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ABSTRACT

This work aims to augment the capacities for haptic perception in
the iCub robot to generate a controller for surface exploration. The
main task involves moving the hand over an irregular surface with
uncertain slope, by concurrently regulating the pressure of the con-
tact. Providing this ability will enable the autonomous extraction of
important haptic features, such as texture and shape. We propose a
hand controller whose operational space is deÞned over the surface
of contact. The surface is estimated using a robust probabilistic
estimator, which is then used for path planning. The motor com-
mands are generated using a feedback controller, taking advantage
of the kinematic information available by proprioception. Finally,
the effectiveness of this controller is extended using a cerebellar-
like adapter that generates reliable pressure tracking over the Þnger
and results in a trajectory with less vulnerability to perturbations.
The results of this work are consistent with insights about the role
of the cerebellum on haptic perception in humans.

Keywords: Haptic perception, robot sensorimotor control, tactile
exploration

Index Terms: I.2.9 [ArtiÞcial intelligence]: Robotics�
Kinematics and dynamics/Manipulators

1 INTRODUCTION

Robots are required to have high dexterity to interact with sur-
rounding objects, as humans do. Coarse exploration of objects has
been widely explored through grasping-based actions, but Þne ex-
ploration remains an open problem because it requires of accurate
movements to sensibly manipulate objects or extract important tac-
tile information. For example, the tactile perception of texture or
shape has mainly been achieved with robots making reproducible
actions in simple environments [6]. An important task in Þne ex-
ploration is to place the hand over an unknown surface and slide it
while regulating the pressure of the contact. Tactile arrays and soft
Þngers have been commonly used to execute this exploratory pro-
cedure, in order to achieve surface recognition [8] or reconstruction
[12]. SpeciÞcally, the work in [11] relies on a soft Þngertip that
allows measuring the contact force from any direction. An hybrid
velocity-force controller [15] is used to regulate the Þnger com-
pliance with respect to the shape of the explored object. Using a
similar type of sensor, Karayiannidis and Doulgeri [5] use a force-
position controller to estimate the slope of the surface and regulate
the intensity of the contact. The dynamic parameters of a three-link
manipulator are adapted using feedback from force sensors. On
the other hand, the work in [1] addresses the problem of explor-
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Figure 1: The iCub robot

ing the surface when the contact is also compliant. In this case,
the controller is based on a neural network that learns the dynamic
characteristics of the surface. In all these cases, information about
dynamics of the manipulator and force sensor are available.

We are interested in implementing such dexterity in the child-
like iCub android (see Fig. 1). Each upper limb is controlled by
16 degrees of freedom (DOF): seven for the arm and nine for the
hand [13]. An encoder is paired with each joint to capture pro-
prioceptive information. The android hand has soft Þngertips with
rubber-covered sensors oriented towards the hand palm. However,
the haptic interaction with the environment requires a careful plan
for avoiding any physical damage to the robot. Its Þngers are op-
erated via a tendon-based actuation system that produces nonlin-
earities projected as springiness effects. The problem has a fur-
ther challenge that the contact between the hand and surface has to
maintain constant pressure during the exploration, for which there
is no available information for the torque at the Þngers, which is an
important difference with respect to related work.

We require a hand controller whose operational space is deÞned
over a surface of contact with unknown height and slope. Due the
accuracy and sampling rate of the encoders, tests upon the real
robot have showed us that Þnger deßection might be more reli-
able than the tactile sensors for detecting contact. Hence, the pro-
posed controller aims to regulate the contact pressure, using the
measurements of the Þnger joints. In order to achieve the optimal



Figure 2: The scenario for haptic exploration.

conÞguration for haptic sensing, the pose of the hand is regulated
based on the plane of contact. The effectiveness of this controller
with respect to dynamic uncertainty and noise is extended using an
adaptive technique that has been used in neurosciences to model
similar functionality of the cerebellum [4]. The pose of the Þnger
does not only provide information about the position of the surface,
but could also be highly useful for exploring surfaces with different
properties, such as texture, stiffness and shape. With this technique,
a priori knowledge of the dynamic properties of the Þnger is not
necessary.

The geometrical formulation of the problem is described in Sec-
tion 2. A brief description of the adaptive strategy used in this paper
is then provided in Section 3. The proposed controller is described
in Section 4. The experiments, results and discussion comprise the
remaining sections of this paper.

2 PROBLEM FORMULATION

The operational space for surface exploration is deÞned by a bi-
dimensional plane over the explored object. The movement of the
hand is restricted over this plane, to hold the condition of contact
over the surface. This scenario is illustrated in Fig. 2.

Let q∈R
nq be the set of joint variables, which represent the state

of the arm with nq degrees of freedom. The frame B is the Þxed
frame attached to the base of the body, which allows deÞnition of
the Cartesian position of the end effector ph = [xh,yh,zh]

T and its
velocity úph. The frame of the hand H is placed over the end effector
and aligned with the orientation of the hand. The orientation of the
end effector with respect to the Þxed frame is deÞned by a rotation
matrix Rh = [nh,oh,ah], with column-vectors nh,oh,ah ∈ R

3 and
the ah-axis aligned perpendicularly to the palm of the hand.

Let the surface exploratory frame S be deÞned as the planar re-
gion with the same orientation as that the surface, but displaced over
the hand position ps, with respect to the Þxed frame. The point ps is
the hand position at the initial contact with the surface. The orien-
tation of the surface is represented by matrix Rs = [ns,os,as]. The
orthogonal column-vectors ns,os,as ∈ R

3 are the axes of S, where
ns is the normal to the surface. The desired orientation and angular
velocity between the surface and hand are represented by Rsh and
sh, respectively. We assume that the desired displacement will be
along the os axis of the surface, in order to simplify some computa-
tions. Thus, magnitude of the hand displacement ds is represented
over the frame S by psh = [0,ds,0]

T . Finally, the desired velocity
in the surface frame is úpsh = [0, úds,0]

T .
The desired movement of the end effector can then be speciÞed

by the estimation of the surface. If we deÞne R̄s as the rotation
matrix that represents the estimated orientation of the surface, then

the desired hand position phd and hand rotation matrix Rhd with
respect to the Þxed frame can be deÞned by

phd = ps +

∫

R̄s úpshdt (1)

Rhd = R̄sRsh (2)

Thus, the desired linear velocity úphd and angular velocity hd are
computed by

úphd = R̄s úpsh (3)

hd = R̄ssh (4)

On the other hand, the force applied during the contact cannot be
measured directly, but there is a relation with respect to the kine-
matic status of the Þnger. The dynamic behaviour of a mechanism
with ßexible joints is deÞned by [3]

M(q)q̈+C( úq,q)+g(q)+  f = P(q)+J(q)h (5)

where M is the moment of inertia, C is the Coriolis term, g(q) is the
gravitational force and  f is the frictional torque with the surface.
The contact force h is propagated across the system by the kine-
matic Jacobian J(q). The torque produced by the Þnger stiffness is
represented by the function P(q).

The hand applies a regulated force over the surface when the
right-hand side term of (5), is in equilibrium. Also, the contact force
can be represented by a generalized spring based on the distance be-
tween the hand and the surface. Considering the end effector as at
the centre of the hand�s palm, let ph,0 be deÞned as the position of
the hand just before experiencing any force over the Þngers. The
full-contact position of the end effector ph,e is deÞned when the
hand has direct contact with the surface [15]. The force magnitude
generated by the contact could be computed by h = ks(ph − ph,0)
where ks is a constant related to the surface stiffness. Since we as-
sume that we do not have information about Þnger dynamics, we
propose an adaptive mechanism for compensating this uncertainty,
implementing an efÞcient kinematic controller that utilizes the nat-
ural stiffness of the Þnger.

3 ROLE OF THE CEREBELLUM

3.1 Motor coordination in haptics

The generation of coordinated movements is a product of the inter-
action among several parts of the brain that combine information
hierarchically. However, our nervous system is contaminated by
noise, and is vulnerable to delays and uncertainty caused by in-
complete knowledge of the world. Some of these issues may be
overcome by an intrinsic process of probabilistic inference, which
is enriched by prior knowledge about the environment and used to
generate motor commands of high complexity. Furthermore, these
issues are also dealt with by the complex functionality of the cere-
bellum that applies low-level motor corrections. The cerebellum is
an important brain structure involved in motor coordination. Its role
has been associated with noise decorrelation [4], temporal-tuning
[17] and dynamic model learning [14]. Its versatility is provided
by a complex neural structure known as the cerebellar microcir-
cuit, which is responsible for the sensorimotor calibration and other
functions [10]. It has been suggested that the participation of the
cerebellum is essential for interaction-based Þne movements, be-
cause the force of the contact is directly regulated by this brain
structure [16]. Furthermore, it has been demonstrated that the par-
ticipation of the cerebellum is necessary when perception depends
on self-generated movements, such as discrimination of stiffness
[2].



Figure 3: Adaptive Þlter model of cerebellar microcircuit. The mossy
Þber input u(t) are encoded by granule cells, whose axons form par-
allel Þbers vi(t) with synapse on Purkinje cells.

3.2 Cerebellar model

The Purkinje cells of the cerebellar cortex receive excitatory in-
puts from parallel Þbers, which are granule cell axons [9]. These
granule cells are excited by mossy Þbers with afferent connections
from the spinal cord. Each Purkinje cell receives further excitatory
synapses from a single climbing Þber that originates from inferior
olivary neurons. This connection is important because it can act as
a teaching signal to regulate the Þring of Purkinje cells in response
to their parallel Þber inputs. This cerebellar microcircuit has been
conceived of as an adaptive Þlter, and is related to the Marr-Albus
model of cerebellar function [4, 7]. This model is illustrated in Fig.
3. The input signal u(t), comprising motor and sensory signals, is
Þrstly processed by bank of Þlters Gi, which provide a simpliÞed
model of the granule cells [4]. These Þlters transform the input sig-
nal into an expanded array of parallel Þber signal vi(t). Here the
Þlters Gi are based on a set of radial basis functions (RBF) that pro-
vides a set of encoded delayed input data for the adaptive layer of
the Þlter.

The output of the Purkinje cells is modelled as a weighted sum
of these parallel Þber signals, with the weights corresponding to
synaptic efÞcacies. The climbing Þber input is then interpreted as
a teaching signal e(t) that originates from the inferior olive, which
adapts the synaptic weights. The temporal correlation between the
parallel Þber and teaching signal is used to modify each weight
wi(t) through the following covariance learning rule

wi(t) =− (vi(t)− v̄i)(e(t)− ē) (6)

where  is the learning rate, and v̄i and ē are mean values of vi(t)
and e(t), respectively. Finally, the olivary neuron utilizes perceptual
information to infer an error measurement that is used to regulate
the motor coordination. Perceptual information could be generated
from diverse sources (e.g. from visual or tactile sensors).

4 CONTROLLER

The general scheme to control the surface exploration is illustrated
in Fig. 4. First, the orientation of the surface is estimated, using
the real displacement of the hand. Second, the trajectory and pose
of the end effector are deÞned in the operational space. Then, the
motor commands are transformed into actuator primitives within
the joint space. Finally, a cerebellar-like structure is integrated to
generate motor corrections. The rest of the section describes each
part of this controller.

4.1 Observer of the surface orientation

The trajectory and pose of the hand has to be determined by the
shape of the surface. The main strategy is to move the end effector
perpendicularly to the surface normal vector. Because the surface
state is uncertain, the surface axes have to be estimated while ex-
ploring. This paper proposes a probabilistic observer that holds the

Figure 4: Controller for surface exploration. The orientation of the
surface Rs is estimated utilizing the measured velocity of the hand.
Meanwhile, the distance between the surface and the hand is regu-
lated by the cerebellar-like structure, utilizing the Þnger deßection.

tracking onto the slope of the surface and gradually updates its es-
timates.

While displacing the hand over the surface, it is convenient to
align the axis os with respect to the unitary directional vector of
the hand movement, tangential to the surface. Note that the desired
hand displacement and velocity have been already deÞned with this
assumption in Section 2. In this case, the axis as consists on the
other tangential vector over the surface, perpendicular to the hand
movement, which should be kept constant whilst the rest of the axes
are being estimated. The estimation of the normal vector n̄s,t , at
time t, is directly computed by the cross product

n̄s,t = ās,t × ōs,t (7)

where ās,t is the estimated axis as. The coordinates of the esti-
mated axis ōs,t = [ox,t ,oy,t ,oz,t ] are correlated by the normalization
of this directional vector. Hence, the observer can only focus on es-
timating the vertical coordinate oz,t of the surface using the instant
displacement of the hand.

From (3), the vertical coordinate zh of the desired hand velocity
úphd is computed by

zh = R̄[s,3] úpsh (8)

where R̄[s,3] is the third row of the current rotation matrix R̄s. Let

J[3]( �q) be deÞned as the third row of the kinematic Jacobian, pa-
rameterized by the current joints measurement �q. Thus, the mea-
surement of the vertical hand displacement can be computed by

�zh = J3( �q) �q (9)

In addition, the measurement noise from the joints can be modeled
by its covariance q, which can be transformed into operational
units through uncertainty propagation by

z = J3( �q)qJ
T
3 ( �q) (10)

Then, the innovation v and its covariance S are computed by

v = zh− �zh (11)

S = úpT
shO úpsh+z (12)

where O represents the expected variability in the elevation of the
explored surface. Finally, the vertical coordinate oz,t of the surface
frame axis os is estimated by the following update law

oz,t = oz,t−1 +Kv (13)



where K is the appropriate Kalman gain computed by

K = úpT
shO úpshS

−1 (14)

The estimates n̄s,t and ōs,t are used to update Rs in each instant of
the time, describing the surface orientation at the point that is being
currently touched.

4.2 Generation of motor commands

With the estimation of the surface orientation, the desired trajectory
and pose of the hand are updated by (1)-(4). Then, the generation of
motor commands requires the computation of a reference velocity
vector in the operational space.

First, let ep and eo be deÞned as the position and orientation error
of the end effector, computed by

ep = phd − �ph (15)

eo =
1

2
( �nh × n̄h + �oh × ōh + �ah × āh) (16)

where the measured hand position �ph and observed hand orientation
matrix �Rh = [ �nh, �oh, �ah] could be computed by direct kinematics us-
ing the current joint positions. Differentiating (15) and (16), the
respective velocity error is

úep = úphd − �úph (17)

úeo = LThd −L � (18)

L =−
1

2
(S(n̄h)S( �nh)+S(ōh)S( �oh)+S(āh)S( �ah)) (19)

and S(·) is the skew-symmetric operator [15].
Then, the measured error can be used as feedback in a PID con-

troller upon the operational space, computing the velocity-based
motor commands [5] by

[

úpc

c

]

=

[

úphd −Qep − n̄s

||n̄s ||
h−Ih

LThd − eo

]

(20)

where  ,  ,  and  are control parameters, the matrix Q projects
the error position over the tangential plane of the surface and the
vector n̄s/||n̄s|| is the component of a force-based differential dur-
ing the contact over the normal vector of the surface. The term Ih
is the accumulative term of the force-based differential h.

The joint-level commands are based on the built-in velocity-
based control implemented on the iCub. Using inverse kinematics,
these commands are generated directly from the reference velocity
in (20), by

úq = J�L−1
0

[

úpc

c

]

(21)

L0 =

[

1 0
0 L

]

(22)

and J� is the Moore-Penrose pseudoinverse. Here the robot arm is
better considered as a redundant manipulator because of its seven
degrees of freedom.

With reference to the normal component in (20), the contact
force is kinetically measured by the deßection over the Þngers
caused by the interaction with the surface. Thus, the differential h

could be computed as the Euclidean distance of the current Þnger
joint position �q f and the desired Þnger joint state q f d . It is impor-
tant to notice that this relation is, in fact, dependent on the dynamic
parameters of the Þnger by (5), which are usually unknown. In
order to compensate this uncertainty, the joint-based control com-
mands are corrected by a cerebellar-like structure, as deÞned in

Section 3 and illustrated in Fig. 4. This component serves as an
adaptive Þlter that attempts to reduce a teaching error signal.

The proposed architecture of the cerebellar-like structure con-
sists of several different layers. The input layer, representing the
mossy Þbers and granule cells, is divided in ni = 14 groups of nc

cells. Seven groups carry information about the desired joint posi-
tion and the other seven code the desired joint velocity, using one
group per joint. The receptive Þelds of the granule cells are sim-
pliÞed to a set of overlapping Gaussian functions with mean i and
standard deviation i. The Purkinje layer is composed of seven
cells that output synaptically weighted combinations of the outputs
of the granule cells. The output of the Purkinje cells provides the
direct correction to each joint. The synaptic weights are updated by
a teaching signal computed as the kinematic error perceived at each
joint i by

ei =Kp (q̄i − �qr)+Kv

(

ú̄qi − �úqr

)

+Khh (23)

where Kp, Kv and Kh are constant gains. This teaching error does
not only carry information about the desired hand pose but also
about the desired Þnger deßection.

5 EXPERIMENTS

The experiments reported in this paper are aimed at demonstrating
the efÞcacy of the controller. The tests were carried out in the iCub
simulator [18] to evaluate the accuracy of the estimates. The left
arm of the robot was used to execute the exploration, which has
seven degrees of freedom. The hand was set in a pointing position,
allowing use of the index Þnger as pressure sensor. The simula-
tor allows controlling the Þnger joints of the hand using position
and velocity commands. Tactile sensors are also available as dis-
crete indicators of contact, located on the hand palm and Þnger-
tips. Nevertheless, we did not use these sensors here because we
focused to exploit the information provided by the Þnger deßection
during contact. Further work with real robot might involve inte-
gration of tactile measurements for contact detection. Because the
stiffness of the Þnger is not part of the in-built simulation, it was
implemented using the dynamic model in (5), considering a three-
link structure with revolute joints such as described in [13]. Each
link has mass mi = 0.5 grams, length li = 0.03 m and inertial com-
puted by Ii,i = mi ∗ l2i /3. The friction coefÞcient over the joints
was not considered in these tests. The ßexibility of each joint was
simulated with the function P(q) =−kstiff( �q−q0)− kdamp úq where
q0 = [15◦, 20◦] is the set of initial joint positions, kstiff = 0.001 and
kdamp = 0.0001 are the stiffness and the damping factors, respec-
tively. The surface stiffness ks = 8.0 was utilized to compute the
external force of contact.

The controller was used to compute the values in 7 out of 16
degrees of freedom in the arm (three for shoulder, one for elbow and
three more for wrist). The rest of the joints were held Þxed. Though
the high dimensionality of the motor command, only the dynamics
of two Þnger joints (index Þnger) was to be compensated by the
adaptive Þlter. The contribution of each arm joint, to generate a
regulated contact pressure, was deÞned by the kinematic Jacobian.
This was used directly to compute the desired joint positions and
velocities in (23).

Two different scenarios are described in rest of this section. The
Þrst scenario involves exploration over a sloped planar surface with
time-varying pressure. The second scenario considers moving the
hand over an irregular surface. Additionally, the convergence of
the olivary error was empirically observed with simpliÞed exper-
iments to deÞne the values of the cerebellar parameters. For in-
stance, holding a desired hand velocity of 0.0 m/s, the control with
different parameters was evaluated. Meanwhile a Þxed surface was
used to establish the value of the cerebellar parameters in scenario
1, a mobile surface was utilized to deÞne the parameters in scenario
2. Varying the number of granule cells did not produce a critical



Figure 5: Pressure tracking by the Þnger. The original controller
presents a lag when tries to follow the requested Þnger deßection
(solid blue-line). The cerebellar adapter reduces this delay (dashed
green line).

impact over the reduction of the olivary error. However, the length
of the baseline memory was an important factor because a reduced
time lapse could degenerate the olivary signal into a periodical be-
havior. When the cerebellar structure generated an adequate result,
the whole scenarios were evaluated.

5.1 Scenario 1

The iCub reference frame is located at the middle of its waist, with
the X-axis aligned backwards and Z-axis aligned upwards. The
robot initialization consisted of having the Þngertip pointing down-
wards at the point p0 = [−0.3m, −0.18m, 0.20m]. The initial hand
orientation was o0 = [−0.1, 0, 0.9, 3.14 rad], deÞned in axis-angle
notation. The planar surface was situated to 0.03 m from the Þnger-
tip and had a slope of 15 degrees. The desired velocity of the hand
over the surface was set to úpsh = 0.015 m/s, such that the hand was
displaced towards the right of the iCub. The time-varying pressure
exerted by the contact was deÞned by the normal of the Þnger joint
deßection, deÞned by q f d = 10 sin(t). The gains of the controller
were  = 0.8,  = 0.006,  = 0.002 and  = 0.5. The gains 
and  would be the proportional and integrative factors in a PID
controller taking the Þnger deßection error as input. The cerebellar
structure contains nc = 50 granule cells in each group. The means
i of their receptive Þelds were located along the range of possible
input values with standard deviation i = 1.5. The baseline p̄i and
ē in (6) were computed with a memory of 0.5 sec. The learning rate
was deÞned by  = 0.007. The olivary error was computed using
the factors Kp = 0.35, Kp = 0.20 and Kh = 0.45.

The controller was evaluated with and without cerebellar cor-
rections. The performance during exploration was acceptable in
both cases, because the contact maintenance was fully achieved.
However, there were signiÞcant differences in robustness. Fig. 5
illustrates the tracking of the requested Þnger deßection after 50
Monte Carlo runs. The controller without cerebellar correction dis-
played a signiÞcant lag during the tests. This lag is caused by the
processing time and inaccurate gains for the control. The PID con-
trol runs were used for training of the cerebellar-like structure. The
cerebellar corrections provided the controller with the information
required to reduce the lag and achieve reliable tracking over the
requested Þnger deßection. The distance between the surface and
the corrected hand showed more variability than the PID-controlled
hand (see Fig. 6). Nevertheless, this movement is mainly caused by
the regulation of the pressure according to desired Þnger deßection.
The capability of dynamically regulating the pressure will allow the
robot to perceive different haptic features. Fig. 7 illustrates the an-
gular difference between the orientation of the hand and the surface
normal at the point of contact. Although both cases provided an ad-
equate capability for adjusting the pose of the hand with respect to
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Figure 6: Hand position over surface during exploration. The cor-
rection of the Þnger deßection is projected as changes of distance
between the surface and the position of the palm of the hand.
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Figure 7: Hand orientation error. The angular error is shown between
the hand and the surface normal at the contact point.

the surface, the cerebellar structure allowed alignment of the hand
with superior performance. We note that, similarly, the human hand
also adjusts its alignment to extract tactile information based on the
hand position.

5.2 Scenario 2

In the second set of tests, the surface to be explored is deÞned
by a fourth degree polynomial curve, deÞned by the function
z = 200.0y4 − 100.0y3 − 19.0y2 + 0.2 where y is the horizontal
coordinate of the surface in the robot frame of reference. The
gains of the controller were  = 0.8,  = 0.0001,  = 0.0035 and
 = 0.5. The desired velocity of the hand over the surface was set
to úpsh = 0.01 m/s. The cerebellar model contained nc = 75 gran-
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Figure 8: Hand position in exploration over polynomial surface.
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Figure 9: Hand orientation. The angular error is shown between the
hand and the polynomial surface normal at the contact point.

ule cells in each group. The receptive Þelds had standard deviation
i = 0.5. The baselines p̄i and ē were computed with a memory of
0.75sec and the learning rate was  = 0.01. The olivary error was
computed using the factors from the Þrst scenario. The requested
Þnger deßection was kept constant at 10 degrees. The hand position
during exploration and the angular error of the hand pose are illus-
trated in Figs 8 and 9, after 50 Monte Carlo runs. When the hand is
going downwards, both cases are able to a hold close contact with
the surface. There is a slight initial perturbation in the corrected
trajectory, possibly caused by the cerebellar adaptation. In the sec-
ond part of the trajectory, the hand without the cerebellar correction
showed dramatic oscillating movements, caused mainly by dynam-
ical effects of the Þnger and the estimation of the varying slope.
The cerebellar-controlled hand reduced such effects, generating a
smoother movement.

The angular error between the surface normal and the hand ori-
entation is also similar between two cases. However, the cerebellar
adapted trajectory suffered a slight delay to align the hand with the
surface when the hand started going upwards. This could be caused
by conditioning the Þlter during the Þrst part of the path. Finally,
the hand had a fast correction of its pose before the end of move-
ment.

6 CONCLUSIONS

The experiments reported in this paper illustrated the performance
of surface-following controller for haptic exploration. First, we
achieved appropriate movements of the hand that adapted its pose
with respect to the surface. And second, we demonstrated how the
cerebellar-like adapter is used to achieve greater robustness during
exploration, by regulating the contact to generate a trajectory with
less perturbations.

This paper also illustrates how different components can be in-
tegrated to reliably solve a motor control task, providing insights
into how haptic exploration is performed in humans. The high-
level component of the controller is determined by the estimation
of the surface orientation, whose functionality could correspond to
the process of spatial perception in parietal lobe. This hypothe-
sis leads to the proposal that the cerebellum might not be the main
generator of movement, but instead provides low-level motor com-
mands to regulate the force and velocity of the movement during
tactile exploration.

Further research will involve to analyze the performance of the
controller upon the iCub, extending the perceptual capacities of the
real android for identifying haptic features. Finally, by implement-
ing neural-inspired mechanisms for control in humanoid robots, we
gain insight into the mechanisms by which humans perceive and
interact with their surroundings.

ACKNOWLEDGEMENTS

The research leading to these results has received funding from the
European Union Seventh Framework Programme FP7/2007-2013,
under grant agreement No [270490]- [EFAA]

REFERENCES

[1] C. P. Bechlioulis, Z. Doulgeri, and G. A. Rovithakis. Neuro-adaptive
force/position control with prescribed performance and guaranteed
contact maintenance. Trans. Neur. Netw., 21(12):1857�1868, 2010.

[2] N. H. Bhanpuri, A. M. Okamura, and A. J. Bastian. Active force per-
ception depends on cerebellar function. Journal of Neuropsychology,
107:1612�1620, 2012.

[3] M. Chalon, W. Friedl, J. Reinecke, T. Wimboeck, and A. Albu-
Schaeffer. Impedance control of a non-linearly coupled tendon
driven thumb. In Intelligent Robots and Systems (IROS), 2011

IEEE/RSJInternational Conference on, pages 4215�4221, 2011.
[4] P. Dean, J. Porrill, C. F. Ekerot, and H. Jorntell. The cerebellar micro-

circuit as an adaptive Þlter: experimental and computational evidence.
Nature Reviews Neuroscience, 11:30�43, 2010.

[5] Y. Karayiannidis and Z. Doulgeri. Adaptive control for frictional robot
contact tasks on uncertain surface slopes. In Procedings of the 16th

Mediterranean Conference on Control and Automation, pages 932�
937, 2008.

[6] N. Lepora, C. Fox, M. Evans, M. Diamond, K. Gurney, and
T. Prescott. Optimal decision-making in mammals: insights from a
robot study of rodent texture discrimination. Journal of The Royal

Society Interface, 9(72):1517�1528, 2012.
[7] N. F. Lepora, J. Porril, C. H. Yeo, and P. Dean. Sensory prediction

or motor control? application of marr-albus type models of cerebellar
function to classical conditioning. Frontiers in Computational Neuro-

science, 4:1�12, 2010.
[8] H. Liu, X. Song, J. Bimbo, L. Seneviratne, and K. Althoefer. Surface

material recognition through haptic exploration using an intelligent
contact sensing Þnger. In Intelligent Robots and Systems (IROS), 2012

IEEE/RSJInternational Conference on, pages 52�57, 2012.
[9] N. R. Luque, J. A. Garrido, and R. R. Carrillo. Cerebellarlike cor-

rective model inference engine for manipulation tasks. IEEE Tr-

nasactions on Systems, Man and Cybernetics - Part B: Cybernetics,
41(5):1299�1311, 2011.

[10] J. F. Medina. The multiple roles of purkinje cells in sensori-motor
calibration to predict, teach and command. Current opinion in Neuro-

biology, 21:616 � 622, 2011.
[11] A. M. Okamura and M. R. Cutkosky. Haptic exploration of

Þne surface features. In Robotics and Automation (ICRA), 1999

IEEE/RSJInternational Conference on, pages 2930�2936, 1999.
[12] Z. Pezzementi, C. Reyda, and G. Hager. Object mapping, recog-

nition, and localization from tactile geometry. In Robotics and Au-

tomation (ICRA), 2011 IEEE/RSJInternational Conference on, pages
5942�5948, 2011.

[13] A. Schmitz, U. Pattacini, F. Nori, G. Metta, and G. Sandini. De-
sign, realization and sensorization of a dextrous hand: the icub design
choices. In 10th IEEE-RAS International Conference on Humanoid

Robots, pages 186�191, 2010.
[14] N. Schweighofer, M. A. Arbib, and M. Kawato. Role of the cerebel-

lum in reaching movements in humans. distributed inverse dynamics
control. European journal of Neuroscience, 10:86 � 94, 1998.

[15] L. Sciavicco and B. Siciliano. Modelling and Control of Robots Ma-

nipulators. Springer, 2005.
[16] D. J. Serrien and M. Wiesendanger. Role of the cerebellum in tuning

anticipatory and reactive grip force responses. Journal of Cognitive

Neuroscience, 11(6):672�681, 1999.
[17] R. M. Spencer, R. B. Ivry, and H. N. Zelaznik. Role of the

cerebellum in movements: control of timing or movement transi-
tions? Experimental brain research. Experimentelle Hirnforschung.
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