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The philosophy behind this work has been to build a predictive ‘bottom up’ physical model of quantum
cascade lasers (QCLs) for use as a design tool, to interpret experimental results and hence improve un-
derstanding of the physical processes occurring inside working devices and as a simulator for developing
new material systems. The standard model uses the envelope function and effective mass approximations
to solve two complete periods of the QCL under an applied bias. Other models, such as k.p and empirical
pseudopotential, have been employed in p-type systems where the more complex band structure requires it.
The resulting wave functions are then used to evaluate all relevant carrier–phonon, carrier–carrier and alloy
scattering rates from each quantised state to all others within the same and the neighbouring period. This
information is then used to construct a rate equation for the equilibrium carrier density in each subband and
this set of coupled rate equations are solved self-consistently to obtain the carrier density in each eigenstate.
The latter is a fundamental description of the device and can be used to calculate the current density and gain
as a function of the applied bias and temperature, which in turn yields the threshold current and expected
temperature dependence of the device characteristics. A recent extension which includes a further iteration
of an energy balance equation also yields the average electron (or hole) temperature over the subbands. This
paper will review the method and describe its application to mid-infrared and terahertz, GaAs, GaN, SiGe
cascade laser designs.

Copyright line will be provided by the publisher

1 Introduction The quantum cascade laser (QCL), has demonstrated an impressive extension of the in-
frared frequency range. Since 2002 and the first terahertz QCL laser action [1], long wavelength GaAs/AlGaAs
QCLs have demonstrated significant improvement in the maximum operation temperature and an impres-
sive extension of the frequency range. Recently THz QCLs have been reported at wavelengths as along as�������

m (2.1THz) [2] and at
���
	��

m (1.9THz) with the assistance of an external magnetic field [3]. Also a��
���� �
m (3.8 THz) QCL working up to 137K in pulsed mode [4] and a

��
�� ���
m (3.2 THz) working up

to 93K as well as a
��
 ��	����

m (2.9 THz) working up to 70K in continuous-wave mode [5, 6] have been
demonstrated.

In the same time, several mid-infrared GaAs/AlGaAs QCLs devices have achieved pulsed room tem-
perature operation such as the triple quantum well QCL [7] emitting at 9.3

�
m, the bound to continuum

QCL [8] at 11
�

m and the superlattice QCL [9] at 12.6
�

m. Furthermore, continuous wave operation
up to 150K has been recently reported [10]. However, the output characteristics of these devices are

�
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2 P. Harrison et al.: A physical model of quantum cascade lasers

still rather poor in comparison to InP based mid-infrared QCLs, which can lase in CW regime at room-
temperature [11]. To improve the performance of GaAs QCLs and understand better the physical limi-
tations of particular designs, further investigation of the influences of relevant physical and technological
parameters are required [12, 13].

Recent experience in the design of novel QCLs clearly shows that systematic and compact theoretical
modelling is a necessary step towards effective practical implementation, improvements of the existing
structures, and the understanding of physical processes within. These includes Monte-Carlo simulation of
mid-infrared [14] and terahertz [15–17] devices, nonequilibrium Green’s function formalism [18, 19], as
well as self-consistent rate equations model [20–22]. Most recently this work is shifting towards designing
THz QCL structures based on different material system [23–25].

THz QCLs based on GaAs/AlGaAs are not capable of emitting in the energy range around the longi-
tudinal optical (LO) phonon energies (����� 
 ���

meV in GaAs), leaving the gap in the spectral scale
between 30 and 40

�
m. This can be overcome with the use of GaN/AlGaN which has significantly larger

LO phonon energy (� ��� 
�� 	
meV) and very fast carrier dynamics, commonly considered to be a good

candidate for the near-infrared intersubband applications.
On the other hand, recent success in realisation of GaAs/AlGaAs THz QCLs has intensified research

efforts to realize analogous devices in Si/SiGe strained-layer technology. The possibility of monolithic in-
tegration of silicon based electronic and optoelectronic components is a strong incentive for this research.
It is presently considered that� -type Si/SiGe structures are more promising candidates for QCLs than� -
type ones, because the valence band takes a larger share of the band gap discontinuity at heterostructure
interfaces. Evolving from the earlier proposals of suitable structures [26], the present status of the research
includes the demonstration of successful growth of long Si/SiGe cascades, and observations of electrolu-
minescence in the THz range [27, 28]. A bias-tunable emission wavelength has also been obtained [29],
although full laser operation has yet to be achieved.

2 The model Consider a QCL structure with a large number of periods (each containing of multiple
quantum well) in an externally applied electric field. The energy spectrum is formally continuous, but to a
very good approximation can be considered as consisting of quasi-discrete states (resonances). Based on
the wavefunction localization properties, these states can be associated to different periods of the QCL, so
that each period has an identical set of states in the energy range of interest. Electron scattering occurs
between states within the same period, and between states associated to different periods, the latter clearly
becoming less effective for more distant periods because of reduced wavefunction overlap. Assuming an
identical electron distribution in each period, one may consider some ’central‘ period and take its! nearest
neighbours on either side, and write the scattering rate equations in the steady-state [20] :

"#
$&%('*) $,+%.- � $�/0$&) -&1 � -

"#
$&%('2) $,+%3- /4-5) $�687#9 %('

"#
$&%('2) $,+%3-3: � $�;</=$>) -@? 9A" 6B/=$&? 9A" ) -<CA1 � -D;</�-E? 9*" ) $�6B/�-5) $&? 9*" CGF�H 	

(1)

whereI 6KJ  is the I th state of theJ th neighbouring period, W-5) $ is the total scattering rate from stateI into
stateL , � - is the electron concentration of theI th state. The first two sums in Eq.1 are due to intra-period,
and the third due to inter-period scattering. After solving for electron densities� - , macroscopic parameters
of the system like current density and gain can be calculated. The scattering time/�-5) M is a function of
both � - and � M , the initial and final subband populations, hence, this set of equations has to be solved
self–consistently using an iterative procedure. At equilibrium, the rate at which the electron distributions
gain kinetic energy (relative to the particular subband minimum) through scattering, will balance with the
rate at which they lose kinetic energy to the lattice. Despite the fact that electron–electron scattering is
elastic as far as total energy is concerned, intersubband electron–electron transitions do convert potential
energy into kinetic energy (or vice-versa). From the viewpoint of this work this would lead to an increase

c
N
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(decrease) in the total kinetic energy of a subband population, because the potential energy as defined here
includes the quantised component of the kinetic energy. Hence, the kinetic energy balance condition in
case where only electron-LO phonon and electron-electron processes are included, can be written as [21]:

O H #
PGQSR ) T>U�V R ) P2WXP

#
M
#
- � - / -Y) M ; � - 1 � M 6[Z � C\H O P2WX]
^ 6 O P2W_P H 	

(2)

where � - 1 � M is the subband separation, and the change in energyZ � is equal to 1 � ]
^ for phonon
emission (em.),6 � ]�^ for phonon absorption (abs.) and zero for electron–electron (e-e) scattering. Hence,O P2W_]�^ is net electron-LO phonon, and

O P2W_P is net electron–electron contribution in the balance equation.
The method is easily extendible in case that other scattering mechanisms (electron-acoustical phonon,
impurity and alloy scattering, etc.) should be taken into account. The next step of the procedure, is to
vary the electron temperature (assumed to be the same for all subbands) until the kinetic energy balance
equation Eq. (2) is satisfied self-consistently.

The current density can be calculated by subtracting the current density component due to electrons
scattering into the next periods of the QCL from the component due to electrons scattering back. If we
put a reference plane somewhere in the injection barrier of the central period, the current density flowing
throught that cross section can be written as:

` Ha7#9 %b'
"#
-E%('

"#
$&%(' Jdc � - ;e/ -5) $&? 9*" 1f/ -E? 9*" ) $ C (3)

The factorJ in the summation, effective for non-nearest-neighbour scattering, comes from scattering from
any QCL period left of the centre period into any period right of it, or vice versa (i.e. skipping the central
period, but going through the reference plane). In order to reduce the number of scattering rate processes
necessary to calculate the electron distribution and the corresponding current density (note that the number
of total scattering rate processes is equal to hg ;<i ! 6 � Cj1  ), we introduce the ‘tight-binding’ approxima-
tion assuming that only a few closest neighbors interact, and set! Hki . The choice of quantum scattering
mechanisms depends on the material and doping density, as well as wavelength. For example in the novel
GaAs-based THz QCLs the energy separation between most of subbands is smaller than the LO phonon
energy and electron-electron scattering becomes the dominant scattering mechanism, hence necessitating
a large number of possibly relevant scattering processes to be accounted for [22]. To extract the output
characteristics of QCLs, one has to change the electric fieldl (i.e. the applied voltage) and calculate the
modal gainmon and the total current density

`
for each value of the field.

3 Application Electric field vs current density characteristics at lattice temperatureprq TDsYs Hti 	�u is
shown in Fig. 1a for original terahertz QCL [1]. Under the assumptionp P H pXq T&sYs (doted line), thel 1 `
curves show current density saturation and negative differential resistance (NDR) features at very low
currents, which are not consistent with experimental results [1]. We find with the calculation (solid line),
which includes the energy balance, but when only electron-electron and electron LO phonon scattering are
included, that current is predicted to saturate at


 �
v�	
A/cmg in reasonable agreement with that measured

at

 v i 	 A/cmg . Calculated values of the average electron temperature are also shown. The calculations

also show that, up to the NDR feature,p P can be approximated as linear functionp PSw p q TDsYs36[x ` , wherex 
ty i K/(kAcm
W g ). The most recent micro-probe photoluminscence measurement but in a different

terahertz QCLs design [30], suggestx 
 � � 1 �
� K/(kAcm
W g ) in qualitative agreement with our findings.

The extended multi-electron-temperature model [31] with impurity and interface roughness scattering
mechanisms included, gives calculated saturation current of


z� ��	
A/cmg i.e. slightly higher than the

measured value of

 v i 	 A/cmg . In that case, the discrepancy is possibly due to the an overestimate of

interface roughness correlation length used in the simulation. Calculation shows an even stronger increase
of the upper laser level temperaturep.{ g , while the lower laser level temperaturep|{ ' remained almostN
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Fig. 1 (a) Calculated electric field vs. current density characteristics in the first THz QCL at lattice temperature��� �������8���
. (b) The calculated and measured current-voltage characteristic of mid-infrared GaAs/Al�>� ��� Ga�>� �G� As

2LO QCL at two different temperatures (T=77K and T=170K). A schematic diagram of analyzed structure
is given in the inset with the layer sequence of one period (in angstrom) starting from the injection barrier:
39.2/11.2/5.6/56/8.4/50.4/8.4/50.4/28/36.4/16.8/30.8/16.8/28/19.6/30.825.2/28

constant and close to the lattice temperature, see Fig. 1a dashed line. These results are in qualitative
agreement with recent measurements although in a different THz QCLs structure, based on direct LO-
phonon depopulation [13], and also with recent Monte-Carlo simulation of the same device [17].

A fully optimized design of a��������  m GaAs-based mid-infrared QCL (see inset of Fig. 1b) based on
the mechanism of double-phonon resonance depopulation (2LO QCL) of the lower laser level, (success-
fully implemented in continuous wave room-temperature InP-based mid-infrared QCL [11, 32]), has been
grown at the Paul Drude Institute, Berlin [33]. A very good agreement between the calculated and mea-
sured current-voltage characteristics of the device was obtained, and between the calculated and measured
threshold current at 77K (¡*¢5£¥¤§¦�¨ © A), see Fig. 1. Also, the observed emission wavelength�=ª«����¨ ¬
  m is
in good agreement with calculated value of�=ª«����¨­¦
®�  m. As a result of the relatively low (nonoptimised)
doping density (sheet density¯±°f�²¬4³����j´>´ cmµX¶ ) the first sample did not reach room-temperature
operation (·r¸º¹*»d¤�¦�¬¼� K in pulsed mode).

The designs for GaN/AlGaN quantum cascade lasers emitting at 34 and 38 |½ ( ¾¥¿8�ÁÀ
ÂÄÃ,À
¬ meV -
GaAs forbidden Reststrahlenband) are shown in Fig. 2a, assuming the both a- and c-plane crystal growth
orientation [34]. The Al content in the barriers is 25% in the a-plane (structure I) and 20 % in the c-plane
(structure II) structure. To achieve full strain balance [34], these structures should be grown on (virtual)
substrate with¦�¨ ®�ÅfÀÄÆ AlN, though the more common pure GaN substrate is also acceptable because of
low average content of AlN in the cascade stack. The strain conditions in layers influence the potential
(piezoelectrically), and this was accounted for [34].

The quasi-bound energies and associated wavefunctions are calculated with the intrinsic electric field
induced by piezoelectric and spontaneous polarization for c-plane and only piezoelectric component for
a-plane design included. The QCL structures were simulated and output characteristics extracted using
fully self-consistent scattering rate equation model with all relevant intra- and inter-period scattering in-
cluded. Both electron-LO phonon and electron-electron scattering mechanisms are taken into account. The
population inversion up to¦
�jÆ for a-plane and up to¦
®jÆ for c-plane design is found resulting in feasible
laser action [23]. These assumptions were confirmed by comparison between calculated modal gain and
estimated waveguide and mirror losses, see Fig 2.

To compare the performance of the various simulation methods, example calculations have been per-
formed for a simpleÇ -SiGe cascade, each period of which comprises a 16 monolayer (4.41 nm) wide
GeÈ�É Ê SiÈ�É Ë well and an 8 monolayer (2.15 nm) wide Si barrier, grown on a GeÈ�É ¶ SiÈ�É Ì virtual substrate. ItÍ
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Fig. 2 (a) A schematic diagram of quasi-bound energy levels and associated wavefunctions squared for a injector-
active region-collector segment (1ÎÏ period) of a) a-plane and b) c-plane GaN/AlGaN THz QCL. The layer sequence
of one period of structures, in nanometers, from right to left from the injection barrier:0.8, 3, 0.6, 3.5, 1, 6.5, 0.6,
11.2 for structure a) and0.7, 3, 0.6, 3.9,0.8, 7, 0.6, 7.6 for structure b). The normal script denotes the wells and bold
the barriers. (b) Modal gain as a function of current density for a-plane (dashed line) and c-plane (solid line) designs,
calculated forÐfÑÓÒ�Ô K (circles) andÐÕÑÓÖ�Ö K (squares). The dashed horizontal line denotes the total waveguide and
mirror losses. Inset: Single-plasmon GaN -based waveguide design and mode profile.

has just two low-lying subbands per period, the ground (HH1) and the first excited (LH1) subband, spaced
by 27.5 meV, with the next (HH2) subband being much higher. In a biased cascade the alignment of the
HH1 subband from the “preceding” (higher) well and the LH1 subband of the next (lower) well, both at
zone centre, occurs at a field of 42 kV/cm. The structure may be interesting as a possible QCL design
where the lasing transition would be the inter-well HH1× LH1(R), occurring at biases above 42 kV/cm
(the energy of this transition is field-tunable), while the intra-well LH1× HH1 is the relaxation transition,
emptying the lower laser state (Fig. 3a).

We have analysed this structure using the rate equations method with thermal balancing and, for com-
parison, with both the Monte Carlo (MC) method and simple rate equation approach [35]. Results were
obtained from the simple rate equation method using two approaches: firstly, the subband carrier tem-
peratures were simply assumed equal to the lattice temperature, and secondly, these temperatures were
obtained from our Monte Carlo simulations, for each value of electric field. One of the main differences
between the MC and rate equations methods is that the carrier distribution functions in each subband are
generated self-consistently in the MC simulation, whereas they are always assumed to be Fermi-Dirac like
in the rate equations approach. Therefore, subband carrier temperatures cannot be precisely defined from
the MC results, and the temperatures supplied to the simple rate equation model were derived from the
average kinetic energy in each subband. The results for the current density and the LH1 subband pop-
ulation are shown in Fig. 3b. Hole-hole scattering was not included in these calculations. The general
trend of the results from all four methods is similar at moderate fields. The agreement between the simple
particle rate equation approach withprØrØ H p ] Ø H p q TDs5s and the other methods is worst overall, because
this method completely neglects carrier heating effects. Given that the hole temperatures lie in the range
100–300K, depending on the field, and thatprØrØ and p ] Ø can differ by up to 100K, this is clearly not a
good approximation.

The differences between the MC results and those from the rate equation method with MC-supplied
carrier temperatures highlights the influence of the carrier distributions. The MC calculation shows that
actual distributions differ considerably from the Fermi-Dirac form. In particular, the HH1 subband has a
larger fraction of holes with smallÙÛÚ­Ú than would correspond to a Fermi-Dirac distribution with the same
temperature, whilst the opposite applies to the LH1 subband. This is related to the fact that HH-LH mixingN
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Fig. 3 (a) An example of relevant hole states in aÜ -SiGe cascade, used in simulations. The wavefunctions of HH
and LH states, as well as the valence band edges for heavy and light holes in this strained system, are denoted by
solid and dashed lines, respectively. (b) The current density and the LH1 state population vs. electric field dependence
in the Ü -SiGe cascade, calculated using the self-consistent energy balance, Monte Carlo, and particle rate equation
methods: the latter with carrier temperatures either set equal to the lattice temperatureÐ�Ý Þ*ß�ß.Ñ[Ò�Ô K, or obtained from
MC simulations. The sheet hole density isàâáäã Ô ÎGÎ cmå Ï per period.

is small for Ù\Ú­Ú w 	
, so the wavefunctions of the large-quantization mass heavy holes are then best confined

inside wells (and hence worst coupled to neighbouring wells), while the light hole states are most leaky
for Ù\Ú­Ú w 	

. In practice, of course, this latter approach is not very useful, since it requires a prior run of
the full Monte Carlo simulation, and yet provides no additional information. Closer correlation between
the MC and self-consistent rate equations methods may be anticipated if intrasubband hole-hole scattering
were included in the MC algorithm [35], which would result in simulated carrier distributions closer to the
Fermi-Dirac form.

4 Conclusion In summary we reviewed the method for physical modelling and describe its appli-
cation to design and optimisation of mid-infrared and terahertz, GaAs, GaN, SiGe cascade structures.
A self-consistent energy balance method for the simulation of electron transport in GaAs/AlGaAs and
GaN/AlGaN and hole transport in� -Si/SiGe quantum cascade structures has been developed and used to
study carrier dynamics in the structures. The scattering mechanisms included in the model are electron-LO
phonon, electron-electron in n-type structures. Particularly, for GaAs THz QCL interface roughness and
impurity scattering mechanisms are included as well. The alloy disorder, acoustic and optical phonon scat-
tering, and hole-hole scattering are included in p-type structures, accounting for the in-plane anisotropy of
both the hole subband structure and the scattering rates.

The calculation for the GaAs-based QCLs is in very good agreement with the experimental data. In a
prototype of GaN and SiGe-based THz cascade structures calculation shows that the lasing action of such
structures is feasible, however their realisation is still technologically challenging process.
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