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Adaptive Element-Free Galerkin method

applied to the limit analysis of plates

Canh V. Le a, Harm Askes a,∗and Matthew Gilbert a

aUniversity of Sheffield, Department of Civil and Structural Engineering,
Sheffield S1 3JD, United Kingdom

Abstract

The implementation of an h-adaptive Element-Free Galerkin (EFG) method in the
framework of limit analysis is described. The naturally conforming property of mesh-
free approximations (with no nodal connectivity required) facilitates the implemen-
tation of h-adaptivity. Nodes may be moved, discarded or introduced without the
need for complex manipulation of the data structures involved. With the use of the
Taylor expansion technique, the error in the computed displacement field and its
derivatives can be estimated throughout the problem domain with high accuracy.
A stabilized conforming nodal integration scheme is extended to error estimators
and results in an efficient and truly meshfree adaptive method. To demonstrate its
effectiveness the procedure is then applied to plates with various boundary condi-
tions.

Key words: Error estimation, adaptivity, limit analysis, EFG method,
second-order cone programming

1 INTRODUCTION

Limit analysis makes use of the fundamental theorems of plastic analysis to
provide a powerful means of estimating the maximum load sustainable by a
solid or structure. Mathematical programming techniques can often be applied
to permit the collapse load to be determined directly. In recent years efforts
have focussed principally on the development of efficient and robust numerical
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limit analysis tools of potential use to engineers working in practice, which ei-
ther use continuous (e.g. using finite element [1–7] or meshless [8–10] methods),
semi-continuous [11] or truly discontinuous [12] representations of the relevant
field variables. However, the accuracy of numerical limit analysis solutions is
highly affected by local singularities arising from localized plastic deforma-
tions [13]. In order to achieve accurate solutions automatic h-refinement is
often performed, so that the resolution of the spatial discretization is refined
in plastic zones. Automatic finite element mesh refinement based on both
stress and strain fields has been previously proposed [14], where elements are
candidates for refinement if the strain tensor is non-zero. Alternatively, adap-
tive procedures based on a posteriori error estimates to measure the local
and global errors associated with the interpolation have been developed for
limit analysis problems. A directional error estimate using recovery gradients
and/or the Hessian of mixed finite element solutions was proposed in [13].
The scheme was then adapted to lower bound limit analysis by using quasi-
velocities and plastic multipliers from the dual solution [15]. Using solutions
of the lower and upper bound problem in combination, another effective error
estimate was proposed in [16,17]. These techniques have been used successfully
for various 2D problems.

Meshfree methods are very attractive computational techniques due to their
flexibility, e.g. no nodal connectivity is required. The naturally conforming
property of meshfree approximations offers considerable advantages in adap-
tive analysis. Nodes can easily be added and removed without the need for
complex manipulation of the data structures involved. Since error estimates
for finite elements are not always directly transferable to meshfree methods,
various approaches have been proposed [18–23]. Effective approaches to esti-
mate the interpolation/approximation error were proposed in [20, 21, 24, 25].
The approximation error in the computed displacement field and its deriva-
tives can be evaluated with high accuracy using a Taylor expansion of the
relevant field variable. It is also shown in [21] that this estimate is generally
suitable for problems with high stress and strain gradients and singularities.
While these approaches have been developed for structured meshfree particle
methods using Gauss integration, it is also desirable to develop an efficient
method for general irregular nodal layouts. In this paper the error density in
a representative nodal cell can be determined using smoothed values of the
displacement derivatives. This not only results in a truly meshfree method
but also reduces the effort required to calculate displacement derivatives in
the error estimate. Furthermore, since the Voronoi diagram for a set of nodes
is unique, properties of Voronoi cells can be conveniently used as a reference
for refinement strategies and for determining locally the size of the domain of
influence.

In the framework of meshfree methods, it is advantageous if the problem under
consideration can be solved by evaluating quantities at the nodes only [26–32].
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The smoothing technique proposed in [28] is one of the most efficient nodal in-
tegration methods available, and has been applied successfully to various anal-
ysis problems [9, 10, 33–35]. In this technique nodal values are determined by
spatially averaging field values using the divergence theorem. In other words,
the domain integrals are transformed into boundary integrals to avoid the
evaluation of the derivatives of the meshfree shape functions at the nodes,
where they vanish, thus eliminating spatial instability problems. In this paper
the range of applicability of the smoothing technique is extended by applying
it to a kinematic limit analysis formulation incorporating error estimation.

The objective of this paper is to develop a meshfree h-adaptivity procedure for
limit analysis problems. The layout of the paper is as follows: Section 2 briefly
describes a kinematic upper bound limit analysis formulation for plates using
the Element-Free Galerkin (EFG) method and stabilized conforming nodal in-
tegration (SCNI). A cell-based error estimate for the displacement field and its
derivatives is presented in Section 3. Based on the error estimate discussed in
Section 3, error indicators and refinement strategies are introduced in Section
4. Numerical examples are provided in Section 5 to illustrate the performance
of the proposed procedure.

2 LIMIT ANALYSIS OF PLATES - DISCRETE KINEMATIC
FORMULATION

In this section the kinematic formulation for the plate limit analysis problem
is outlined, together with details of the EFG method and the second-order
cone programming (SOCP) problem formulation. More details can be found
in [9].

Consider a rigid-perfectly plastic plate governed by the von Mises yield cri-
terion, subjected to a distributed load α+q and with a constrained boundary
Γu. The upper bound limit analysis problem for plates can be written as

α+ = min
∫

Ω
mp ‖CT κ̇‖L2(Ω) dΩ (1a)

s.t

κ̇ = −
{

∂2u̇h

∂x2

∂2u̇h

∂y2
2

∂2u̇h

∂x∂y

}T

(1b)
∫

Ω
quh dΩ = 1 (1c)

accompanied by appropriate boundary conditions, where q is unit load per
area, α+ is a scalar collapse load multiplier, mp = σ0t

2/4 is the plastic moment
of resistance per unit width of a plate of thickness t and C is a matrix that
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depends on the yield criterion involved. For the von Mises criterion,

C =
1√
3




2 0 0

1
√

3 0

0 0 1




(2)

The approximated transverse displacement uh(x) is computed using a Moving
Least Squares (MLS) technique and is expressed as

uh(x) =
n∑

I=1

ΦI(x)uI (3)

The MLS shape functions ΦI(x) are given as [36,37]

ΦI(x) = pT (x)A−1(x)BI(x) (4)

with

A(x) =
n∑

I=1

wI(x)p(xI)p
T (xI) (5)

BI(x) = wI(x)p(xI) (6)

where n is the number of nodes; p(x) = [1, x, y, xy, x2, y2]
T

is a quadratic basis
function and wI(x) is an isotropic quartic spline weight function associated
with node I.

Introducing stabilized conforming nodal integration [28], smoothed curvature
rates κ̇(xj) at nodal point xj are written as

κ̇(xj) = −G v (7)

where
vT = [u̇1, u̇2, . . . , u̇n] (8)

G =




Φ̃1,xx(xj) Φ̃2,xx(xj) . . . Φ̃n,xx(xj)

Φ̃1,yy(xj) Φ̃2,yy(xj) . . . Φ̃n,yy(xj)

2Φ̃1,xy(xj) 2Φ̃2,xy(xj) . . . 2Φ̃n,xy(xj)




(9)

with
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Φ̃I,αβ(xj) =
1

2aj

∮

Γj

(ΦI,α(xj)nβ(x) + ΦI,β(xj)nα(x)) dΓ

=
1

4aj

ns∑

k=1

(
nk

β lk + nk+1
β lk+1

)
ΦI,α(xk+1

j )

+
1

4aj

ns∑

k=1

(
nk

α lk + nk+1
α lk+1

)
ΦI,β(xk+1

j ) (10)

where Φ̃ is the smoothed version of Φ; aj, Γj and ns are respectively the
area, boundary and the number of segments of a Voronoi nodal domain Ωj as
shown in the Figure 1; xk

j and xk+1
j are the coordinates of the two end points

of boundary segment Γk
j which has length lk and outward surface normal nk.

Fig. 1. Geometry of a representative nodal domain

The kinematic limit analysis problem for plates can now be written in the
form of a SOCP problem as follows:

α+ = min mp

n∑

j=1

ajtj (11a)

s.t

Aeqv = beq (11b)

−CTGv = ri (11c)

‖ ri ‖≤ ti, i = 1, 2, . . . , n (11d)

in which Eq. (11d) expresses quadratic cones and ri ∈ R3 are additional
variables defined by Eq. (11c), where every ri is a 3 × 1 vector. Matrix Aeq

and vector beq are obtained from unitary external work Eq. (1c) and boundary

5



conditions, and they are given by

Aeq =




n∑
j=1

ajΦ1(xj)
n∑

j=1
ajΦ2(xj) . . .

n∑
j=1

ajΦn(xj)

Φ1(x
b
1) Φ2(x

b
1) . . . Φn(xb

1)
...

...
. . .

...

Φ1(x
b
d) Φ2(x

b
d) . . . Φn(xb

d)

Φ1,x(x
b
1) Φ2,x(x

b
1) . . . Φn,x(x

b
1)

...
...

. . .
...

Φ1,x(x
b
rx) Φ2,x(x

b
rx) . . . Φn,x(x

b
rx)

Φ1,y(x
b
1) Φ2,y(x

b
1) . . . Φn,y(x

b
1)

...
...

. . .
...

Φ1,y(x
b
ry) Φ2,y(x

b
ry) . . . Φn,y(x

b
ry)




(12)

bT
eq =




1

d︷ ︸︸ ︷
0 0 . . . 0

rx︷ ︸︸ ︷
0 0 . . . 0

ry︷ ︸︸ ︷
0 0 . . . 0


 (13)

Here d is the number of boundary nodes having displacement conditions and rx
and ry are the number of boundary nodes having rotation conditions about x
and y, respectively. It is noted that tangential rotations along the boundary are
also enforced as this has been found to increase the accuracy of the solutions.

3 ESTIMATION OF APPROXIMATION ERRORS

A key ingredient of any adaptive analysis procedure is the formulation of an
error estimate which determines which parts of the domain are most in need of
refinement. Here we will use the error estimate approach given in [20,21,24,25].
The estimated error for general approximations of sth order completeness is
presented first, from which the error for linear and quadratic cases in 2D can
be retrieved. An approximation is complete to order s if any polynomial up
to order s is exactly reproduced as

n∑

I=1

xpΦI(x) = xp for 0 ≤ p ≤ s (14)
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The error can be written as

uh(x)− u(x) =
n∑

I=1

ΦI(x)uI − u(x) (15)

Expanding u(x) by a Taylor series, the nodal values of the exact solution are
indicated as u(xI) and can be expressed as

u(xI) =
s∑

m=0

1

m!

(
(xI − x)

∂

∂x
+ (yI − y)

∂

∂y
+ (zI − z)

∂

∂z

)m

u(x)+Rs+1 (16)

with

Rs+1 =
1

(s + 1)!

(
(xI − x)

∂

∂x
+ (yI − y)

∂

∂y
+ (zI − z)

∂

∂z

)s+1

u(x̄),

x̄ = (1− ν)x + νxI , 0 < ν < 1 (17)

Combining the conditions of an approximation of sth order completeness with
Eqs. (15,16), the approximation error reads

uh(x)− u(x) =
1

(s + 1)!

(
(xI − x)

∂

∂x
+ (yI − y)

∂

∂y
+ (zI − z)

∂

∂z

)s+1

u(x̄)

(18)
The shape functions are bounded, that is |Φ(x)| ≤ c where c is a bounded con-
stant, and have compact support (|xI − x| ≤ hI , |yI − y| ≤ hI and |zI − z| ≤
hI). Defining

D =

(
∂

∂x
+

∂

∂y
+

∂

∂z

)
(19)

and taking the L2-norm of the error estimate, Eq. (18) becomes

‖uh(x)− u(x)‖L2(Ω) = chs+1
I

∣∣∣∣∣

∣∣∣∣∣
1

(s + 1)!
Ds+1u

∣∣∣∣∣

∣∣∣∣∣
L2(Ω)

(20)

Similarly, the approximation error associated with the derivatives can be es-
timated. The error in the first derivative is expressed as

∣∣∣∣∣

∣∣∣∣∣
∂uh(x)

∂x
− ∂u(x)

∂x

∣∣∣∣∣

∣∣∣∣∣
L2(Ω)

= chs
I

∣∣∣∣∣

∣∣∣∣∣
1

(s + 1)!
Ds+1u

∣∣∣∣∣

∣∣∣∣∣
L2(Ω)

(21)

For 2D problems, the approximation error of the first derivative is

∣∣∣∣∣

∣∣∣∣∣
∂uh(x)

∂x
− ∂u(x)

∂x

∣∣∣∣∣

∣∣∣∣∣
L2(Ω)

= chI

∣∣∣∣
∣∣∣∣
1

2
(u,xx + u,yy + 2u,xy)

∣∣∣∣
∣∣∣∣
L2(Ω)

(22)
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for a linear basis function, and it is

∣∣∣∣∣

∣∣∣∣∣
∂uh(x)

∂x
− ∂u(x)

∂x

∣∣∣∣∣

∣∣∣∣∣
L2(Ω)

= ch2
I

∣∣∣∣
∣∣∣∣
1

6
(u,xxx + u,yyy + 3 (u,xxy + u,yyx))

∣∣∣∣
∣∣∣∣
L2(Ω)

(23)
for a quadratic basis function.

4 ADAPTIVE PROCEDURE

4.1 Updating the shape functions

In meshfree adaptive analysis, new nodes are added in those parts of the do-
main where the error exceeds a predefined tolerance. These new nodes locally
impact on the shape functions of neighbouring nodes. In order to reduce com-
putational cost and to ensure consistency of the MLS approximation, matrix
A in the shape functions of existing nodes are reconstructed locally as [22]:

A(x) =
nold∑

I=1

wI(x)p(xI)p
T (xI) +

nnew∑

I=1

wI(x)p(xI)p
T (xI)

=Aold(x) +
nnew∑

I=1

wI(x)p(xI)p
T (xI) (24)

This is illustrated with a one-dimensional example in Figure 2, where an added
node 12 can be seen to affect the shape functions of nodes 6 and 7.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11

(a) Before adaptivity

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 1112

(b) After adaptivity

Fig. 2. Nodal refinement strategies based on Voronoi cells

Note that in an adaptive refinement procedure nodes will often be distributed
irregularly. Therefore the size of the domain of influence needs to be deter-
mined locally. The Voronoi diagram for a set of nodes is unique, and from
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the Voronoi cell information, the neighbours of node I can be identified and
grouped as NI , as shown in Figure 3

NI = {PJ : V (PJ) ∩ V (PI) 6= ®}
= {p1, p2, p3, p4, p5, p6, p7} (25)

where V (PI) is the Voronoi cell of particle PI .

PI

p
1

p
2

p
3

p
4

p
5

p
6

p
7

dmax

J

Fig. 3. Determination of shape function support size

The size of the domain of influence of node I is then determined as

hI = β · max{dJ : dJ = PIPJ , ∀PJ ∈ NI} (26)

4.2 Refinement criteria

Based on the error estimate discussed in Section 3, the local error is computed
for each integration cell from the displacement fields obtained by solving the
optimization problem. This local error is controlled as follows

hs
I

∣∣∣∣∣

∣∣∣∣∣
1

(s + 1)!
Ds+1u

∣∣∣∣∣

∣∣∣∣∣
L2(Ω)

≤ δ (27)

where δ is a dimensionless user-defined error tolerance value which will be
discussed in more detail in Section 5.

It is important to note that it is often computationally expensive to calculate
the terms Ds+1u in Eq. (27), especially for problems using second, or higher,
order basis functions. Furthermore, in order to evaluate accurately the LHS
term in Eq. (27) a large number of Gauss points would be needed [21]. The
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smoothing technique proposed in [28] can be extended to overcome this dif-
ficulty. Introducing smoothing of Ds+1u(x) at a representative nodal domain
Ωj, we have

Ds+1ũ(xj) =
1

aj

∫

Ωj

Ds+1u(x)dΩ (28)

Introducing now the MLS approximation of the displacement field, we obtain

Ds+1ũ(xj) =
n∑

I=1

Ds+1Φ̃I(xj)uI (29)

where

Ds+1Φ̃I(xj) =
1

aj

∫

Ωj

Ds+1ΦI(x)dΩ (30)

With the use of this smoothing technique, the cell-based error tolerance can
be rewritten as

ajh
s
j

∣∣∣∣∣

∣∣∣∣∣
1

(s + 1)!
Ds+1ũ(xj)

∣∣∣∣∣

∣∣∣∣∣
L2(Ωj)

≤ δ (31)

The global error estimator is the sum of the local errors of all cells and is given
by

||e||L2(Ω) =




n∑

j=1


ajh

s
j

∣∣∣∣∣

∣∣∣∣∣
1

(s + 1)!
Ds+1ũ(xj)

∣∣∣∣∣

∣∣∣∣∣
L2(Ωj)




2



1/2

(32)

For plate problems, quadratic basis functions must be used [38]. The local
cell-based error estimator then reads

ajh
2
j

∣∣∣∣∣

∣∣∣∣∣
ũ,xxx(xj) + ũ,yyy(xj) + 3 (ũ,xxy(xj) + ũ,yyx(xj))

6

∣∣∣∣∣

∣∣∣∣∣
L2(Ωj)

≤ δ (33)

in which

ũ,ααβ(xj) =
n∑

I=1

Φ̃I,ααβ(xj)uI (34)

Φ̃I,ααβ(xj) =
1

2aj

∮

Γj

(ΦI,αα(xj)nβ(x) + ΦI,αβ(xj)nα(x)) dΓ (35)

The technique used to determine the boundary integral in Eq. (10) can be
applied here to evaluate the term on the RHS of Eq. (35).

4.3 Refinement strategy

The problem domain is subdivided into nodes and an associated Voronoi dia-
gram is constructed. If the local error in a Voronoi cell exceeds the predefined
value δ, new nodes are added as shown in Figure 4 [22, 23]. It can be seen
from the figure that the cells in the Voronoi diagram resulting from strategy
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(I) are more uniformly sized than those resulting from strategy (II), and also
that the number of nodes added in the two cases is identical.

added node

existing node

(a) Strategy I: adding nodes on ver-
tices of Voronoi cell

(b) Voronoi cells associated with (a)

added node

existing node

(c) Strategy II: adding midpoint
nodes on edges of Voronoi cell

(d) Voronoi cells associated with (c)

Fig. 4. Nodal refinement strategies based on Voronoi cells (added nodes shown in
red)

The efficiency of these refinement strategies will be discussed in the next sec-
tion. The adaptive procedure can be summarised as follows:

5 NUMERICAL EXAMPLES

The efficacy of the proposed adaptive meshfree procedure for limit analysis
problems will now be demonstrated by applying it to plate problems of various
geometries and loaded by either a uniform pressure or concentrated forces.
For all the examples considered the following parameters were assumed: plate
thickness t = 0.1 m; yield stress σ0 = 250 MPa and the parameter β in Eq. (26)
was taken to be 3.0 [21]. Quarter symmetry was assumed where appropriate.
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1. Construct Voronoi diagram from an initial set of nodes.

2. Construct shape functions, derivatives and smoothed values.

3. Build matrices and vectors for the optimization problem.

4. Solve the optimization problem to obtain a collapse load multiplier

and displacement field data.

5. Calculate the local error for each Voronoi cell or node.

6. Calculate the global error (= sum of local errors).

7. If all local errors are smaller than the user-defined error tolerance δ

then terminate as no further refinement is necessary.

8. Otherwise refine cells with a large local error and add new nodes.

9. Repeat from step 1.

The commercial interior point solver MOSEK [39], which is capable of rapidly
solving large-scale mathematical optimization problems, was used to solve all
optimization problems. Note that the high order shape functions used in the
EFG method make a priori proof of the strict upper bound status of the
solutions difficult. However, as the discretization is progressively refined using
the adaptive procedure, increasingly close approximations of the true plastic
collapse load multiplier can be expected to be obtained. Note also that a fixed
number of adaptive steps (5) were performed for each problem in order to
verify the performance of the procedure beyond the error threshold level likely
to be used in practice to stop the procedure. Finally, note that in all examples
a regular initial discretization of nodes was chosen for sake of simplicity and
also to avoid potentially large estimated errors being identified in regions with
a large maximum distance between neighbouring nodes, dmax

J (hence resulting
in a large hI , Eq. (26), and in turn potentially to unnecessary refinement).

b / 2 b / 2

a

q0==
∂

∂
u

y

u

simply supported 

free edge 

x

y

Fig. 5. Rectangular plate simply supported along 2 edges and subject to uniform
pressure: geometry and initial nodal discretization (50 nodes over quarter of plate)
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5.1 Rectangular plate

The first example considered comprises a rectangular plate, simply supported
at two opposite edges and subjected to uniform out-of-plane pressure loading,
as shown on Figure 5. The plate dimensions were set as a = b/2 = 5 m. In all
cases a total of 10× 5 nodes were initially used to discretize a quarter of the
plate, as shown in Figure 5.

Firstly the threshold error tolerance δ was taken as 0.001 and the efficacy of
the two refinement strategies illustrated in Figure 4 was investigated. Figure 6
shows the improvement in the computed collapse load as the problem is re-
fined. It can be seen that adaptive strategy (I), which adds vertex nodes in
Voronoi cells, results in a much better computed collapse load multiplier than
strategy (II). This can be explained by the fact that the Voronoi cells are
more regular with strategy (I) than with strategy (II); strategy (I) was there-
fore used in all subsequent computations described herein. The best solution
found was 4.52 with 480 nodes, compared with 4.55 obtained using 648 nodes
when using a uniform layout of nodes.

0 100 200 300 400 500
4.51

4.52

4.53

4.54

4.55

4.56

4.57

4.58

4.59

number of nodes

α
+

(
m

p

a
b

)

 

 
adding vertex points (I)
adding midside points (II)

Fig. 6. Influence of adaptive strategy (I) and (II) on the computed load multiplier

The progress of the adaptive refinement procedure using strategy (I) is also
shown graphically in Figure 7. What is clear is that the majority of nodes must
be positioned in zones of plastic yielding in order to ensure that an accurate
collapse load multiplier is obtained.

(a) Step 2, ‖e‖ = 0.0109 (b) Step 4, ‖e‖ = 0.0097 (c) Step 5, ‖e‖ = 0.0044

Fig. 7. Adaptive refinement using strategy (I) and δ = 0.001 (rectangular plate)

Secondly the influence of the local error tolerance, in the range 0.0002 ≤ δ ≤

13



50 200 500
4.5

4.52

4.54

4.56

4.58

number of nodes

α
+

(
m

p

a
b

)

 

 
δ = 0.001
δ = 0.0005
δ = 0.0002

(a) Collapse load multiplier vs num-
ber of nodes

50 200 500
0.001

0.005

0.01

0.02

0.04

number of nodes

‖e
‖ L

2
(
Ω

)

 

 

−−*

−*

δ = 0.001
δ = 0.0005
δ = 0.0002

(b) Global error estimator vs number
of nodes

Fig. 8. Influence of the error tolerance value δ (rectangular plate)
(∗) - MOSEK solution status reported as either Near-optimal or Unknown

0.001, was investigated. Numerical collapse load multipliers and global error
estimator values for various error tolerance values δ are shown in Figure 8
(where strategy (I) was used in all cases). It can be seen that the use of
smaller tolerance values δ results in a higher computational cost, but does not
always provide an improved computed collapse load multiplier. In other words,
a ‘good’ continuous displacement field (i.e. one with a small associated error
tolerance value) may not always provide a correspondingly ‘good’ collapse
multiplier (see for example the case when δ = 0.005 in Figure 8(a)); further
investigations are required to more fully understand this issue.

5.2 L-shaped plate

The next example comprises an L-shaped plate subjected to a uniform load
and with geometry and kinematic boundary conditions as shown in Figure 9.
In all computations L was taken as 10 m and a total of 133 nodes were initially
used to discretize the plate.

This problem was found to exhibit a singularity at the re-entrant corner, with a
predicted yield line passing parallel to the supports from the re-entrant corner
to the uppermost free edge. Computed collapse load multipliers and global
error estimators for various different error tolerance values δ are plotted in
Figure 10. It is evident from the two examples that a good estimate of the
load multiplier could be obtained even when δ was taken as 0.001, despite the
fact that the maximum number of nodes was in this case much smaller than
when δ was taken as a lower value. This may be explained by the fact that in
plastic regions error tolerance values greater than 0.001 are encountered, and
nodes should be added in these zones. When δ is set to be smaller, a more
uniform refinement is favoured, which affects efficiency. It is also shown in [20]

14



si
m

p
ly

 s
u
p

p
o
rt

ed
 

0u
y

u

L / 2L / 2

L / 2

L / 2

q

x

y

free edge 

Fig. 9. L-shaped plate geometry and initial nodal discretization

that in some cases when δ is set close or equal to zero the global error estimator
is surprisingly greater than when δ = 0.001. The progress of the refinement is
shown graphically in Figure 11. It is evident that errors are large in the zones
near the re-entrant corner and emerging yield line, and consequently these
areas are refined in each step of the adaptive scheme.

Table 1 illustrates the efficiency of the presented adaptivity scheme by compar-
ing it with the uniform refinement strategy presented in [9]. It can be observed
from the Table that the collapse multipliers obtained using the adaptive refine-
ment scheme are lower than those obtained when using the uniform refinement
strategy, despite the fact that the number of nodes (or variables) and CPU
time used in the adaptive refinement scheme are both very much lower. e.g.
The best upper-bound collapse multiplier was found to be 6.15 when a total
of 453 nodes were present, which is considerably lower than the value of 6.298
obtained previously [9], when using up to 3816 nodes distributed uniformly
across the plate. The best upper bound collapse multiplier obtained here is
also lower than the solution of 6.289 obtained in [6], where up to 4900 HCT
finite elements were used.

Uniform refinement [9] Present adaptive refinement

Nodes variables λ+ CPU∗ (s) Nodes variables λ+ CPU∗ (s)

341 1705 6.79 6 133 665 7.02 2

645 3225 6.58 38 213 1065 6.62 3

1825 9125 6.38 171 318 1590 6.23 5

3816 19080 6.30 789 453 2265 6.15 14
∗Mosek time taken to solve on a 2.8GHz Pentium 4 PC

Table 1
Comparison between load multipliers obtained using uniform and adaptive refine-
ment strategies (L-shaped plate)
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Fig. 11. Adaptive refinement with δ = 0.001 (L-shaped plate)

5.3 Clamped circular plate

The third example involves a clamped circular plate with central concentrated
load P . This problem exhibits a logarithmic singularity in the displacement
field near the point load and has a known exact solution [40], α+ = 4πmp√

3P

= 7.255 mp

P
. The effectiveness of the proposed adaptive EFG method is demon-

strated by comparing errors in the computed collapse load multiplier with and
without nodal refinement; see Figure 12. In the adaptive analysis, δ was taken
as 0.001 and strategy (I) was once again used. The best computed kinematic
collapse load multiplier obtained was 7.27, which is just 0.2% higher than the
exact solution. In the adaptive scheme the majority of the nodes were found to
be concentrated in the zone around the singular point, as shown on Figure 13.
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Fig. 13. Adaptive refinement (clamped circular plate)

5.4 Rectangular plate with eccentric square cutout

The last example involves a rectangular plate with an eccentric square cutout,
of the same geometry as examined previously using an elasto-plastic model [41].
All external and internal edges are simply supported and the dimensions are
shown in Figure 14. In the adaptive analysis, δ was taken as 0.001 and strategy
(I) was once again used. Figure 15b shows a plot of the plastic dissipation for
this problem. The implied yield line pattern shows good qualitative agreement
with the result in [41]. Due to the dominance of the yield lines in the left part
of the plate, most nodes were added in this area, as shown on Figure 15a. The
best estimate of the collapse load multiplier was found to be 51.45 mp

ab
.

6 CONCLUSIONS

An efficient adaptive meshless limit analysis procedure for plates has been
described. h-refinement is used and the smoothing technique used for nodal
integration has been extended to allow error estimation at representative nodal
cells, resulting in an efficient adaptive EFG method. For the plate problems

17



 

4.5 2 1.5

2.5 

2 

1.5 

a = 8 m   

b = 6 

q X 

Y 

(a) Geometry and boundary condi-
tions

(b) Initial nodal discretization

Fig. 14. Details of rectangular plate with eccentric square cutout

(a) Step 4: 1459 nodes (b) Plastic dissipation distribu-
tion

Fig. 15. Adaptive refinement (rectangular plate with eccentric square cutout)

described here nodes were adaptively added at the vertices of Voronoi cells
(termed strategy (I) in this paper), and an error tolerance value of δ = 0.001
was used (however, since δ is a problem dependent parameter [21], numerical
studies should be undertaken to determine its optimal value when tackling
problems of a different type, e.g. plane strain, 3D etc.). Due to the naturally
conforming properties of the meshfree approximation, the proposed adaptive
scheme is conveniently performed without the need for complex manipulation
of the data structures involved. Since properties of Voronoi cells are used as a
reference for nodal addition strategies, irregular nodal layouts can be treated
efficiently by the method. The adaptive scheme is able to capture yield line
patterns arising from localized plastic deformations for problems of arbitrary
geometry. It is found that the majority of nodes are concentrated in these
plastic zones and that accurate estimates of the collapse load multiplier can
be obtained using a relatively small number of nodes.
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