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Active Bayesian perception and reinforcement learning

Nathan F. Lepora, Uriel Martinez-Hernandez, Giovanni Pezzulo, Tony J. Prescott

Abstract— In a series of papers, we have formalized an active
Bayesian perception approach for robotics based on recent
progress in understanding animal perception. However, an issue
for applied robot perception is how to tune this method to a
task, using: (i) a belief threshold that adjusts the speed-accuracy
tradeoff; and (ii) an active control strategy that moves the sen-
sor during perception. Here we propose that this tuning should
be learnt by reinforcement from a reward signal evaluating
the decision outcome. We test this claim with a biomimetic
fingertip that senses surface curvature under uncertainty about
its contact position. Appropriate formulation of the problem
allows application of multi-armed bandit methods to optimize
the threshold and fixation point of the active perception. In
consequence, the system learns to balance speed versus accuracy
while also tuning the fixation point to optimize both quantities.
Although we consider one example in robot touch, we expect
that the underlying principles have general applicability.

I. INTRODUCTION

A main principle underlying animal perception is the

accumulation of evidence for multiple perceptual alternatives

until reaching a preset belief threshold that triggers a deci-

sion [1], [2], formally related to sequential analysis methods

for optimal decision making [3]. In a series of papers [4],

[5], [6], [7], [8], we have formalized a Bayesian perception

approach for robotics based on this recent progress in under-

standing animal perception. Our formalism extends naturally

to active perception, by moving the sensor with a control

strategy based on evidence received during decision making.

Benefits of active Bayesian perception include: (i) robust

perception in unstructured environments [8]; (ii) an order-of-

magnitude improvement in acuity over passive methods [9];

and (iii) a general framework for simultaneous object local-

ization and identification, or ‘where’ and ‘what’ [9].

This work examines a key issue for applying active

Bayesian perception to practical scenarios: how to choose

the parameters for the optimal decision making and active

perception strategy. Thus far, the belief threshold has been

treated as a free parameter that adjusts the balance between

mean errors and reaction times (e.g. [7, Fig. 5]). Meanwhile,

the active control strategy has been hand-tuned to fixate to a

region with good perceptual acuity [8], [9]. Here we propose

that these free parameters should be learnt by reinforcement

from a reward signal that evaluates the decision outcome,

and demonstrate this method with a task in robot touch.

Past work on reinforcement learning and active perception

This work was supported by EU Framework projects EFAA (ICT-270490)
and GOAL-LEADERS (ICT-270108) and also by CONACyT (UMH).

NL, UMH and TP are with SCentRo, University of Sheffield, UK.
Email: {n.lepora, uriel.martinez, t.j.prescott}@sheffield.ac.uk

GP is with the ILC, Pisa and ISTC, Roma, Consiglio Nazionale delle
Ricerche (CNR), Italy. Email: giovanni.pezzulo@cnr.it

Fig. 1. Experimental setup. (A) Schematic of tactile sensor contacting a
cylindrical test object. The fingertip is moved horizontally to sample object
contacts from different positions. (B) Top-down view of experiment, with
the fingertip mounting on the arm of the Cartesian robot visible to the left.

has been confined to active vision, and was motivated ini-

tially by the perceptual aliasing problem for agents with

limited sensory information [10], [11], [12]. Later studies

shifted emphasis to optimizing perception, such as learning

good viewpoints [13], [14], [15]. Just one paper has consid-

ered active (not reinforcement) learning to optimize active

touch [16]. There has also been interest in applying reinforce-

ment learning to visual attention [17], [18], [19]. We know

of no work on learning an optimal decision making threshold

and active control strategy, by reinforcement or otherwise.

Our proposal for active Bayesian perception and reinforce-

ment learning is tested with a simple but illustrative task of

perceiving object curvature using tapping movements of a

biomimetic fingertip with unknown contact location (Fig. 1).

We demonstrate first that active perception with fixation point

control strategy can give robust and accurate perception, but

the reaction time and acuity depend strongly on the choice

of fixation point and belief threshold. Next, we introduce a

reward function of the decision outcome, which for illustra-

tion is taken as a linear Bayes risk of reaction time and error.

Interpreting each active perception strategy (parameterized

by the decision threshold and fixation point) as an action,

then allows use of standard reinforcement learning methods

for multi-armed bandits [20]. In consequence, the appropriate

decision threshold is learnt to balance the risk of making

mistakes versus the risk of reacting too slowly, while the

fixation point is tuned to optimize both quantities.

Although we consider one example in robot touch, we ex-

pect that the underlying principles are sufficiently general to

be applicable across a range of other percepts and modalities.



Fig. 2. Algorithm for active Bayesian perception with reinforcement
learning. Active Bayesian perception (left) has a recursive Bayesian update
to give the marginal ‘where’ and ‘what’ posteriors, allowing active control
of the sensor position and decision termination at sufficient ‘what’ belief.
Reinforcement learning (right) modifies the decision threshold and active
control strategy based on reward information derived from the decisions.

II. METHODS

A. Active Bayesian Perception with Reinforcement Learning

Our algorithm for active perception is based on including

a sensorimotor feedback loop in an optimal decision mak-

ing method for passive perception derived from Bayesian

sequential analysis [4]. Sequential analysis uses a free pa-

rameter, the decision threshold, to adjust the speed-accuracy

tradeoff of the decisions. Our control strategy for active

perception also has another free parameter, the fixation point.

We thus introduce reinforcement learning to set these two

free parameters according to a reward function of the speed

and accuracy of the decision outcome.

Measurement model and likelihood estimation: Each tap

against a test object gives a multi-dimensional time series of

sensor values across the K taxels (Fig. 3). The likelihood of

a perceptual class cn ∈ C for a test tap zt (with samples sj)

is evaluated with a measurement model [4], [5]

P (zt|cn) =
JK

√

∏J

j=1

∏K

k=1
Pk(sj |cn). (1)

The sample distribution is determined off-line from the

training data using a ‘bag-of-samples’ histogram method

Pk(s|cn) =
hk(b(s))
∑

b hk(b)
, (2)

with hk(b) the occupation number of a bin (and b(s) ∋ s),

taking 100 bins across the full range of sensor data. Here we

have K = 12 taxels and J = 50 time samples in each tap.

Bayesian update: Bayes’ rule is used to recursively update

the beliefs P (cn|zt) for the N perceptual classes cn with

likelihoods P (zt|cn) of the present tap zt

P (cn|zt) =
P (zt|cn)P (cn|zt−1)

P (zt|zt−1)
. (3)

The likelihoods P (zt|cn) are assumed i.i.d. over time t (so

z1:t−1 drops out). The marginal probabilities are conditioned

on the preceding tap and calculated by summing

P (zt|zt−1) =

N
∑

n=1

P (zt|cn)P (cn|zt−1). (4)

Iterating the update (3,4), a sequence of taps z1, · · · , zt gives

a sequence of posteriors P (cn|z1), · · · , P (cn|zt) initialized

from uniform priors P (cn) = P (cn|z0) = 1/N . Here we use

N = 80 classes over 16 positions and 5 object curvatures.

Marginal ‘where’ and ‘what’ posteriors: The perceptual

classes have L ‘where’ (position) and M ‘what’ (curvature)

components, with each class cn an (xl, wm) ’where-what’

pair (i.e. C = X ×W ). Then the beliefs over the individual

‘where’ and ‘what’ classes are found by marginalizing

P (xl|zt) =

M
∑

m=1

P (xl, wm|zt), (5)

P (wm|zt) =

L
∑

l=1

P (xl, wm|zt), (6)

with the ‘where’ beliefs summed over all ‘what’ classes and

the ‘what’ beliefs over all ‘where’ perceptual classes. Here

we use L = 16 position classes and M = 5 curvature classes.

Stopping condition on the ‘what’ posteriors: Following

methods for passive Bayesian perception using sequential

analysis [4], a threshold crossing rule on the marginal ‘what’

posterior triggers the final ‘what’ decision, given by the

maximal a posteriori (MAP) estimate

if any P (wm|zt) > θW then wMAP = argmax
wm∈W

P (W |zt).

(7)

This belief threshold θW is a free parameter that adjusts the

balance between decision speed and accuracy.

Active perception with the ‘where’ posteriors: Here we

consider a control strategy with fixation point xfixed that the

sensor attempts to move to. Then the appropriate move ∆ is

x→ x+∆(xMAP) , ∆(xMAP) = xfixed − xMAP, (8)

with xMAP the ‘where’ decision of sensor location deter-

mined after every test tap

xMAP = argmax
xl∈X

P (X|zt). (9)

The ‘where’ posteriors should be kept aligned with the sensor

by shifting the joint ‘where-what’ posteriors with each move

P (xl, wm|zt) = P (xl −∆, wm|zt). (10)

For simplicity, we recalculate the posteriors lying outside the

original range by assuming they are uniformly distributed.

Reinforcement learning: The active perception strategy is

defined by two free parameters, the decision threshold θW
and fixation point xfixed, to be learnt by reinforcement. Each

learning episode i is a perceptual decision with reaction time

Ti and error ei, with an ensuing scalar reward signal r(T, e)
taken here as the negative Bayes risk

ri = −αTi − βei, (11)



Fig. 3. Fingertip pressure data recorded as the finger taps against a test rod (diameter 4 mm) at a constant rate of 1 tap/sec. The range of finger positions
spanned 16 mm over 320 s, giving 320 taps spaced every 0.05 mm. Tickmarks are shown every 1 mm displacement, or 20 taps. Data from the different
taxels are represented in distinct colors depending on the taxel position shown on the diagram to the right.

where α, β are positive coefficients that parameterize the

riskiness of increasing reaction times and errors. Note that

only the relative value α/β is important, because we aim to

learn the optimal speed-accuracy tradeoff.

Standard techniques from reinforcement learning can be

used to learn the active perception strategy that maximizes

reward. If each strategy (θW , xfixed) is considered an action,

then the problem is equivalent to a multi-armed bandit.

Discretizing the decision threshold θW ∈ {θ(1), · · · , θ(D)}
and noting the L ‘where’ classes are already discrete, allows

the use of standard methods for balancing reward exploration

versus exploitation (see e.g. [20, ch. 2]). Here we have

D = 13 and L = 16, giving 208 distinct actions. For

simplicity, we keep a running average of the rewards for

each action a = (θ(d), xl), using an incremental update

Qa ← Qa +
1

ia + 1
(ri −Qa) , (12)

with ia the number of times that action has been performed.

Exploration is achieved with initially optimistic Qa and

exploitation by choosing the action with maximal Qa.

B. Tactile data collection

The tactile sensors have a rounded shape that resembles

a human fingertip [21], of dimensions 14.5 mm long by

13 mm wide. They consist of an inner support wrapped with a

flexible printed circuit board (PCB) containing 12 conductive

patches for the touch sensor ‘taxels’. These are coated with

PCB and silicone layers that together comprise a capacitive

touch sensor to detect pressure via compression. Data was

collected at 50 samples per second with 256 vales, and then

normalized and high-pass filtered before analysis [21].

The present data were collected for a previous study [7],

and have direct relevance to the work presented here. These

experiments were designed to test the capabilities of the

tactile fingertip sensor mounted on an xy-positioning robot.

This robot can move the sensor in a highly controlled

and repeatable manner onto various test stimuli (∼50µm

accuracy), and has been used for testing various tactile sen-

sors [22]. The fingertip was mounted at an angle appropriate

for contacting axially symmetric shapes such as cylinders

aligned perpendicular to the plane of movement (Fig. 2).

Five smooth steel cylinders with diameters 4 mm, 6 mm,

8 mm, 10 mm and 12 mm were used as test objects: they

were mounted with their centers offset to align their closest

point to the fingertip in the direction of tapping.

Data were collected while having the fingertip tap pe-

riodically along the vertical y-axis onto and off each test

object with contact duration 0.5 secs and 1 sec of each

tap saved for analysis. The cylinder axis lay across the

fingertip (down the taxels in Fig. 3). Between each tap, the

fingertip was displaced 0.05 mm in the horizontal x-direction

across the face of the cylinder. Altogether, 320 horizontal

displacements spanning 16 mm were used for each cylinder,

comprising 1600 taps in total. Distinct training and test sets

were collected for all 5 cylinder diameters.

III. RESULTS

A. Simultaneous object localization and identification

As observed previously [7], the pattern of taxel pressures

from each tap against a test object (here a cylinder) depended

on both the surface curvature and the horizontal position of

the fingertip relative to the object (Fig. 3), permitting simul-

taneous object localization and identification. As the fingertip

moved across its horizontal range, the taxels were activated

initially at its base (dark blue; Fig. 3), then its middle (light

blue to green) and finally its tip (red). An important aspect of

the taxel activation is the broad (∼8 mm) receptive fields: the

overlap between these fields enables perceptual hyperacuity,

whereby finger position may be localized more finely than

the taxel resolution (∼4 mm spacing) [7]. This hyperacuity

will be apparent in the following results.

Previous work has considered passive Bayesian percep-

tion with this dataset [7]. Passive Bayesian perception ac-

cumulates belief for distinct ‘where’ (horizontal position)

and ‘what’ (curvature) classes by making successive taps

against the test object until at least one of the marginal

‘what’ posteriors crosses a belief threshold, when a ‘where’

(localization) and ‘what’ (identification) decision is made.

For the present dataset, the best passive perceptual acuity

was ∼2 mm for cylinder diameter (4-12 mm range), which

is the primary decision considered in following sections. The

horizontal position was localized to ∼0.6 mm (16 mm range),

demonstrating hyperacuity at ∼15% of the sensor resolution.

In a previous study, we showed that perceptual acuity was

improved with an active perception strategy that moves the



Fig. 4. Active perception behavior. (A) Trajectories converge on the fixation
point (8 mm) independent of starting position. (B) Reaction times have a
positively skewed distribution, as commonly seen in psychology.

sensor randomly after a fixed deadline [7]. The present study

uses an improved method for active perception based on

orienting the sensor to a fixation point, which has been shown

to both improve acuity over passive perception and enable

robust perception in unstructured environments [8], [9].

B. Active Bayesian perception

Active Bayesian perception also accumulates belief for the

‘where’ (horizontal position) and ‘what’ (cylinder diameter)

perceptual classes by successively tapping against a test

object until reaching a predefined ‘what’ belief threshold.

In addition, it utilizes a sensorimotor loop to move the

sensor according to the online marginal belief estimates

during the perceptual process (Fig. 2; left loop). The active

perception method considered here uses a ‘fixation point’

control strategy, such that the marginal ‘where’ beliefs are

used to infer a best estimate for current location and thus a

relative move towards a preset target position on the object.

For the present data set of several cylinder diameters

over a range of horizontal positions, the typical behavior

for active Bayesian perception with fixation point strategy

has the sensor orienting quickly to the fixation position

within a few taps independent of starting placement (Fig. 4A;

example fixation point at 8 mm; decision threshold 0.95). The

reaction times to reach the belief threshold have a positively

skewed distribution (Fig. 4B) reminiscent of that obtained

from behavioral/psychological experiments with humans and

animals. Note that active Bayesian perception leads to greatly

improved mean reaction times and perceptual acuity com-

pared with passive methods for estimating cylinder diameter

(cf. results in [7]). For the decisions shown in Fig. 4, the

mean absolute error was ∼0.7 mm, much better than ∼2 mm

for passive perception. Note also that active perception has

an added benefit of aligning the sensor onto the same point of

the object whatever the relative initial positioning, in effect

compensating for an unstructured environment.

The decision accuracy and reaction times for active

Bayesian perception depended strongly on both the belief

threshold and fixation point (Fig. 5; threshold indicated

by gray shade of plot, fixation point on x-axis). As the

Fig. 5. Active perception results depends on the decision threshold and
fixation point. The mean accuracy of identifying the cylinder (A) and the
mean reaction time (B) vary with threshold (gray-shade of plot) and fixation
point (x-axis). Each data point corresponds to 10000 decision episodes.

belief threshold is raised (darker gray plots), more evidence

is required to make a decision, which results in lower

errors of perceiving cylinder diameter and longer reaction

times. The choice of fixation point is also important for

perception, with the central region of the horizontal range

giving lower errors and reaction times compared with those

at the extreme positions. This dependence on fixation point

is due to the physical properties (morphology) of the tactile

sensor coupled with shape and dynamics of the perceived

object. Thus, central contacts of the fingertip activate more

taxels and have improved reliability, in contrast to glancing

contacts at its base or tip (Fig. 3). In consequence, errors

improved from ∼2 mm for fixation at the base or tip, down

to .1 mm at the center (Fig. 5; decision thresholds &0.95).

Examining Fig. 5 by eye, reveals that an active perception

strategy with central fixation point gives the finest perceptual

acuity and quickest reaction times. However, the plots in

Fig. 5 were obtained by ‘brute force’ over millions of

validation episodes. This raises the question of how optimal

active perception should be determined in practice from a

manageably small number of decision episodes.

C. Active Bayesian perception with reinforcement learning

The main theme of this paper is that the parameters

controlling active perception (here the decision threshold and

fixation point) should be learnt by reinforcement using a

reward function that evaluates the decision outcome (Fig. 2).

For simplicity, we use an example reward function given

by (minus) the linear Bayes risk of reaction time and absolute

decision error (Eq. 11). Although the proposed approach



Fig. 6. Example run of reinforcement learning to optimize the active perception strategy. Change in decision error (A) and reaction time (B) as the belief
threshold (D) and fixation point (E) are learnt to optimize mean reward (C). Target values from brute-force optimization of the reward function are shown
in red. All plots are smoothed over 100 episodes. Results are for risk parameter α/β = 0.2 and initial optimistic reward estimates of 100.

Fig. 7. Dependence of optimal active perception strategy on Bayes risk parameter. The final error (A), reaction time (B), reward (C), decision threshold
(D) and fixation point (E) are shown after 5000 reinforcement learning episodes, for 100 risk parameters ranging from 0 to 0.4. The risk parameter describes
the relative reward benefits of improving speed versus accuracy (Eq. 11). Target values from brute-force optimization of the reward function are in red.

should be independent of reward function, considering the

Bayes risk gives a simple interpretation of the problem in

terms of minimizing the relative risks of taking too long to

reach a decision versus making errors. Then the resulting

speed-accuracy tradeoff depends only upon the ratio α/β of

the two coefficients in the Bayes risk, with a smaller ratio

placing more risk on the decision error and a larger ratio on

the reaction time. Maximizing reward minimizes this risk.

In this work, each combination of the threshold and

fixation point define a distinct active perception strategy,

with the decision thresholds taking the discrete values in

Fig. 5. If the optimal strategy is to be learnt by reinforcement

over many episodes, each active perception strategy may

be considered a distinct action, and there is just one state.

The overall situation therefore reduces to a standard multi-

armed bandit problem. In consequence, the optimal active

perception strategy can be learnt efficiently using standard

methods for balancing exploration versus exploitation (e.g.

those from [20, ch. 2]). In practice, all such methods that

we tried converged well for appropriate learning parameters,

hence we simplify our explanation by considering only a

greedy method with incrementally updated reward estimates

from optimistic initial values (Eq. 12).

For a typical instance of reinforcement learning and active

perception, the active control strategy converged to nearly

optimal perception over ∼103 decision episodes (Fig. 6;

α/β = 0.2). In particular, the decision threshold and fixation

point converged close to their optimal values (Figs 6D,E;

red lines) found with brute force optimization of the reward

function (validated over ∼107 episodes). The fixation point

converged to the center of the range, consistent with the

brute-force results in Fig. 5, while the decision threshold

converged to a suitable value to balance mean reaction times

and errors. Accordingly, the mean decision error and reaction

time approached their optimal values with noise due to the

stochastic decision making (Figs 6A,B), while reward also

increased stochastically to around its optimal value (Fig. 6C).

For many instances of reinforcement learning and active

Bayesian perception, the active control strategy converged

to nearly optimal perception over a range of risk parameters

(Fig. 7; 0 < α/β < 0.4). This risk parameter represents the

relative risk of delaying the decision (α) versus making an

error (β). All parameters, including the decision threshold,

fixation point, rewards, decision error and reaction time

reached values near to optimal after 5000 episodes (Fig. 7;

red plots, validation with ∼107 episodes) over range of risk

parameters giving a broad span of speed-accuracy tradeoffs.

Therefore, reinforcement learning and active perception

combine naturally to give a robust method for achieving

optimal perception. The converged parameters values con-

trolling active perception depend on the relative risk of speed

versus accuracy. Shifting the balance of risk towards accu-

racy (smaller α/β), results in larger decision thresholds and

longer reaction times, while the converse occurs with placing

the risk in speed (larger α/β). Concurrently, the fixation

point is tuned to optimize both quantities, and converges to

the central position apart from very brief decisions when the

active perception strategy becomes irrelevant (for large α/β).



IV. DISCUSSION

In this paper, we proposed an algorithm that combines

active Bayesian perception with reinforcement learning and

tested the method with a task in robot touch, which was

to perceive object curvature using tapping motions of a

biomimetic fingertip from unknown initial contact location.

Active perception with fixation point control strategy gave

robust and accurate perception, although the reaction time

and acuity depended strongly on the choice of fixation point

and belief threshold. Introducing a reward function based on

the Bayes risk of the decision outcome and considering each

combination of threshold and fixation point as an action,

allowed use of standard reinforcement learning methods

for multi-armed bandits. The system could then learn the

appropriate belief threshold to balance the risk of making

mistakes versus the risk of reacting too slowly, while tuning

the fixation point to optimize both quantities.

These results demonstrate that optimal robot behavior for a

perceptual task can be tuned by appropriate choice of reward

function. Here we used a linear Bayes risk of decision error

and reaction time to give a simple demonstration over a

range of robot behaviors, parameterized just by the relative

risk of speed versus accuracy. The system then learned to

make quick but inaccurate decisions when reaction time was

risky compared with errors, and accurate but slow decisions

when errors were risky compared with reaction times. We

emphasize that the general approach does not depend on

the specifics of the reward function, with the actual choice

representing the task aims and goals. Imagine, for example, a

production line of objects passing a picker that must remove

one class of object: if the robot takes too long, then objects

pass it by, and if it makes mistakes, then it picks the wrong

objects; both of these outcomes can be evaluated and used

to reward or penalize the robot to optimize its behavior.

A key step in our combination of active perception and re-

inforcement learning was to interpret each active perception

strategy (parameterized by the threshold and fixation point)

as an action. We could thus employ standard techniques for

multi-armed bandits [20], which generally worked well, and

for reasons of simplicity and pedagogy we used a greedy

method with optimistic initial values. Although it is beyond

the scope of this paper, we expect that efficient use of the

reward structure could significantly reduce exploration and

hence regret (reward lost while not exploiting). For example,

the reward is generally convex in the decision threshold,

which could be used to constrain the value estimates.

In future work, we will study scaling our method to the

many degrees of freedom necessary for practical purposes

in robotics. Optimal active Bayesian perception via rein-

forcement could then give a general approach to robust and

effective robot perception.
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