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ABSTRACT

The MC1R gene plays a crucial role in pigmentation synthesis. Loss-of-function 
MC1R variants, which impair protein function, are associated with red hair color 
(RHC) phenotype and increased skin cancer risk. Cultured cutaneous cells bearing 
loss-of-function MC1R variants show a distinct gene expression profile compared to 
wild-type MC1R cultured cutaneous cells. We analysed the gene signature associated 
with RHC co-cultured melanocytes and keratinocytes by Protein-Protein interaction 
(PPI) network analysis to identify genes related with non-functional MC1R variants. 
From two detected networks, we selected 23 nodes as hub genes based on topological 
parameters. Differential expression of hub genes was then evaluated in healthy 
skin biopsies from RHC and black hair color (BHC) individuals. We also compared 
gene expression in melanoma tumors from individuals with RHC versus BHC. Gene 
expression in normal skin from RHC cutaneous cells showed dysregulation in 8 out 
of 23 hub genes (CLN3, ATG10, WIPI2, SNX2, GABARAPL2, YWHA, PCNA and GBAS). 
Hub genes did not differ between melanoma tumors in RHC versus BHC individuals. 
The study suggests that healthy skin cells from RHC individuals present a constitutive 
genomic deregulation associated with the red hair phenotype and identify novel genes 
involved in melanocyte biology.

INTRODUCTION

Human cutaneous pigmentation is dependent 
on melanin pigment production (eumelanin and 
pheomelanin) by epidermal and follicular melanocytes. 

Melanin synthesis is controlled by the melanocortin 
receptor type 1 (MC1R) which encodes a 7-pass 
transmembrane G-protein-coupled receptor. In wild-type 
MC1R melanocytes, activation of the receptor by the 
α-melanocyte stimulating hormone (α-MSH) promotes 

Research Paper



Oncotarget11590www.impactjournals.com/oncotarget

the synthesis of eumelanin pigment (dark pigment), 
reduces UV-induced oxidative stress and enhances DNA 
repair through base-excision repair and NER mechanisms 
which repairs UV-photoproducts [1]. MC1R is a highly 
polymorphic gene and loss-of-function variants (p.R151C, 
p.R142H, p.R161W, p.D294H p.D84E and p.I155T) 
result in a minimal receptor activity and mainly produces 
pheomelanin (red/yellow) pigment [2].

Epidemiological studies have found that loss-
of-function variants in MC1R can, in part, predict the 
red-hair color (RHC) phenotype (red hair, fair skin, 
low tan capacity and high UV sensitivity) as well as 
melanoma [3] and non-melanoma skin cancer risk 
[4]. The decreased eumelanin production compared 
to pheomelanin in RHC individuals increases skin 
cancer risk due to the weak UV shielding capacity of 
pheomelanin, increase in UVA-induced reactive oxygen 
species [5, 6] and altered NER pathway. However, 
recent data indicate that RHC MC1R variants also 
contribute to carcinogenesis by UV-independent 
mechanisms. Mitra D et al. observed that the absence 
of pheomelanin is protective against melanoma 
development in mice models [7]. They detected high 
levels of oxidative DNA and lipid damage in RHC 
mice in a UV-independent model which still leads to 
oxidative damage. In addition, we h[2]ave previously 
reported that co-cultured melanocytes and keratinocytes 
harbouring loss-of-function MC1R variants show 
a constitutive overexpression of genes involved in 
oxidative phosphorylation pathway and DNA repair 
mechanisms [8].

The aim of this study was to further identify genes 
related to the RHC phenotype by analysing the previously 
reported expression signature pattern associated with RHC 
MC1R variants [8] using protein-protein interaction (PPI) 
network analyses. Gene co-expression networks have 
the potential to highlight specific molecular mechanisms 
and genes related to a specific trait or disease [9–11]. 
Expression of candidate genes from the PPI network 
analyses were further analysed in independent gene 
expression data generated from normal skin biopsy from 
RHC individuals and Black hair color (BHC) using the 
UK MuTHER dataset and in a subset of melanomas from 
RHC and BHC patients.

RESULTS

We identified 3,570 differentially expressed genes 
(DEGs) in co-cultured melanocytes and keratinocytes 
from a pair of RHC siblings carrying non-functional 
MC1R variants versus a pair of siblings with wild-
type MC1R alleles as previously described [8]. The 
expression signature pattern associated with RHC 
MC1R variants was evaluated by PPI network analysis. 
Networks from up-regulated and down-regulated DEGs 
were constructed separately as, from a systems biology 

perspective, functionally-related genes are frequently co-
expressed across a set of samples [12] and up-regulated 
and down-regulated transcripts tend to sub-connect [13, 
14]. A statistically significant network composed of 557 
nodes was detected among the set of 1954 up-regulated 
genes (p< 0.001; Figure 1). Also, we found a statistically 
significant network composed of 450 nodes among the 
set of 1616 down-regulated genes (p<0.001, Figure 2). 
Topological information of networks and name of nodes 
(genes) are indicated in Supplementary Data Table 1 and 
Supplementary Data Table 2.

We evaluated degree and betweenness centrality in 
both networks to investigate relationship between nodes 
and select the hub genes in each network. Twenty-three 
nodes were selected as hub genes (Table 1). In both 
networks, highly connected nodes tend to also show high 
betweenness centrality values. However, two nodes with a 
low degree centrality value (BUB1B and SNX2 gene) were 
selected based on their high Betweenness centrality value.

In the network of up-regulated genes, 13 nodes were 
classified as hub genes (Figure 3). These genes play a role 
in DNA repair and cell-cycle homeostasis (PRKAA1, 
CDK1, BUB1B, PCNA, RPA1 and BRCA1), oxidative 
phosphorylation (GBAS, ICT1) and autophagy (PIK3C3, 
ATG4C, ATG10 and SNX2). The neighbouring genes of 
each hub gene are listed in Supplementary Tables 3-14.

In the network of down-regulated genes, 11 nodes 
were classified as hub genes (Figure 4). These genes 
are involved in apoptosis (SMAD3, YWHAG), mRNA 
metabolism (PABPC1), and autophagy (TRAF2, SQSTM1, 
CLN3, WIPI2, GABARAPL1, GABARAPL2, MAP1LC3B, 
MAP1LC3A). The neighbouring genes of each hub gene 
are listed in Supplementary Tables 15-25.

Next, we assessed the differential expression of 
those 23 genes in an additional whole genome expression 
dataset of healthy skin biopsies from the TwinsUK 
MuTHER dataset in 14 RHC individuals and 7 BHC 
individuals. At 10% FDR, genome wide differential 
expression analyses identified 1,952 DEGs between RHC 
and BHC individuals, consisting of 1,074 up-regulated 
and 878 down-regulated genes in RHC (Supplementary 
Table 26). Overall, 378 DEGs were common between the 
healthy skin and the co-cultured melanocyte-keratinocyte 
datasets. No statistically significant PPI networks were 
detected among DEGs sets (data not shown). Expression 
data from 18 out of 23 hub genes identified in the 
melanocyte-keratinocyte network analysis was available 
in the MuTHER dataset (MAPL1C3B was not included in 
the array and PABPC1, ATG4C, CDK1 and PIK3C3 genes 
failed the quality control). Five out of 18 genes classified 
as hub genes in the melanocyte-keratinocyte network 
analysis were differentially expressed in the MuTHER 
dataset with RHC skin showing down-regulation of CLN3 
and ATG10 genes and up-regulation of SNX2, PCNA and 
GBAS genes. When the differential expression analysis 
was restricted to these 18 hub genes, up-regulation of 
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GABARAPL2 and YWHA genes and down-regulation of 
WIPI2 gene also reached statistically significant values 
(Table 2).

Finally, expression of hub genes was evaluated in a 
whole genome expression dataset of 26 melanomas from 
6 BHC and 20 RHC patients. None of these genes were 
found to be differentially expressed between tumors from 
RHC patients compared with BHC patients. Interestingly, 
the top two upregulated genes in melanomas from 
RHC were PRKAA1 (fold change=1.37, p=0.08) and 
PIK3C3 (fold change=1.23, p=0.09) while the top two 
downregulated were YWHAG (fold change=0.62, p=0.29) 
and CLN3 (fold change=0.77, p=0.3). These p-values were 
unadjusted for multiple testing.

DISCUSSION

In this study, we aimed to uncover genes associated 
with the RHC phenotype by analysing a previously 
reported gene expression pattern [8]. By PPI network 
analysis, we identified two gene co-expression networks 
that reached statistically significant values in loss-of-
function MC1R variants cutaneous cells. Since highly 
connected nodes are central to the network’s architecture 
[15], the study was focused on those nodes with higher 
degree and betweenness centrality values. Overall, 23 
nodes were selected as hub genes and their expression 
was analysed in an additional dataset from non-lesional 
skin tissue from RHC individuals or BHC individuals. 

Figure 1: Protein Protein interaction network among up–regulated genes detected in co-cultured keratinocytes and 
melanocytes from individuals harbouring Red hair color MC1R variants (GSE44805 dataset). Nodes represent genes 
and edges indicate connections between proteins. Nodes are coloured based on number of degree in: low connected node (blue), medium 
connected node (yellow) and high connected node (red). Node size is proportional to the betweenness centrality value: the higher the value, 
the larger the node. Hub genes are represented with a thicker black border. The GBAS, PRKAA1, ICT1 and SNX2 hub genes do not follow 
the node size and border criteria to improve graphical representation of the network.
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We detected a gene expression pattern composed 
of 1,952 transcripts in cutaneous cells from RHC 
individuals indicating that skin from those individuals 
presents a distinct gene expression pattern compared 
to BCH individuals independent of the UV radiation 
effect. Altogether, these results confirm that loss-of-
function MC1R variants promote a constitutive genomic 
deregulation associated with pheomelanin synthesis 
as observed in vitro [8] and in mice models [7]. Three 
hundred seventy-eight genes were in common in the 
set of deregulated transcripts both in vitro and in vivo 
cutaneous cells from RHC individuals, including a set of 
the network’s hub genes such as CLN3, ATG10, WIPI2, 
SNX2, PCNA, GBAS, GABARAPL2 and YWHAG.

Notably, CLN3, ATG10, WIPI2, SNX2 and 
GABARAPL2 are members of the autophagy interaction 

network [16]. Autophagy is a highly conserved lysosomal 
pathway involved in tissue homeostasis, adaptation to 
starvation and removal of dysfunctional organelles or 
pathogens [17]. Additional autophagy genes (ATG12, 
ATG2A, ATG9A, ATG7) are also down-deregulated in 
healthy skin from RHC individuals (Supplementary 
Table 26). Previous data suggest that regulators of 
autophagosome formation play a role in melanosome 
formation and destruction of abnormal melanosomes 
[18]. Autophagosome formation is a multistep process in 
which the expansion and closure of the vesicle membrane 
is controlled by the UBL complex [19]. Notably, most 
of deregulated genes (ATG7, ATG12, ATG10, ATG5 
and WIPI) are related to the UBL complex [20, 21]. 
Moreover, cutaneous cells from RHC individuals show 
over-expression of GABARAPL2 which is essential for 

Figure 2: Protein Protein interaction network among down–regulated genes detected in co-cultured keratinocytes 
and melanocytes from individuals harbouring Red hair color MC1R variants (GSE44805 dataset). Nodes represent genes 
and edges indicate interaction between proteins. Nodes are coloured based on number of degree in: low connected node (blue), medium 
connected node (yellow) and high connected node (red). Node size indicate Betweenness centrality values. Hub genes are represented with 
a thicker black border.
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autophagosome maturation [19] and down-regulation of 
CLN3 which play a role in autophagy, endocytosis and 
vesicular trafficking [16]. Previous comparison of black 
and red human hair melanosomes reveals differences 
between eumelanosomes and pheomelanosomes in 
physical terms such as shape or structural integrity [22]. 
Our findings support that autophagy genes are closely 
related to melanosome biogenesis and further suggest that 
these genes could underlie part of the physical differences 
between types of melanosomes.

Findings from healthy skins could not be replicated 
in melanomas. This could be because if the network’s 
hub genes play a role in melanoma development, it may 
be in early tumor initiation as opposed to progression. In 
addition, gene expression is under a tighter regulatory 
control in tumors than in healthy tissues and differences 
are often subtler, requiring a larger sample to be detected. 
The largest fold change between RHC and BHC hub 
gene expression was 1.37 and the power to detect a 
difference of this magnitude at α=0.05 with 20 RHC and 

Table 1: Topological information of networks detected among deregulated genes detected co-cultured keratinocytes 
and melanocytes from individuals harbouring Red hair color MC1R variants (GSE44805 dataset)

Degree Centrality

Network N. of 
nodes N. of edges Highest 

Value
Lowest 
Value Mean ± SD Hub genes*

Up
regulated genes 514 1144 77 1 4.45±6.78

GBAS (77), PRKAA1 (54), 
ICT1 (54), ATG4C (42), 

ATG10 (50) PIK3C3 (30), 
PCNA (28), CDK1 (27), 
BRCA1(27) RPA1 (25), 
BUB1B (12)a, SNX2(3)a

Down
regulated genes 411 818 42 1 3.98±6.07

GABARAPL2 (42) SQSTM1 
(39)

GABARAPL1 (38), 
MAP1LC3B (38), WIPI2 

(34), MAP1LC3A(31) 
CLN3(30), YWHAG(29), 
SMAD3(27), TRAF2(27), 

PABPC1(24)

Betweenness Centrality

Network N. of 
nodes N. of edges Highest 

Value
Lowest 
Value Mean ± SD Hub genes*

Up
regulated genes 514 1144 0.66 0.00 0.01±0.03

SNX2(0.66), GBAS (0.29), 
ICT1 (0.18), PRKAA1 (0.16), 

ATG10 (0.11),
ATG4C (0.09), CDK1 (0.08), 
PCNA (0.06), RPA1 (0.05), 

BRCA1(0.05) BUB1B (0.04),
PIK3C3 (0.03)

Down regulated 
genes 411 818 0.15 0.00 0.01±0.02

SMAD3(0.15), YWHAG 
(0.15), PABPC1(0.14) 

TRAF2(0.13), SQSTM1 
(0.12), WIPI2 (0.10) 

CLN3(0.06), GABARAPL1 
(0.05), MAP1LC3B (0.05) 

GABARAPL2(0.04), 
MAP1LC3A(0.04)

Numberof nodes, number of edges, Betweenness Centrality and Degree Centrality from both detected networks, *Name of 
hub genes and its Betweenness centrality and degree values. a: BUB1B and SNX2 were selected based on its Betweenness 
Centrality values.
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6 BHC tumors was only 37% without multiple testing 
adjustments, reducing to 5% with adjustment. This is in 
contrast with the gene showing the largest difference in 
healthy skins (fold change=2.7, power=0.97 after multiple-
tests correction). Nonetheless, the tumor data reinforce 
the possible involvement of cell cycle homeostasis and 
autophagy as PRKAA1 and PIK3C3 were the top 2 ranked 
genes. Additional studies of genes identified in this study 
should be conducted in skin cancer tumors to elucidate 
their role in malignant transformation.

A previous PPI network analyses conducted in a 
whole gene expression dataset of 31 primary melanomas 
and 52 metastases reported a PPI network in which PCNA, 
CDK1, MAD2L1, RFC4 and BRCA1 genes showed 
highest degree centrality values among upregulated genes 

in metastases [14]. We observed a similar behaviour in 
in vitro RHC cutaneous cells since PCNA, CDK1 and 
BRCA1 were hub genes in the network of up-regulated 
genes. However, only PCNA reaches statistically 
significant values in in vivo RHC cutaneous cells. Since 
these genes are essential for cell cycle progression and 
DNA repair [23–24], these findings suggest that up-
regulation of these genes may be caused by an increased 
and continuous DNA damage. The intrinsic pheomelanin 
pathway represents an additional contributor to DNA 
damage by increasing oxidation [7, 8]. However, the 
molecular process underlying the increased DNA damage 
is poorly understood. Both in vitro and in vivo RHC 
cutaneous cells show an overexpression of GBAS which 
encodes a mitochondrial protein involved in oxidative 

Figure 3: Hub genes and their first connected genes from network detected among up-regulated genes in co-cultured 
keratinocytes and melanocytes from individuals harbouring Red hair color MC1R variants (GSE44805 dataset). Only 
the first connection of hub genes is indicated. Nodes represent proteins and edges indicate connections between proteins. Nodes are coloured 
based on number of degree: Red (degrees >μ+ 3σ; x>24.8), yellow (μ+ 3σ < degree>μ+ 2σ; 24.8<degree>18.6), blue (degrees<μ+2σ, 
degree<18.6). Node size indicate betweenness centrality values. Hub genes are represented with a thicker black border. The hub genes 
(N=13 nodes) are directly connected with 270 out of 557 nodes within network. The GBAS, PRKAA1, ICT1 and SNX2 hub genes do not 
follow the node size and border criteria to improve graphical representation of the network.
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phosphorylation [25, 26]. Further studies are required to 
clarify the biological role of mitochondrial related gene in 
melanocyte and melanogenesis.

The main limitations of present study are the 
disparity between platforms used for gene expression 
capture (resulting in presence/absence of gene probes 
and probe design), the low frequency of phenotypically 

black hair individuals included in the datasets and the 
differences in type of samples analyzed (cultured skin 
cells vs non-cultured skin cells) Establishment of cultured 
cutaneous cells might influence the expression of certain 
genes resulting in distinct expression such as ATG10 gene 
expression which is found up-regulated in cultured cells 
and down-regulated in non-cultured cells.

Figure 4: Hub genes and their first connected genes from network detected among down-regulated genes in co-cultured 
keratinocytes and melanocytes from individuals harbouring Red hair color MC1R variants (GSE44805 dataset). Only 
the first connection of hub genes is indicated. Nodes represent genes and edges indicate direct interaction between proteins. Nodes are 
coloured based on number of degree in Red (degrees >μ+ 3σ; x>22.2), yellow ( μ+ 3σ < degree>μ+ 2σ; 22.2<degree>16.3), blue (degrees< 
μ+2σ, degree<16.3 Node size indicate Betweenness centrality values. Hub genes are those nodes with the widest border. The hub genes 
(N=11 nodes) connects 177 out of 411 nodes.



Oncotarget11596www.impactjournals.com/oncotarget

In summary, the genes identified may help to reveal 
underlying molecular mechanisms associated with red 
hair color phenotype and future studies of these genes 
may provide insight to better understand the increased 
skin cancer risk observed in individuals harbouring loss-
of-function MC1R variants.

MATERIALS AND METHODS

Whole genome expression data from three different 
datasets were included in the study. An initial dataset 
included whole genome expression from four co-cultured 
keratinocytes and melanocytes from two pair of siblings. 
Phenotypical data and genetic variants in melanoma 
susceptibility genes MC1R and CDKN2A were obtained in 
all individuals. A pair of siblings, phenotypically classified 
as RHC individuals were double heterozygous for the 
p.R160W, p.R151C variants in MC1R (individual 1 and 
individual 2 were 38 and 33 years old, respectively). In 
contrast, a pair of siblings with brown hair color carried 
wild-type MC1R alleles (individual 1 and individual 2 
were 50 and 51 years old, respectively). Moreover, the 
germline p.G101W CDKN2A mutation was detected in 
one of each pair of siblings. Extraction of the expression 
data was carried out using the Whole Human Genome 
Microarray 4x44K (Agilent). Generation, pre-processing 
and differential expression and pathway based analyses 
from this dataset (GSE44805) has been previously 
reported [8].

Expression profiling in healthy skin tissue was 
obtained using Illumina Human HT-12 V3 BeadChips 
(Illumina) in 21 of 705 female individuals from the 

TwinsUK Cohort (http://www.muther.ac.uk/public.
html). The only eligibility criterion for the TwinsUK 
Cohort was twin status and therefore the sample is 
held to be representative of the general population [27, 
28]. For the present study, individuals were selected 
based on phenotypical data since the genetic status of 
the MC1R gene was not available. Fourteen red hair 
individuals (two monozygotic twin pairs, one dizygotic 
twin pair, and 8 singletons) and 7 with black hair (all 
singletons) of Caucasian ancestry were selected. The 
mean age for the RHC individuals was 50.88 years old 
(range=43.33-59.84), while for the BHC individuals 
was 62.04 years old (range=49.23-74.54). All red hair 
individuals but two (missing the MC1R genotype) carry 
at least one RHC allele. For the pair without genetic 
data, multiple photographs taken in different years were 
used in order to confirm that they actually had red hair. 
Non RHC alleles were detected in black hair individuals. 
Probe expression levels were log transformed and quantile 
normalized, and only probes mapping uniquely to genes 
of known function and not containing common SNPs 
were included in the analysis, as detailed elsewhere 
[28], resulting in 16,646 genes. Mean expression profile 
was used when the same gene was targeted by multiple 
probes. Written informed consent was provided by all the 
twins, and the Guy’s and St Thomas’ Hospital NHS Trust 
Research Ethics Committee approved the study.

Generation, pre-processing and analysis of whole 
genome gene expression in melanoma tumors from the 
Leeds Melanoma Cohort (LMC, ethical approval MREC 
1/3/57, PIAG 3-09(d)/2003) has been described elsewhere 
[29]. This data contains 204 melanoma primaries 

Table 2: Differential Expression of hub genes in healthy skin from Red hair color individuals vs Black hair color 
individuals

ID
Results for whole list of genes(A)

(N=1952)
Results from list of hub genes(B)

(N=18)

logFC p.value adj. p.value logFC p.value adj. p.value

ATG10 -0.431 0.001 0.032 -0.432 > 0.001 0.007

CLN3 -0.339 > 0.001 0.024 -0.339 > 0.001 0.007

GABARAPL2 ns ns ns 0.254 0.0188 0.056

GBAS 0.374 0.005 0.067 0.373 0.005 0.017

PCNA 0.209 > 0.001 0.026 0.209 0.001 0.007

SNX2 0.506 0.002 0.041 0.508 0.001 0.007

WIPI2 ns ns ns -0.156 0.034 0.076

YWHAG ns ns ns 0.273 0.023 0.060

Differential expression of hub genes was assessed (A) by analyzing the whole gene expression dataset and (B) by analyzing 
the differential expression of only hub genes. Table shows hub genes with statistically significant p-values and adjusted 
P-values (adj.p.value). logFC= logarithm of Fold Change; ns=not significant P-value



Oncotarget11597www.impactjournals.com/oncotarget

expression-profiled using DASL array HT12 v4. Gene 
expression was compared between 20 melanoma tumors 
from RHC and 6 melanoma tumors from BHC patients. 
All RHC melanoma patients carried at least one RHC 
allele). One patient has missing MC1R genotype. We 
observed that among black haired individuals, one patient 
carried two RHC variants. One patient was missing their 
MC1R genotype.

Statistical analyses

Standardization of gene expression data across 
arrays from co-cultured keratinocytes and melanocytes 
was performed with Agilent Processed Signal (Agilent 
Feature Extraction Software) using quantile normalization 
[30]. Differential gene expression analysis was carried out 
using the limma [31] package from Bioconductor. Multiple 
testing adjustment of p-values was performed according 
to Benjamini and Hochberg (Benjamini & Hochberg, 
1995; Benjamini and Yekutieli, 2001) controlling False 
Discovery Rate (FDR = 5%).

Protein-protein interaction (PPI) networks were built 
based on differentially expressed genes. Identification 
of statistically significant PPI networks within the set 
of differentially expressed genes was carried out by 
SNOW [32] as implemented in Babelomics 5 suite [33], 
where approaches for protein-protein interaction data 
from 5 databases such as IntAct Molecular Interaction 
Database [34], Molecular INTeraction database [35], 
Biomolecular Interaction Network Database [36], 
Database of Interacting Proteins [37] and Human Protein 
Reference database [38] are included for functional 
profiling of genomic data, evaluating the cooperative 
behavior of a list of genes as a functional module. SNOW 
calculates the Minimal connected network (MCN) for the 
proteins/genes in the list. The topology of this MCN is 
then compared against 10,000 random MCNs with same 
size range to obtain a p-value. Statistically significant 
connected networks of differentially expressed genes 
were obtained for up and down regulated transcripts in 
RHC co-cultured melanocytes and keratinocytes. Further 
visualization and evaluation of networks was conducted 
using CytoscapeWeb [39]. Networks were evaluated 
using two topological parameters, namely degree and 
betweenness centrality. Degree centrality counts the 
number of edges connected to each node (protein/gene). 
Betweenness centrality counts the number of times each 
node is included in the shortest path between any two 
other nodes, indicating which node(s) have the larger 
influence on the communication between proteins/genes 
included in the network. Nodes were classified based 
on the mean (μ) and standard deviation (σ) of degree 
centrality value calculated over all proteins/genes in: 
lower connected node (degree<μ+2σ), medium connected 
node (μ+2σ>degree<μ+3σ), and highly connected node 
(degree>μ+3σ). Highly connected nodes or those not 

highly connected nodes but with high betweenness 
centrality values were classify as top nodes (hub genes).

Differential gene expression analysis in healthy 
skin tissue was carried out using the limma R package 
controlling for family structure and batch effects. 
Benjamini and Hochberg’s method, as implemented in 
limma, was used to control the false discovery rate at 10%. 
Differential expression of the hub genes identified in the 
gene expression data from co-cultured melanocytes and 
keratinocytes was assessed firstly by analysing the whole 
gene expression dataset and then by restricting it to hub 
genes only.

Whole differential gene expression was evaluated 
by SNOW following the same analyses as in co-cultured 
melanocytes-keratinocytes data.

Differential expression analysis in tumors was 
restricted to the genes that were identified as hub genes 
in the melanocytes-keratinocytes dataset (N=23). 
Examination of the probe list in the Illumina DASL whole 
genome array confirmed that 33 probes were arrayed 
covering all 23 genes selected as hub genes in networks. 
Differential expression in tumors from 20 RHC vs 6 BHC 
patients from LMC was performed using linear regression 
and adjusting for potential batch effect. Analysis was 
conducted using STATA v12 software.
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