – one for each of the actual remote Web services 
that need to be monitored - and deploy them on a Web 
application server at the consumer’s site.  Instead of 
binding to the actual remote Web services the client 
application must be modified in order to bind to the 
wrapper services, which will in turn bind to the actual 
ones.  The rationale is illustrated in Fig. 4.   

 
Figure 4.  Integration of run-time verification at the consumer's site 

During execution the wrapper service receives the 
incoming request messages, logs them, forwards them to 
both the real service being monitored and to the oracle 
(SXM animator), logs the obtained responses, and 
forwards the response of the monitored service to the 
consumer.  The logs can be analysed during execution (on-

line) or at a later stage (off-line), and appropriate actions 
can be taken automatically, such as terminating all 
interactions with a particular faulty service. 

B. Provider-based monitoring and verification 

Another possibility is to integrate our proposed 
approach for run-time monitoring and verification at the 
provider’s infrastructure.  The main motivation is being 
able to detect potential lapses in conformance with 
prescribed interaction protocols as early as possible, in 
order to take corrective actions that mitigate the effects of 
the situation before all consumers of a faulty service 
become affected.  A conformance lapse of this kind may 
result from the release of a new version of a particular 
Web service in which defects were accidentally introduced 
but went undetected during regression testing, or from 
reasons beyond the control of the service provider, such as 
dependence on some faulty third party Web service.  
Continuous monitoring of the behaviour of all of their Web 
services enables providers to not only detect such errors, 
but also be able to present evidence of correct behaviour in 
case consumers raise misinformed claims when no errors 
actually exist. 

Run-time monitoring and verification capabilities can 
be incorporated in the infrastructure of service providers 
by modifying and extending the functionality of the Web 
application servers that host the Web services (Tomcat, 
JBoss, etc).  The rationale is illustrated in Fig. 5.   

 
Figure 5.  Integration of run-time verification at the provider's site 

The application server intercepts incoming request 
messages, logs them, forwards them to the service being 
monitored and to the oracle (animator), and logs the 
obtained responses.  Once again the logs can be analysed 
in an on-line or off-line mode.  In case of detected 
deviation from expected behaviour the embedded 
monitoring component of the application server can alert 
the administrator so as to take corrective action and 
possibly also stop the service.   

C. Broker-based monitoring and verification 

An additional possibility is the incorporation of run-
time verification in the infrastructure of a broker which 
acts as a trusted entity for both providers and consumers.  
Broker-based monitoring can be employed for preventing 
defective or non-compliant Web services from being 
discovered and reused.  This is a particularly appealing 
scenario in the case of brokers which also act as 
certification authorities for published Web services, as in 
the approach proposed in [13, 14].  Run-time verification 
can complement publication-time verification and can 
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enable brokers to revoke the certification status from a 
non-compliant service before further damage is caused to 
prospective consumers. 

Integration of run-time monitoring and verification at 
the broker’s end can be achieved following the same 
approach as in consumer-based monitoring, i.e. through 
binding to intermediary wrapper Web services.  The only 
difference is that the wrapper services are not to be hosted 
at the consumer’s site, but at the broker’s site (see Fig. 6).   

  

 
Figure 6.  Integration of run-time verification at the broker's site 

The service consumer is once again not meant to 
communicate with the actual services of the provider 
directly, but through the broker-based wrapper services 
which enable end-to-end monitoring.  Nonetheless it 
should be noticed that such a scheme can potentially result 
in the creation of processing bottlenecks which would 
impair the scalability of the broker’s infrastructure, so 
addressing performance-related aspects during the design 
of such a solution is crucial. 

VI. RELATED WORK 

Different approaches have been proposed on run-time 
monitoring and behavioural conformance checking of 
conversational Web services.   In general, these 
approaches are based on abstract specifications of expected 
service behaviour, which are used for conformance 
verification of the observed behaviour.   

Mahbub and Spanoudakis [18] describe an approach 
for monitoring Web services in which properties to be 
monitored are expressed using event calculus.  
Behavioural properties of the services are automatically 
extracted from a BPEL process that orchestrates the 
services.  The authors propose an architectural framework, 
consisting of a requirements editor, an events receiver, and 
a monitor.  Conformance evaluation is performed offline 
(post-mortem), by exploiting techniques for integrity 
constraint checking in temporal deductive databases.  This 
approach focuses on the behavioural properties of 
composition processes expressed in BPEL rather than on 
individual Web services. 

Van der Aalst et al [1] and Rozinat et al [21] describe 
an approach to run-time monitoring and conformance 
evaluation based on Petri nets and message logs recorded 
during monitoring.  Initially, the expected Web service 
behaviour is specified in an abstract BPEL process model.  
The BPEL specification is translated to a WF-net, which is 
a subclass of Petri nets.  Also, the authors propose an 
approach to monitor and to correlate SOAP messages in 

order to construct events logs.  Protocol conformance 
checking is performed by comparing the obtained event 
logs with the Petri net.  Li et al [16] use pattern and scope 
operators from a language called Specification Pattern 
System (SPS) to express service interaction constraints 
regarding both the occurrence of individual events and 
sequences of events.  These constraints are then 
represented as finite state automata (FSA) in order to 
facilitate analysis.  A framework is described for validating 
the behaviour of the monitored Web service against the 
predefined constraints.  In both previously mentioned 
approaches [1, 21, 16] Web service monitoring focuses on 
checking the fulfilment of control flow dependencies such 
as a missing response after a request.  Input and output 
values or state variables are not considered.  As a 
consequence, the operation invocation sequence open(), 
deposit(1000), withdraw(2000) is accepted as valid if only 
control flow dependencies are considered.  In our 
approach, however, the same sequence is identified as 
invalid since the modelled bank account does not allow 
over-withdrawals; the state variable balance holds the 
actual account balance and the guard of the withdraw 
operation makes sure that the balance never becomes 
negative. 

Lohman et al [17] propose run-time monitoring of Web 
service behaviour as part of a reliable service life-cycle, 
including reliable service registration and service 
discovery.  Expected Web service behaviour is specified at 
the level of operations.  They model data types visible at a 
service interface with class diagrams, while the behaviour 
of each operation is specified by graph transformation 
(GT) rules.  Each GT rule describes the manipulation of 
object structures over the class diagram.  Monitors are then 
generated automatically based on a model-driven 
approach, as described in Engels et al [9]; class diagrams 
are translated to Java code and GT rules are translated to 
JML assertions.  The service operations are invoked by 
wrapper methods, which throw exceptions whenever pre-
conditions or post-conditions are violated.  The thrown 
exceptions are caught by the Web service client who then 
decides on the appropriate reaction.  Preconditions and 
post-conditions which are expressed as conditions on 
operation inputs are adequate for expressing the functional 
behaviour of stateless services, but the behaviour of 
stateful services also depends on internal state variables.  
Thus their approach for monitoring stateful services is only 
applicable using server-side monitors which have access to 
Web service state.  The extended finite state-based 
approach that we propose overcomes this obstacle by 
modelling the encapsulated state variables and thus allows 
the integration of the monitoring architecture both at 
consumer’s site and at the provider’s site.   

Bianculli and Ghezzi [3] use algebraic specifications, 
to specify the expected service behaviour.  The algebraic 
specifications consist of rewrite rules describing the 
behaviour of individual service operations.  Interpreters 
such as CafeOBJ and Heureka are used for the symbolic 
execution of the specifications.  Then, the outputs obtained 
from the Web service are compared with the evaluation 
results returned by the interpreter, in order to check for 
deviations.  The authors also propose an architectural 
framework to enable run-time monitoring of individual 
conversational services orchestrated by a BPEL engine.  
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They weave aspects (using AspectJ) to the ActiveBPEL 
engine to extend it with a main interceptor, a specifications 
registry, and a monitor.  The aspect oriented approach is 
utilised in order not to intervene in the business logic of 
the BPEL process.  In this approach, as in our approach, 
apart from protocol checking the actual returned values 
from operation invocations are compared to the expected 
outputs.  In contrast however with our state-based 
specifications, Web service state is modelled implicitly by 
using axioms which specify the equivalence of sequences 
of operations. 

Furthermore, an important characteristic of our 
approach compared to all of the aforementioned 
approaches is its intuitiveness to the software engineer.  
We believe that a state-based description of service 
behaviour that is usually represented using a UML state-
diagram or a UML Protocol State Machine can easily be 
transformed to a Stream X-machine model. 

VII. CONCLUSIONS AND FUTURE WORK 

Service-oriented systems have an open architecture, 
which allows third-party services to be incorporated 
dynamically, raising the need for continuous verification.  
Testing Web services before deployment cannot guarantee 
that they will not deviate from their advertised behaviour 
during execution.  Therefore, run-time verification of Web 
service behavioural conformance is considered critical.  In 
this paper we proposed a novel run-time verification 
approach that utilises Stream X-machine models for 
specifying Web service behaviour.  We presented a 
classification of Web services and investigated the 
application of run-time monitoring in different classes.  In 
addition, we proposed an architecture that allows run-time 
verification of behavioural conformance for conversational 
Web services. Our presented approach has some 
significant advantages compared to other approaches for 
run-time monitoring and verification. Firstly, it allows for 
checking both the control flow of a Web service and the 
values of the data in the generated responses. Secondly, it 
can be utilised by all types of stakeholders in a SOA 
environment, i.e. by service providers, service consumers, 
and service brokers. Thirdly, it employs a state-based 
behavioural modelling formalism that is arguably more 
intuitive to the software engineer than other formalisms 
utilised by other approaches. As future work we intend to 
work on the validation of the approach with realistic 
conversational Web services falling into different 
categories. 
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