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Abstract

Seminoma is a subclass of human testicular germ cell tumors (TGCT), the most frequently observed cancer in young men
with a rising incidence. Here we describe the identification of a novel gene predisposing specifically to seminoma formation
in a vertebrate model organism. Zebrafish carrying a heterozygous nonsense mutation in Leucine-Rich Repeat Containing
protein 50 (lrrc50 also called dnaaf1), associated previously with ciliary function, are found to be highly susceptible to the
formation of seminomas. Genotyping of these zebrafish tumors shows loss of heterozygosity (LOH) of the wild-type lrrc50
allele in 44.4% of tumor samples, correlating with tumor progression. In humans we identified heterozygous germline
LRRC50 mutations in two different pedigrees with a family history of seminomas, resulting in a nonsense Arg488* change
and a missense Thr590Met change, which show reduced expression of the wild-type allele in seminomas. Zebrafish in vivo
complementation studies indicate the Thr590Met to be a loss-of-function mutation. Moreover, we show that a pathogenic
Gln307Glu change is significantly enriched in individuals with seminoma tumors (13% of our cohort). Together, our study
introduces an animal model for seminoma and suggests LRRC50 to be a novel tumor suppressor implicated in human
seminoma pathogenesis.
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Introduction

Human testicular germ cell tumors (TGCT) [MIM 613190]

affect 1 in 500 Caucasian men. Current clinical classification

recognizes five main subcategories with diverse clinical manifes-

tations, genomic constitution and pathology [1]. TGCTs have

their origin in the oncogenic counterparts of cells derived from the

embryonic stage of the germ lineage. So-called Type II TGCTs,

which are the most predominant tumor types diagnosed in

Caucasian men aged 20–40, derive from primordial germ cells

(PGC)/gonocytes that have become blocked in their maturation

and form carcinoma in situ (CIS) cells [1]. Depending on

incompletely understood factors these form the uniform pathology

seminoma, which is considered the default tumor type developing

from CIS. Alternatively, CIS cells can also develop into non-

seminoma, a more mixed tumor spectrum that includes charac-

teristics of undifferentiated stem cells, which are expected to arise

in part through epigenetic reprogramming. An overview of the

development of various TGCT subtypes is provided in Figure S1

[1,2]. The incidence for seminomas, representing the major

component of TGCT type II, is rising [1]; nevertheless, there are

sparse data describing genetic alterations functionally contributing

to seminoma development, and previously described mammalian

models did not have sufficient analogy to human seminoma [1].

In recent years, zebrafish have emerged as an established and

tractable vertebrate animal model that contributes to current

oncology research [3]. Many basic developmental processes are

well conserved from fish to mammals, including germ line

development [4] and earlier described TGCT isolated from

zebrafish seem to resemble human TGCT characteristics [5]. We

previously described a loss-of-function mutation in zebrafish

lrrc50Hu255h, of which homozygous mutants display the ciliopathy

phenotypes of primary ciliary dyskinesia (PCD) (CILD1; MIM

244400) in humans [6]. An essential function in proper cilia
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function has now been attributed to LRRC50 across eukaryotic

taxa in organisms ranging from Chlamydomonas and zebrafish to

humans (CILD13; MIM 613190) [6–9]. Here, we describe the

susceptibility to tumor formation of heterozygous lrrc50Hu255h

zebrafish and suggest a tumor suppressor role for LRRC50 (alias

DNAAF1; dynein assembly factor 1) in the specific development of

the TGCT subtype seminoma in both zebrafish and man.

Results

Heterozygous zebrafish lrrc50Hu255h are predisposed to
testicular tumor formation

Whereas homozygous lrrc50 (2/2) mutants develop lethal

defects during larval development due to severe ciliopathy

phenotypes [6,10], heterozygous lrrc50hu255h (+/2) zebrafish

develop into adulthood without apparent defects. Noticeably, we

observed unexpectedly high tumor prevalence in the male

population (n = 30) during the second and third year of life, with

a penetrance exceeding 90% (Figure 1A). Testes are the

predominant tissue for tumor formation (Figure 1B), although

sporadically tumors were also observed in other tissues (Figure 1A,

and non-TGCT examples in Figure S2A, S2B). Histological

analyses (n = 11) indicate that females develop no gonadal

abnormalities (Figure S2C). The recovered tumors display uniform

loss of macroscopic normal testicular architecture (Figure 1C). The

tumors are well encapsulated and do not appear to be metastatic;

upon tumor isolation no abnormal visceral organs were observed.

Analysis of 104 randomly selected age-matched male zebrafish

(24–44 months old) that had similarly been generated through N-

ethyl-N-nitrosourea (ENU) mutagenesis showed a common back-

ground level (16.3%) of TGCT formation (Figure 1A).

Zebrafish lrrc50 testicular tumors appear analogous to
human seminoma

Wild-type zebrafish adult testes are composed of few SPG/

gonocytes and large numbers of differentiated germ cells or

mature sperm (Figure 2A, high resolution image in Figure S3A)

[11]. The recovered tumors generally present severely reduced or

total absence of end-stage differentiated germ cells and an increase

of cells morphologically resembling early spermatogonial cells

(SPG) (Figure 2A). Three testes from fish without externally

evident tumors (Figure 1A) morphologically contained increased

numbers of both pre- and post-meiotic cells that most likely

represents hyperplasia, but might additionally suggest that

population expansion precedes tumorigenesis (Figure S3B) [12].

Differentiated spermatogonia typically remain interconnected

through a stabilized intercellular bridge (forming a syncytium),

licensing unbound exchange of cytoplasmic components resulting

in population synchronization [13]. Immunohistochemistry (IHC)

with mitotic marker phospho-Histone H3 (pH3) in wild-type testis

occasionally stains single stem cells -the only germ cell type

dividing as a single cell- and marks clutches of synchronously

dividing differentiated cells, while the tumors are predominantly

composed of single proliferating cells (Figure 2B). Upon quanti-

fication (Figure S4A), we observed significantly increased numbers

of individual proliferating cells (P = 0.0025, non-parametric Mann-

Whitney test), suggesting that these tumors are highly proliferative

and enriched for single cells. The zebrafish tumors consist of a

morphologically uniform tumor cell population, which is most

analogous to human seminoma. A human seminoma-specific

marker is HIWI [14], whose zebrafish ortholog Ziwi is described

[15] to have similar elevated expression in early germ cells and

Figure 1. Heterozygous lrrc50Hu255h zebrafish are predisposed
to testicular tumor formation. (A) Incidences of tumors extracted
from randomly selected male controls derived from ENU-mutagenesis
(n = 104) and heterozygote male lrrc50Hu255h (n = 30) zebrafish between
24–44 months of age are summarized in pie charts. Tumor formation
presented as both TGCT and non-TGCT (sporadic tumors in somatic
tissues) in the lrrc50Hu255h cohort (90%) is significantly elevated from
TGCT (16.3%) formation in the controls (P,0.0001). No alternative
tumor types were noticeable in the control group. (B) An age-matched
wild-type zebrafish compared to a TGCT bearing lrrc50+/2 zebrafish
(skin around tumor removed; merge of three images). (C) Wild-type
testes are composed of two tubular arms forming the paired gonad.
The tissue architecture is severely disrupted in the tumor.
doi:10.1371/journal.pgen.1003384.g001

Author Summary

Testicular Germ Cell Tumors are frequently occurring
tumors, affecting 1 in 500 individuals. Of this diverse
group, the subtype seminoma is most prevalent and is the
most common tumor type found in men aged 20–40 years
of age. In contrast to other frequently occurring tumor
types, there is very little information on the genetic
components that form risk factors for seminoma. In this
study we describe the unexpected finding that zebrafish
carrying a heterozygous mutation in the lrrc50/dnaaf1
gene have a high incidence for testicular germ cell tumor
formation. Detailed analysis suggests that these tumors
resemble human seminoma. We therefore analyzed this
gene in a subset of human seminoma samples and
recovered mutations that were subsequently demonstrat-
ed to prohibit protein function. Seminomas were also
previously found in family members of these patients,
suggesting that a genetic component is the underlying
cause. We thus identified a novel gene that can be
considered a risk factor for human seminoma, and we
describe an animal model system that is valuable for
further seminoma research.

LRRC50 Mutations Predispose to Seminoma
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reduced diffuse expression in differentiated germ cells (Figure 2C).

Ziwi IHC on lrrc50Hu255h tumors shows strong staining in the

majority of cells with the exception of somatic tissue. Staining with

meiosis marker c-H2Ax shows various stages of differentiated

germ cells in wild-type, but almost complete absence in the

tumors, indicating a pre-meiotic population of cells (Figure 2D,

2E) [16]. More in-depth studies would be useful to correlate the

tumor characteristics of our zebrafish tumors with human

seminomas, such as staining with the additional TGCT markers

for early germ cells Nanog and Oct3/4, in order to affirm a

seminoma analogy more accurately. Nevertheless, the zebrafish

tumors have a severe early germ cell differentiation defect, and

based on both the morphology and the combination of the various

histological analyses of lrrc50Hu255h tumors we suggest an initial

specific classification as seminoma is supported.

Zebrafish seminomas display lrrc50 LOH
We next interrogated the somatic loss of the wild-type lrrc50

allele in zebrafish tumorigenesis by genotyping the Hu255h

(c.263T.A/p.Lys88*) nonsense mutation and LOH was found in

44.4% of tumors (n = 4/9) (Figure 2F); direct sequencing of the

coding regions of the lrrc50 locus revealed no additional mutations.

Tumors lacking evident LOH could potentially reflect the

presence of wild-type tissue and/or variable tumor progression.

When tumor genotypes and tumor progression are compared

based on morphology and Ziwi expression, LOH strongly

correlates with samples where sperm content is relatively low

and there is an abundance of early germ cells (Figure S4B).

Alternatively, undetected inactivating lesions (e.g. promotor/

intronic sequences, large chromosomal deletions), epigenetic

alterations, or unrelated background tumors could obscure

genotypic analysis. Although we cannot exclude an underlying

haploinsufficient mechanism, we suggest that zebrafish lrrc50hu255h

seminoma progression is consistent with biallelic inactivation.

Mutations in LRRC50 are associated with human
seminoma

We next conducted LRRC50 mutational analysis in a collection of

30 human seminomas and five spermatocytic seminomas (the latter

as controls) (Table 1). We identified one individual (SE14) diagnosed

with a stage-II seminoma and a contra-lateral stage I seminoma

within a six-year interval; both tumors have a nonsense

c.1462C.T/p.Arg488* mutation in exon 8 (Figure 3A, 3B,

Table 1). Corresponding peripheral blood (PBL) revealed a

heterozygous germline c.1462C.T/p.Arg488* (TMP_ESP_16_

84203896) LRRC50 mutation, which is extremely rare and identified

in 0.008% (1/12,999) of chromosomes in the NHLBI Exome

Variant Server (NHLBI ESP, http://evs.gs.washington.edu/EVS/).

Figure 2. Characterization of lrrc50Hu255h zebrafish TGCT suggests analogy to human seminoma. (A–D) Histological characterization of
wild-type testis (left panels) and lrrc50H255h tumors (right panels). Two magnifications shown A, B (largest in insert) all scale bars; 50 mm. The
characterization indicates the presence of predominantly early germ cells and loss of differentiated germ cells in the tumors. (A) Morphological tissue
analysis of toluidine blue stained sections indicates the presence of all stages of spermatogenesis in normal tissue (extensively described in Figure
S3A), and shows a dramatic loss of differentiated germ cells in the tumor. (B) IHC characterization with proliferation marker a-phospho-HistoneH3
(pH3) shows synchronously dividing cell-clusters in normal tissue, indicative of differentiated germ cells. Early SPG is the only germ cell that can divide
as a single cell, and the tumors show mostly single proliferating cells. Increased pH3 staining suggests the tumor tissue is highly proliferative
(quantified in Figure S4A). (C) IHC using a-Ziwi (strong cytoplasmic expression). In normal tissue, Ziwi expression is restricted to early SPG and
gradually and diffusely lost differentiated germ cells. With the exception of somatic tissue, the tumors are almost completely composed of early SPG.
(D) IHC with meiosis marker a-c-H2Ax shows normal tissue that is composed of various stages of differentiation, whereas these are predominantly
absent in tumor tissue. (E) Chromatograms of WT zebrafish, heterozygote lrrc50Hu255h and lrrc50Hu255h tumors. We observe a loss of the remaining
wild-type allele c.263T.A/p.Lys88* in 44.4% of the tumors (LOH).
doi:10.1371/journal.pgen.1003384.g002
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Both tumor DNA chromatograms show a consistently stronger

mutant peak compared to PBL, indicating biallelic loss in at least a

subset of tumor cells, or presence of non-tumorous cells (somatic

tissue, lymphocytes). Analysis of SNPs in closest proximity to the

mutation, rs17856705 and rs2288020, showed perfect heterozygos-

ity in both seminomas and PBL, supportive of a localized LOH

event. Accordingly, IHC staining of SE14-tumor sections with a-

LRRC50 indicates no detectable protein expression, whereas IHC

on rete testis (non-tumorous normal control tissue) from SE14

confirms presence of LRRC50 in ciliated somatic tissue and

antibody specificity (Figure 3C). In normal testis LRRC50 is

expressed in SPG and spermatocytic cells and notably appears to

localize to structures resembling cilia (Figure 3C). Cilia have not

previously been demonstrated in early germ cells. To investigate the

cilia-like structures in more detail, immunofluorescent staining and

confocal microscopy was performed on 6 normal testes obtained

from autopsies of men ranging from 33–43 years of age. Not only did

we observe cilia on spermatogonia upon staining for specific ciliary

marker detyrosinated tubulin, but co-staining a-LRRC50 with

another established cilia marker, acetylated-a-tubulin, confirms

LCCR50 localization to the axoneme of the cilium. Furthermore,

ciliary LRRC50 was observed in both somatic tissue cells of the

seminiferous tubule (red arrows and insert) and germ cells lining the

tubular epithelium (white arrows and higher resolution images)

(Figure 3D).

Pedigree analysis of the proband SE14 (Figure 3E) revealed two

first cousins who died of seminoma as teenagers (samples

unavailable), suggestive of an underlying genetic predisposition.

The presence of familial TGCTs and previous diagnosis with

seminoma are risk factors for the formation of contra-lateral

TGCT [17]. Therefore, we screened LRRC50 sequences in 15

TGCTs with a known familial incidence (Table 1). We identified

one sample (fTGCT6) harboring a heterozygous c.1769C.T/

p.Thr590Met missense mutation (Figure 3A, 3F, Table 1),

predicted to be damaging by PolyPhen-2 [18]. This is a rare

SNP (rs34777958) not detected in an ethnically matched male

control group (n = 100), and is present in 1.15% (150/12,850) of

chromosomes in the NHLBI ESP. Additionally, genotype data in

dbSNP137 showed that Thr590Met is not present in homozygos-

ity in the NHLBI ESP cohort suggesting that it is a deleterious

change likely under purifying selection. Patient fTGCT6 and his

monozygotic twin brother both developed seminoma. Again, the

mutant chromatogram is stronger in the tumor than in PBL,

suggesting LOH. In the total seminoma population (n = 38) we

identified a significantly enriched, heterozygous, conserved muta-

tion, c.919C.G/p.Gln307Glu (n = 5, 5/76 alleles, P = 0.0013,

Fisher’s exact test), potentially associated with seminoma as it is

absent in a healthy male control group (n = 100, 0/200 alleles)

(Table 1, Table 2 and Figure 3A, 3F). We sequenced the entire

coding sequences of the LRRC50 gene (primer sequences provided

in Table S2) in these samples but observed no additional exonic

mutations, apart from frequently occurring SNPs without predict-

ed pathogenicity, excluding compound heterozygosity. The

Gln307Glu allele is present 2.9% (375/12625) in the ESP cohort,

however we cannot exclude the possibility that some ESP males

may have been affected with seminomas.

Table 1. Human TGCT samples.

Sample Primary tumor Family tumor Allele

SE1-SE6 SE Gln307Glu [26]

SE7 Bilateral SE

SE8-SE13 SE Asp435Asn

SE14 Bilateral SE 2 Cousins with SE Arg488*

SE15-30 SE Asp435Asn [26] Gln307Glu [26]

SS1-5 SS Asp435Asn

fTGCT1 Bilateral SE Family members with SE identified

fTGCT2 Non-SE: EC, Te, YS Father with SE

fTGCT3 Bilateral SE Brother with TGCT

fTGCT4 SE Brother with SE (fTGCT5)

fTGCT5 SE Brother with SE (fTGCT4)

fTGCT6 SE Monozygous twin with SE Thr590Met

fTGCT7 Non-SE: EC Brother with SE

fTGCT8 Bilateral SE Cousin with TGCT Gln307Glu

fTGCT9 Non-SE: EC, Te, YS Monozygous twin with TGCT

fTGCT10 Non-SE: EC, imTe, YS, Ch Monozygous twin with TGCT

fTGCT11 Bilateral SE Brother with SE

fTGCT12 Bilateral SE 2 Brothers with TGCT

fTGCT13 SE+non-SE: EC, Te, YS Father with non-SE

fTGCT14 SE+non-SE: EC Father with non-SE

fTGCT15 Bilateral SE+non-SE: Te, EC, YS Father and 2 cousins with TGCT

Genotypic analysis was performed on human TGCT samples (n = 51); a total of 30 seminomas (SE) and five spermatocytic seminomas (SS) were initially analyzed. These
samples were expanded with 15 fTGCT samples, including eight seminomas, which were isolated from patients known to have a familial background of seminomas.
Non-SE = non-seminoma, EC = embryonic carcinoma, (im)Te = (immature) teratoma, YS = yolk sac tumor, Ch = choriocarcinoma. Patients carrying alleles identified in this
study are indicated.
doi:10.1371/journal.pgen.1003384.t001

LRRC50 Mutations Predispose to Seminoma
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Figure 3. Genetic analysis of LRRC50 in human seminoma samples. (A) LRRC50 spans 12 exons on chromosomal arm band 16q24.1. All
recovered genetic variations (see Table 2) are indicated in the LRRC50 structure. (B) Chromatogram of SE14-PBL reveals a germline heterozygous
nonsense c.1462C.T/p.Arg488* (TMP_ESP_16_84203896) mutation (red arrow in A). Bilateral SE14-seminomas (one sample shown) show a
constitutively stronger mutant peak. Analysis of up- and downstream SNPs in closest proximity (blue arrows in A), c.1178A.G/rs17856705 in exon 8
and c.1898T.C/rs2288020 in exon 11, render equivalent peak intensities, indicative of a regional LOH in the tumor. (C) IHC for LRRC50 stains SPG and
spermatocytes in normal testis, interestingly; structures reminiscent of cilia in SPG are observed. The SE14 tumor shows complete loss of LRRC50
protein expression. Motile cilia staining of non-tumorigenic tissue (rete testis) from SE14 supports antibody specificity and proper fixation of tumor
SE14 tissue. Scale bars; 50 mm. (D) IF of normal testis tissue indicates LRRC50 in cilia on germ cells lining the seminiferous tubule (red arrows) and

LRRC50 Mutations Predispose to Seminoma
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Missense LRRC50 alleles identified in seminomas are
functional nulls

To test the functional consequences of Thr590Met and

Gln307Glu on protein function, an in vivo complementation

approach was employed in zebrafish. Since maternally-derived

WT lrrc50 mRNA can still be detected in lrrc50hu255h mutants early

in development [6], we opted to use transient morpholino (MO)-

induced suppression designed to block maternal and embryo-

derived lrrc50 translation. We have previously shown that in

addition to the PCD and renal cystic phenotypes of lrrc50 mutants,

transient MO-induced suppression of lrrc50 gives rise to gastrulation

phenotypes in mid-somitic embryos, which can be rescued by wild-

type (WT) capped human LRRC50 mRNA (Figure 4A, 4B, scoring

shown in Table S1) [19]. Here, we test LRRC50 mRNA harboring

either Thr590Met or Gln307Glu missense mutations to rescue MO-

induced gastrulation defects. Whereas co-injection of WT message

with MO results in a significant rescue in comparison to MO alone

(P,0.0001; c2), embryo batches injected with either missense

change resulted in no significant rescue suggesting that both variants

are functional nulls in this assay (Figure 4B, scoring shown in Table

S1). Importantly, mutant LRRC50 message injected alone did not

produce a significantly different phenotype from that of WT

mRNA. To corroborate these findings, two dimensional morpho-

metric analysis of the gastrulation defects are conducted. We labeled

anatomical landmarks of 9-somite stage embryos with a cocktail of

krox20, pax2, and myoD riboprobes, and measured the ratio of the

width spanning the fifth somite counted from the anterior end of the

embryo versus the length from the first to the last appreciable somite

(Figure 4C, 4D, scoring shown in Table S1). Consistent with the in

vivo scoring data, the measurements capturing the gastrulation

defects of lrrc50 morphants were statistically indistinguishable from

those of either of the two mutant rescue batches (n = 9–13 embryos/

batch), substantiating further the notion that both changes are

detrimental to protein function.

LRRC50 is dynamically localized and expressed in a cell-
cycle-dependent fashion

Current knowledge of LRRC50 function is limited to ciliary

motility and ciliogenesis [6–10, 20], but lacks molecular detail. We

therefore used immunofluorescence (IF) and four polyclonal

LRRC50 antibodies from different companies to characterize

the protein. In serum-starved ciliated RPE-hTERT cells, we

confirmed endogenous localization to the basal body (Figure 5A)

[6,7,20,21]. Moreover, LRRC50 maintains centrosomal associa-

tion throughout the cell cycle and temporarily localizes to the

midbody (Figure 5B, 5C). Midbody localization is manifested by

multiple centrosome/basal body-related proteins [22–25], and

LRRC50, structurally and dynamically, closely resembles a

specific subset of LRR-proteins sharing multiple characteristics

and cellular localization patterns (Figure S5A) [26]. Intriguingly,

we observed that LRRC50 also associates with condensed

chromosomes (Figure 5D), reminiscent of the dynamic localization

exhibited by perichromosomal sheath proteins (Figure S5B) [27].

Similarly, LRRC50 mRNA expression is subjected to a stringent

cell cycle regulation (Figure 5E, FACS profiles presented in S6A).

Analysis of Lrrc50 mRNA expression in a mouse cDNA library of

developing embryonic stages and adult tissues shows high

expression levels in the ciliated tissues testis, lung and ovary, but

also in highly proliferating intestinal tissue (Figure 5F). In RPE-

hTERT cells we observed increased LRRC50 expression upon

serum starvation, which promotes cell cycle exit and initiation of

ciliation [28] (Figure S6B). Collectively, the expression and

localization data confirms the ciliary role of LRRC50, but suggests

there may be additional functions other than cilia regulation

(Figure S6C, summarizing model in Figure S7).

Discussion

In this manuscript we characterize a novel vertebrate model for

human seminoma associated with biallelic inactivation of lrrc50 in

at least 44.4% of tumors tested. We translated this finding to

humans and identified pathogenic germline LRRC50 mutations in

two human seminoma pedigrees that had at least partially lost

expression of the wild-type allele in their tumors. In addition, a

significant enrichment of a pathogenic Gln307Glu change in

sporadic seminomas (13% of cases) was identified, which is absent

from a healthy control population, and low in the general

population. Although functional evidence indicates that

Gln307Glu is detrimental to protein function, population

somatic tissue of the seminiferous tubules (white arrows and insert). Early germ cells localize peripheral to the seminiferous tubule and higher
resolution images (maximal projections of Z-stacks) show the presence of solitary cilia in these germ cells in more detail using cilia markers
acetylated-a-tubulin (Ac-tub) and detyrosinated-tubulin, LRRC50 locates to cilia in these SPG. Scale bars; 10 mm (E) fTGCT6 and SE14 proband
pedigrees. (F) Genotyping LRRC50 in the seminoma collection (n = 38) identified one sample with a c.1769C.T/p.Thr590Met (rs34777958) allele.
Additionally, heterozygous variation c.919C.G/p.Gln307Glu (rs111472069) was identified in five seminoma samples, representing a significant
enrichment (P = 0.0013). Both variations are absent in a healthy control group (n = 100).
doi:10.1371/journal.pgen.1003384.g003

Table 2. Genetic variation of LRRC50 in human seminomas.

Variation Protein Control group (n = 100) Seminoma (n = 38) dbSNP

c.919C.G p.Gln307Glu 0 5 rs111472069

c.1303G.A p.Asp435Asn 4 4 rs149158199

c.1462C.T p.Arg488* 0 1 TMP_ESP_16_ 84203896

c.1769C.T p.Thr590Met 0 1 rs34777958

Genotyping of seminoma (n = 38) samples and a control group (n = 100) revealed several variations. c.919C.G/p.Gln307Glu (rs111472069) is a heterozygous mutation
significantly more frequently observed (P = 0.0013) in the seminoma group (5/38 samples) and absent in the control group (0/100 samples). We identified a
heterozygous mutation c.1303G.A/p.Asp435Asn (rs149158199), however this mutation is, seemingly less predominant, also identified in the control group and was
also identified in one spermatocytic seminoma patient. The known variation c.1769C.T/p.Thr590Met (rs34777958) was identified in one seminoma patient with a
monozygotic twin brother that had also developed a seminoma. Both Gln307Glu and the Thr590Met variants are shown to be functional nulls in this study. The
positions of the variations are indicated in the protein structure in Figure 3A.
doi:10.1371/journal.pgen.1003384.t002

LRRC50 Mutations Predispose to Seminoma
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frequency data suggests that in homozygosity, it is likely not

sufficient to cause PCD when inherited in the germline (0.001% of

the ESP cohort is homozygous for this change). However, in the

context of seminoma, this change potentially represents a

significant genetic risk factor.

Wild-type zebrafish have been previously described to be

susceptible to the formation of TGCTs upon advanced age

[29,30], however the etiology for this is undetermined. Similarly,

zebrafish derived from genetic screens typically show seminoma

development upon advanced age; one large-scale study including

10,000 zebrafish determined a background percentage of 5% in

two year old zebrafish, of which nearly 50% were diagnosed as

seminomas [31]. One other study of genetic instability (gin)

zebrafish mutants between 30–34 months old identified a 28%

tumor incidence compared to 5% in wild-type animals, and

seminomas are observed in ,20% of the gin mutants [12]. In line

with these results, we identified a 16.3% background incidence of

seminoma formation in 104 male zebrafish derived from N-ethyl-

N-nitrosourea (ENU)-based mutagenesis screens (Figure 1A). Of

interest, genetic mutant zebrafish lines are typically more

susceptible to develop a different tumor spectrum, most notable

malignant peripheral nerve sheath tumors (zMPNST) (Figure

S2A), as has been described for p53, ribosomal protein mutants

and genomic instability mutants [32,33]. The recently described

mutant Alk6b zebrafish are similarly predisposed to GCT

formation; of interest, tumor formation occurs earlier in life in

this genetic model. The introduced loss-of-function Alk6b mutation

fails to activate BMP target genes through downstream nuclear p-

Figure 4. LRRC50 missense changes are functional nulls in a zebrafish model of development. (A) Live embryo images of lrrc50
morphants. Morpholino (MO) mediated suppression of lrrc50 gives rise to gastrulation defects in mid-somitic zebrafish embryos that can be
categorized according to previously established objective scoring criteria [19,57]. Representative lateral and dorsal views are shown (top and bottom
panels respectively). (B) Scoring of in vivo complementation; WT embryos were injected with MO and/or human mRNA and scored at the 8–9 somite
stage according to phenotypes shown in panel A. Gln307Glu and Thr590Met are not significantly different (NS; c2) from MO alone suggesting that
both are functional nulls, n = 44–79 embryos/injection repeated twice with masked scoring. (C) Representative images of flat mounted in situ
hybridized (ISH) zebrafish embryos labeled with a cocktail of krox20, myoD, and pax2a riboprobes. Arrows indicate measurement parameters for
morphometric analyses shown in panel D; length (l) was measured as the anterior-posterior distance from the first to the last appreciable somite;
width (w) was measured as the distance spanning the lateral tips of the fifth somites counted from anterior to posterior. (D) Morphometric
quantification of Gln307Glu and Thr590Met gastrulation defects. Images of flat-mounted embryos age-matched at 9 somites were measured in two
dimensions (as shown in panel C); the ratios of medial-lateral (width; w) versus anterior-posterior (length; l) measurements are shown for randomly
chosen embryos from live scoring experiments (panels A and B) for ISH. LRRC50 Gln307Glu and Thr590Met do not produce a significant rescue in
comparison to MO alone (NS; t-test), corroborating the in vivo scoring results in panel B (n = 9–13 embryos/injection). Error bars indicate standard
deviation of the mean.
doi:10.1371/journal.pgen.1003384.g004
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SMAD1/5/8. The authors suggest that haploinsufficiency is a

likely mechanism for the observed tumor phenotype, which is

consistent with the observed latency of heterozygous compared to

homozygous mutants, but possible LOH events cannot be

excluded [34]. Here, we observed a tumor penetrance exceeding

90%, which is considerably elevated from the control zebrafish

assessed here, as well as in previously described studies [12,31].

Importantly, sequencing of zebrafish seminomas identified a subset

of tumors showing LOH, which is likely correlated with advanced

tumor progression in these samples (Figure S4B). Both zebrafish

tumors and human seminomas show biallelic loss in a subset of

samples, but LOH is not evident in all samples. Despite the

presence of wild type tissue, which may obscure our genetic LOH

analysis in the remaining samples, we cannot rule out a potential

Figure 5. Localization and expression of LRRC50. LRRC50 antibody ab75163 (reproducible with alternative LRRC50 antibodies) shows a
dynamic, cell cycle dependent, distribution in RPE-hTERT cells (representative for other tested mammalian cell lines). Panels represent LRRC50 (green)
at various stages, counterstained with DAPI (blue) and acetylated-a-tubulin (Ac-tub, red). Optical sections in A–C are 3 mm. (A) In ciliated serum-
starved cells, LRRC50 localizes to the peripheral centrosome/basal body region dorsal of the axoneme (red). Scale bar 10 mm. (B) In mitotic cells,
LRRC50 remains associated with the duplicated centrosomes, as indicated with c-tubulin (red). Inserts b1,2 demonstrate a peri-centrosomal
localisation. Scale bar 2 mm. (C) Temporal localization to the midbody in cytokinesis. Scale bar 10 mm. (D) During mitosis LRRC50 dynamically
associates with condensed chromosomes (extensively described in Figure S5B). Counterstain CREST (red) marks kinetochores. Image is a maximum
intensity projection of deconvoluted stacks. Scale bar 2 mm. (E) Dynamic LRRC50 mRNA expression (correlating with dynamic localization) with error
bars as standard deviation. T47D cells synchronized at the G1/S transition with thymidine show a strong LRRC50 transcript up-regulation upon
release, specifically in the cell population entering early S-phase (see also Figure S6A). Intriguingly; although the protein remains stable during mitosis
(shown in D) the transcript is rapidly down-regulated, and restored to basal levels. (F) Expression profiling of LRRC50 mRNA expression with error bars
of standard deviation in a library of mouse cDNA tissues normalized to full mouse reference pool. Testis expression shown in red as the expression
level (.26.000%) strongly exceeds the normalized value.
doi:10.1371/journal.pgen.1003384.g005
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haploinsufficient mechanism. All identified alleles we tested are

loss-of-function mutations as determined by in vivo complementa-

tion studies and IHC, and do not show dominant negative

phenotypes.

The incidence for human seminoma is rising, however currently

established risk factors remain poorly described and are limited to

urological and testicular developmental abnormalities such as

cryptorchidism and testicular atrophy and undetermined environ-

mental factors [35]. Since LRRC50 mutations have been reported

in PCD [8,9], a multifaceted disease that includes infertility, we

cannot exclude a correlation with impaired sperm motility,

however, thus far no systematic association between PCD and

seminoma has been described [36]. Of interest though, motile cilia

protein DNAH9 (MIM 603330) is frequently mutated in breast

cancer (MIM 114480) [37,38] and in line with this notion, ciliary

frequencies are reduced on cells derived from breast tumors [39].

We hypothesize that the ciliary localization of LRRC50 in early

germ cells (Figure 3D) and subsequent loss in tumor sections might

suggest a role for this organelle in normal germ cell regulation.

Loss of cilia potentially deregulates specific receptors essential for

proper germ cell responses. Indeed, there is some circumferential

support for this hypothesis. Somatostatin receptor 3 (Sstr3) is an

established ciliary localized receptor [40] that is known to be lost

in seminomas [41]. Loss of Fgf8 and Fgfr1 expression in Xenopus

reduces cilia length [42] and expression of the human orthologs is

reduced in seminoma specifically when compared to other GCTs

[43]. Another interesting correlation is the aberrant expression of a

PDGFRa transcript in CIS cells [44], and normal PDGF-AA

signaling can signal through cilia, at least in fibroblasts [45]. The

data presented in this manuscript would argue for an additional

unique role of LRRC50 in primary cilia that is not related to its

function in motile cilia: the gastrulation phenotypes described in

MO-treated zebrafish are associated with primary cilia function

and we have never observed these defects with PCD-associated

genes previously tested. Furthermore, we have described that

primary cilia formation is inhibited upon shRNA-mediated

knockdown in mammalian cells [6], and show increased LRRC50

mRNA expression upon primary cilia formation (Figure S6B). It is

under debate whether cilia could have a direct contribution to

tumorigenesis, but it has rather been demonstrated that well-

described tumor suppressors like VHL, APC, and members of the

Shh and Wnt pathway connect to cilia function [46,47], indicating

that the cilium could be implicated in tumor development.

Alternatively and moreover, the intracellular localizations ob-

served for LRRC50 and cell-cycle dependent regulation could

equally well reflect a cilia-independent putative tumor suppressor

function. Further studies are required to unravel the apparent

diverse molecular functions of LRRC50. In what way the

dysfunction or loss of LRRC50 affects autonomous early germ cell

development, and whether it induces a block in maturation,

deregulates differentiation or proliferation and systematically leads

to seminoma development, remains elusive.

The fundamental mechanisms underlying seminoma formation

are incompletely understood, but in humans is known to involve

erasure of genetic imprinting of PGC/gonocyte progenitor cells

[48]. Although common characteristics have been extensively

described to include aneuploidy and non-random gain and loss of

chromosomes, of which gain of 12p appears important in

metastatic tumors [48], little information on early initiating events

is available. Causal genetic factors to seminoma development are

also limited as only 1.4% of TGCT are familial cancer syndromes.

Nevertheless, the familial risk factor for inherited TGCT is

estimated as more than double of other familial cancer syndromes

[17], appealing to the need for more genetic studies. Recent

advances have implicated the KITLG/SPRY4/BAK1 and

TGFb/BMP-signaling (BMPR1B) pathways in germ cell tumor

development, which include the control of differentiation, cell

proliferation and apoptosis [34,49–51]. Mutations in both

pathway components are identified in seminomas and non-

seminomas, hence differentiating factors amongst these tumors

remain unknown. Furthermore, N- and KRAS activation muta-

tions and LOH of well-accepted tumor suppressors APC, p53 and

CDH-1 have been identified in both seminomas and non-

seminomas [52,53]. It is expected however, that the default

pathway for CIS cell development is seminoma and that an

additional event is required to induce a switch in pluripotency,

leading to non-seminoma [48]. Our data identifies LRRC50 as a

novel candidate and we suggest that a currently unknown tumor

suppression mechanism (Figure S7) specifically predisposes to

zebrafish and human seminoma development.

Materials and Methods

Ethical approval
All animal experiments were approved by the Animal Care

Committee of the Royal Dutch Academy of Science according to

the Dutch legal ethical guidelines or the Duke University

Institutional Care and Use Committee. The human tumor

samples used for this study were approved by an institutional

review board (MEC 02.981). Samples were used according to the

‘‘Code for Proper Secondary Use of Human Tissue in the

Netherlands,’’ developed by the Dutch Federation of Medical

Scientific Societies [54].

Zebrafish lines, tissue isolation, and histology
Heterozygote lrrc50Hu255h, vhl and randomly selected control

zebrafish were isolated from a forward genetic N-ethyl-N-

nitrosourea (ENU)-based mutagenesis screen as previously de-

scribed and maintained according to standard protocols [6,55].

Founder lrrc50+/2 fish were outcrossed three consecutives times to

wild-type lines and incrossed once to maintain the line. Prior to

tissue isolation, zebrafish were euthanized by overdose of MS222.

Fragments for immunohistochemistry were fixed overnight using a

4% paraformaldehyde solution containing 2% acetic acid,

embedded in paraffin and sectioned at 6 mm. Fragments used

for morphological analysis were fixed using 4% glutaraldehyde

and embedded in glycol methacrylate (Technovit 7100, Hereaus

Kulzer), sectioned at 4 mm and stained with toluidine blue. Images

were captured using a Nikon Eclipse E800 equipped with a Nikon

DXM1200 digital camera and Plan Apo 26/0.1, 106/0.45, 206/

0.75 and 406/0.95 NA objectives.

Tissue culture, transfections, and cell synchronization
Human RPE-hTERT and T47D cells were cultured in

DMEM/F12 supplemented with 10% fetal bovine serum (Lonza),

penicillin/streptomycin and ultra-glutamine (2 mM). T47D cells

were subjected to a double thymidine block (10 mM, Sigma) and

released for indicated times. RPE-hTERT cells were ciliated by

48 hours of serum withdrawal. Mitotic RPE-hTERT cells were

trapped in nocodazole (Sigma): 1 mg/ml, collected using mitotic

shake-off, swollen for 15 minutes in hypotonic (75 mM) KCl

solution at 37uC and prepared for imaging using cytospin. RPE-

hTERT cells were transfected with Mybbp1a-RFP using Fugene6

(Roche) according to manufacturer recommendations.

RNA isolation, real-time PCR, and cell cycle analysis
RNA isolation was performed according to manufacturers

recommendations (Qiagen, RNA isolation kit). mRNA probes;
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LRRC50 Hs00698399_m1 and RPL19 Hs01577060_gH, were

purchased from Applied Biosystems. Real time PCR was

performed in triplicate using the one-step RT-PCR kit and the

7500 system from Applied Biosystems. For mouse tissue LRRC50

expression profiling, Clontech RNA libraries of developing

embryo’s and adult tissues were used. Cells for FACS analysis

were fixed in ice-cold 70% ethanol, DNA content and mitotic

index determined using propidium iodide and phospho-Histo-

neH3 according to standard conditions.

Immunofluorescence and immunohistochemistry
Cells are fixed in either ice-cold methanol or 4% PFA with

0.1% Triton-X-100. All immuno-fluorescence stainings were

performed in PBS containing 3% BSA and 5% goat serum and

washed in 3% BSA in PBS. Coverslips were mounted using

ProLong antifade (Molecular Probes). Primary antibodies used are

a-LRRC50 (1:100, Abcam; ab75163, 1:100 Aviva Systems

Biology; ARP53359_P050, 1:100 Santa Cruz Biotechnology; sc-

133762, 1:100 Sigma; SAB2101390), a-acetylated a-tubulin

(1:10.000, Sigma-Aldrich T6793; clone 6-11B-1), a-CREST/

ACA anti-sera (1:10.000, Fitzgerald Industry Int.), a-c-tubulin

(1:500, Sigma; clone GTU-88, T6557). Secondary antibodies

(alexa-488, -568 and -647, various species) were obtained from

Molecular Probes. Images were acquired using a Zeiss 510 Meta

confocal microscope with a 6361.3 N.A. objective and analyzed

with the Zeiss LSM Meta 510 software and a Deltavision RT

imaging system (Applied Precision) using 1006 NA 1.4 UPlan-

SApo objective (Olympus) using SoftWorx software. For zebrafish

immunohistochemistry, stainings were performed as described

[15,34]. Primary antibodies used were a-phosphorylated-histone

H3 (1:1000, Upstate; 06-570), a-Ziwi (1:100, [15]) and a-c-H2Ax

(1:200, Cell Signaling). Human testicular tissues isolated from

autopsies performed at the University Medical Center Utrecht of 6

men (33–43 years of age) were used. After deparaffination and

rehydration, 4 mm sections were digested in protease XXIV (Sigma,

0.02 mg/ml in PBS, pH 7.3, 60 minutes at room temperature)

[56]. After washing and blocking in 1% BSA in PBS, primary

antibodies (mouse monoclonal acetylated-a-tubulin, clone 6-11B-1

Sigma 1:12000, rabbit polyclonal a-LRRC50, ARP53359_P050

Aviva Systems Biology, 1:50, rabbit detyrosinated-tubulin, Milli-

pore AB3201 1:250) were incubated for 60 minutes at room

temperature. After repeated washing in PBS, secondary antibodies

are incubated for an additional 60 minutes at room temperature:

goat-anti-mouse conjugated to Cy5 (Millipore, 1:100) and goat-

anti-rabbit-Cy3 (Life Technologies, 1:100). Sections were washed

again repeatedly, incubated in DAPI (diluted 1:5000 in PBS) for

15 minutes and after a final round of washes in PBS, mounted

with Fluoromount G. Stained sections are stored in the dark at

4uC until confocal imaging with a Zeiss LSM700 636 objective.

IHC section (3 mm) are stained with a-LRRC50 (1:200, Abcam;

ab75163), secondary antibody used is powervision-HRP IgG

(1:200, Immunologic) and sections were counterstained with

hematoxylin according to standard protocols.

Zebrafish in vivo complementation assays
MO targeting lrrc50 was injected into wild-type embryos at the

one to four cell stage, and rescued with capped human LRRC50

mRNA as described [19]. We used site-directed mutagenesis to

introduce missense changes Thr590Met and Gln307Glu into the

WT pCS2+ LRRC50 construct (Quick-Change Site Directed

Mutagenesis kit, Agilent) and used linearized plasmid to transcribe

mRNA (SP6 mMessage mMachine kit, Ambion). Live embryo

scoring, RNA ISH, morphometric analyses and statistics were

conducted as described [57]. Analysis is detailed in Table S1.

Quantification of spermatogonial proliferation
To assess and compare the amount of proliferating spermato-

gonial stem cells between wild-type and tumor tissue, sections

pH3-stainings were quantified. For analysis of the tumor samples,

three photographs (206 magnification) from three different

sections are used (16–20 mm distance between sections) to obtain

a valid representation of various regions of the tumor. For the

control samples, two sections were used given the smaller size of

testis fragments. The protocol for quantification was adapted from

ImageJ (http://rsbweb.nih.gov/ij/). Briefly, the difference in

intensity between pH3-positive and pH3-negative background

tissue was substantial enough to set the threshold by manually

adjusting the background levels. Next, a binary image was created

to calculate the percentage of total surface area covered with

positive cells. Large clusters (.3–4 cells) of proliferating cells are

removed manually to enrich for individual positive cells. To

correlate the amount of proliferative spermatogonial stem cells to

the total amount of tissue on a given image, the calculated surface

area was set to 100% and the proliferation percentage was

extrapolated. The percentage of proliferation per picture was

averaged for each tissue fragment. Averages were calculated and

results are represented in a box-plot. More details on the

calculation are found in the statistical analysis section.

Genotypic analysis zebrafish lrrc50+/2 tumors and human
TGCT

DNA isolation, PCR and sequencing of tumor fragments and

human samples were performed according to standard proce-

dures. Human control samples were obtained from healthy blood

donors that submitted material to the UMC Utrecht department

of Medical Genetics. Primer sequences can be found in Table S2.

Sequence analysis was performed using polyphred software [6]

and DNASTAR Lasergene Software (http://www.dnastar.com/

default.aspx).

Statistical analysis
The number of tumors identified in the different groups

(Figure 1A) were compared using a two-tailed Fisher’s exact test

in a 262 contingency table. Between 24 months and 44 months of

age, male lrrc50Hu255h zebrafish (TGCT tumors n = 24, normal

n = 0) compared controls (TGCT tumors n = 17, normal n = 87).

The quantifications of spermatogonial stem cell proliferation

(Figure S4A) were subjected to statistical analysis. As input the

following data was used; the tumor averages three quantified

sections per sample; whereas vhl (+/2) and wild type control

groups averaged two sections. A non parametric Mann-Whitney

test at P,0.05 was used to compare whether the averages of two

groups are different, the p-value between the tumor group (n = 7)

and normal wild type (n = 5) or vhl (+/2) (n = 4) was calculated.

Wild type and the vhl (+/2) group are not significantly different

(P = 0.3095, U = 7.000), both are significantly (P = 0.0025,

U = 0.0000) different from the tumor group. Results are repre-

sented in a box-plot. To calculate the putative overrepresentation

of c.919C.G/p.Gln307Glu in the seminoma cohort (Figure 3F), a

two-tailed Fisher’s exact test in a 262 contingency table was used

as the data is categorical and sample sizes are large. We used

n = 100 and n = 0 for the control group and n = 33 and n = 5 for

the seminoma group, and determined P = 0.0013 confirming a

significant enrichment. Expression of mRNA as described in

Figure 5E; Ct values obtained were normalized and used to

calculate relative expression levels in n = 4 per condition. The

standard deviation (P = 0.05) was calculated. This was performed

similarly for Figure 5F using n = 3 per condition.
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Supporting Information

Figure S1 Schematic overview of human TGCT development.

Schematic representation of human testicular germ cell develop-

ment (black lines) giving rise to the known tumor (orange lines)

pathologies [1]. Type I GCT are not indicated, but are derived

from early stages of embryonic stem cells with different

characteristics. Type II GCT commonly arise from transformed,

intrinsically pluripotent PGC/gonocytes forming an oncogenic

counterpart known as a carcinoma in situ (CIS) cell. The Type II

tumors can be seminomas or non-seminomas, the latter forming a

more complex pathology consisting of multiple tumorigenic cell

types that display characteristics of undifferentiated stem cells, as

well as differentiated derivatives (the latter similarly observed in

type I GCTs). In normal development, gonocytes establish the

germ cell lineage in the seminiferous tubules and differentiate to

spermatogonial stem cells that at some point become committed to

spermatogenesis. In the seminiferous tubules, the Sertoli cell

supports and co-regulates germ cell differentiation and develop-

ment. Type III GCT are usually recovered from old-aged men

and are thought to arise from spermatogonia, i.e., germ cell that

lost their embryonic characteristics, committed to spermatogene-

sis, which is a more differentiated stage of spermatogenesis.

(TIF)

Figure S2 Non-TGCT zebrafish lrrc50Hu255h tumors and female

gonad. (A) One fish was identified bearing a large tumor (merge of

two images) located proximal to the brain, histologically resembling

zebrafish malignant peripheral nerve sheath tumors (zMPNST)

[58]. Albeit a rare finding in lrrc50Hu255h zebrafish, these tumors

typically do not occur in wild-type zebrafish and might therefore

potentially represent an alternative lrrc50 associated tumor type.

Scale bars; 50 mm. (B) We identified a tumor of somatic tissue

(undetermined pathology, putative zMPNST) located in the testes of

one zebrafish, unlike all other TGCTs described in this manuscript.

Scale bars; 50 mm. (C) Heterozygote lrrc50 females (n = 11) do not

show gonadal abnormalities; ovaries were isolated simultaneously

with male testes/TGCT at an age of 30 months. Scale bars; 50 mm.

(TIF)

Figure S3 Zebrafish spermatogenesis and lrrc50Hu255h testicular

hyperplasia. (A) The various stages of spermatogenesis in zebrafish

can be morphologically distinguished and are indicated in a

section from wild type zebrafish. Spermatogonial stem cells (SPG)

that commit to spermatogenesis from clusters of paired

(SPG_paired) and aligned spermatogonia (SPG_al) by mitotic

divisions. All differentiated germ cells remain connected via

stabilised intracellular bridges that allow the shared use of

cytoplasmic components. This elegant mechanism is essential to

synchronise collective mitosis, meiosis, differentiation and apop-

tosis of these clusters of cells. Next, SPG_al collectively

differentiate into primary spermatocytes (PS), reducing cytoplas-

mic volume and severely modifying nuclear structure. Meiosis is

the next step of differentiation, and occurs via the first (MI) and

second (MII) meiotic divisions, forming haploid cells, these cells

are known as secondary spermatocytes (SS). These cells contain

one copy of the genome and need no further divisions; instead,

these cells differentiate into spermatids (ST) that eventually form

mature sperm. Scale bars; 100 mm. (B) Wild-type and hyperplastic

testes of heterozygote lrrc50Hu255h zebrafish. A total of three have

been identified, all showing moderate to extreme increases in testes

volume, however upon histology we do not observe the typical

increase in early germ cells as observed in tumors. Scale bars;

50 mm.

(TIF)

Figure S4 Zebrafish lrrc50Hu255h tumor proliferation and geno-

typing various stages of tumor progression. (A) Quantification of

single stem cell proliferation from phospho-HistoneH3 staining;

lrrc50+/2 (T; tumors, n = 7), wt (n = 5) and age-matched vhl+/2

(n = 4). Statistical analysis was performed using a non-parametric

Mann-Whitney test at P,0.05. (B) Analysis of the tumor

progression, defined by SPG content determined by a-Ziwi IHC

and morphologically identifiable sperm content, correlates with

increased biallelic loss indicated by tumor genotypes. Scale bars;

50 mm.

(TIF)

Figure S5 Detailed characterization of human LRRC50. (A)

Adapted image from a report by Muto et al. [26] which describes a

group of LRR containing proteins that all share localization to the

centrosome. Based on the intracellular distribution of LRRC50

described in this manuscript and the presence of six Leucine Rich

Repeats as well as a Coiled-Coil domain, we propose LRRC50 to

be an additional member of this subgroup. (B) LRRC50

localization resembles that of the group of perichromosomal

sheath proteins [27]. A detailed description of the dynamic

LRRC50 localization to chromosomes during the cell cycle is

provided. Additionally, continuous association of LRRC50 with

the centrosomes and localization to the midbody can be

appreciated. We used Dapi (blue), a-LRRC50 ab75163 (green)

and a-acetylated-a-Tubulin unless otherwise indicated. Nucleolus;

in interphase cells, LRRC50 localizes to structures in the nucleus.

We show these structures to be nucleoli based on co-localization

with ectopically expressed mybbp1A-RFP (red), which is an

established nucleolar marker [59]. G2; cells that are in the G2

phase of the cell cycle show increased expression of LRRC50 in

both nucleoli and nucleoplasm. One cell with duplicated

centrosomes (using a-c-Tubulin in red) can be observed, indicating

this cell to be in the G2 phase. The neighbouring cell has no

duplicated centrosomes and appears to be in interphase.

Expression levels are generally lower, supported by the LRRC50

mRNA expression shown in Figure 5E and Figure S6C, and

localization is confined to nucleoli. Prophase; upon completion of

chromosome condensation at the G2/M transition, LRRC50 has

associated with all foci of condensed chromosomes. Metaphase and

Anaphase; after nuclear envelope breakdown, LRRC50 remains

associated with the chromosomes throughout formation of the

metaphase plane and the actual chromosome segregation during

anaphase. Telophase and cytokinesis; during telophase when con-

densed chromosomes begin to de-condense, LRRC50 relocalizes

from the perichromosomal sheath to a more diffuse and less

defined chromosomal location. Followed by a temporal redistri-

bution to the midbody.

(TIF)

Figure S6 Human LRRC50 expression. (A) LRRC50 mRNA is

analyzed in a cell cycle dependent fashion (Figure 5E). Samples

were harvested from T47D cells double blocked in thymidine or

released from this block at indicated time points. FACS analysis

using propidium iodide and a-phospho-Histone H3 are used to

determine the cell cycle stages. Percentages of cells in [SubN2],

[G1], [S], [G2] and [M] phases are indicated. (B) RPE-hTERT

cells were serum starved for three consecutive days to initiate cilia

formation. Expression of LRRC50 mRNA is increased accordingly.

Error bars present standard deviation. Samples are normalized to

day 0 expression levels. (C) Graphical overview of LRRC50 mRNA

and protein expression in various cell cycle dependent stages.

LRRC50 is low during interphase prior to a dramatic up-regulation

during early S-phase. Protein expression lags shortly behind based

on staining intensities. In mid-S-phase/early G2, mRNA has been
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reduced to interphase levels, indicating a stringent regulation.

Protein levels remain elevated throughout mitosis, before decreas-

ing in interphase. Cells either proceed into a new round of mitosis

or cells exit from the cell cycle into G0. LRRC50 mRNA and

protein levels are increased during ciliogenesis as has been

described in B and as previously described literature [6,7,10,20].

Taken together, the expression pattern and localization of

LRRC50 are highly suggestive of a dual protein function; one

role required for ciliary processes, another for a cell cycle related

function.

(TIF)

Figure S7 Summarizing overview of described data. LRRC50

(green) normally exhibits various intracellular localizations.

Defects in LRRC50 (red) have been previously shown to cause

ciliary defects resulting in PCD. Here we show that, through an

unknown mechanism likely to involve biallelic inactivation,

mutations of LRRC50 results in the formation of seminomas in

zebrafish and man. The identified mutant alleles are shown in red.

(TIF)

Table S1 LRRC50 in vivo complementation analysis. Statistics

and sample size of in vivo complementation analyses (NS, not

significant; MO, morpholino; WT, wild-type).

(DOC)

Table S2 Primer sequences used for zebrafish and human

genotyping. Amplicons spanning zebrafish lrrc50 and human

LRRC50 exons were designed using the Primer3 software (http://

fokker.wi.mit.edu/primer3/input.htm) described by Rozen S and

Skaletsky HJ,. (2000). Bioinformatics Methods and Protocols:

Methods Mol Biol. 132, 365–386.

(DOC)
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