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1. Summary
Spontaneous electrical activity generated by developing sensory cells and

neurons is crucial for the maturation of neural circuits. The full maturation of

mammalian auditory inner hair cells (IHCs) depends on patterns of spon-

taneous action potentials during a ‘critical period’ of development. The

intrinsic spiking activity of IHCs can be modulated by inhibitory input from

cholinergic efferent fibres descending from the brainstem, which transiently

innervate immature IHCs. However, it remains unknown whether this transient

efferent input to developing IHCs is required for their functional maturation.

We used a mouse model that lacks the a9-nicotinic acetylcholine receptor sub-

unit (a9nAChR) in IHCs and another lacking synaptotagmin-2 in the efferent

terminals to remove or reduce efferent input to IHCs, respectively. We found

that the efferent system is required for the developmental linearization of the

Ca2þ-sensitivity of vesicle fusion at IHC ribbon synapses, without affecting

their general cell development. This provides the first direct evidence that the

efferent system, by modulating IHC electrical activity, is required for the

maturation of the IHC synaptic machinery. The central control of sensory cell

development is unique among sensory systems.
2. Introduction
Hearing in mammals depends on temporally precise neurotransmission via the

ribbon synapses between inner hair cells (IHCs) and auditory afferent nerve term-

inals [1]. In order to become so highly specialized, immature spiking IHCs undergo

a number of developmental transitions such that their properties change almost

completely at around the onset of hearing [2], which is at postnatal day 12
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Figure 1. Efferent activity in IHCs from control and a9nAChR KO mice. (a,b) Whole-cell voltage-clamp recordings from immature IHCs (P7 – P9) in control (a) and
a9nAChR KO (b) mice during the superfusion of ACh. Note that 1 mM ACh did not elicit an inward current from a holding potential of 290 mV in a9nAChR KO
mice. Experiments were performed on three IHCs for each genotype. (c,d ) IPSCs evoked with 30 mM extracellular KCl during long-lasting recordings from a P9 control
(c) and a P10 a9nAChR KO (d ) IHC (holding potential: 284 mV). Note that IPSCs were absent in the a9nAChR KO IHC. Similar effects were seen in all six P9 – P10
controls and four P10 KO IHCs. (e,f ) Action potential activity recorded from late postnatal (P8) IHCs in control and a9nAChR KO mice, respectively. Whole-cell current-
clamp recordings were obtained by injecting a depolarizing current from the IHC resting membrane potential. Note that the extracellular superfusion of 30 mM ACh
caused hyperpolarization and cessation of the firing activity only in the control IHC. Similar effects were seen in six control and seven KO IHCs (P8 – P10).
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in most altricial rodents. One such change involves the matu-

ration of IHC ribbon synapses [3–5]. Prehearing spiking IHCs

release neurotransmitter with a high Ca2þ cooperativity [6,7],

similar to conventional synapses [8,9]. However, in mature

IHCs exocytosis from the ribbon synapses is linearly dependent

on Ca2þ influx [4,10,11], the effect of which is likely to broaden

the cell’s dynamic range in order to encode continuous and

finely graded signals [12]. This linearization of the exocytotic

Ca2þ dependence depends upon the presence of normal spon-

taneous spiking activity during the second postnatal week of

development, which is just before the onset of hearing [13].

Calcium-dependent action potential activity occurs in

IHCs throughout prehearing stages of development [14,15].

In IHCs, action potentials are generated by the interplay

between a depolarizing CaV1.3 Ca2þ current (Cacna1d) and

a repolarizing, delayed rectifier Kþ current [14,16]. The

shape of action potentials is then influenced by the activation

of the transiently expressed small conductance Ca2þ-

activated Kþ current SK2 (Kcnn2) [17,18] and Naþ current

[19]. This intrinsic electrical activity is believed to be extracel-

lularly modulated by ATP released from supporting cells

[20,21] and acetylcholine (ACh) released from efferent fibres

originating in the superior olivary complex [17,18,22]. The

efferent endings make transient axosomatic synaptic contacts

with IHCs during immature stages [23–25]. Adult IHCs

no longer respond to ACh [17] because the efferent fibres

found below mature IHCs make axodendritic contacts with

the afferent fibres [24]. The a9a10-nicotinic ACh receptors

(nAChRs) are first expressed in IHCs from about birth in

rats [26], and the application of ACh causes their opening
and Ca2þ influx into IHCs [27,28]. At this age, ACh-induced

depolarization produces an increase in spike frequency [26].

From about postnatal day 1 (P1) to P3, a9a10nAChRs

become functionally coupled with small conductance Ca2þ-

activated Kþ channels (SK2), such that the ACh-induced

SK2 current causes IHCs to hyperpolarize [17], thereby inhi-

biting their firing activity [15,17,18,21]. The IHC’s sensitivity

to ACh is maximal during the second week of postnatal devel-

opment [13,18,23], a time when action potential activity is still

spontaneous [15]. Despite the ability of the efferent system to

directly modulate the frequency and pattern of action poten-

tials in immature IHCs, a functional role for efferent input to

IHCs has yet to be demonstrated. Here, we show that the tran-

sient efferent innervation to IHCs is required for maturation of

the synaptic machinery.
3. Results
Using near-physiological experimental conditions (35–378C
and 1.3 mM extracellular Ca2þ [21]) we performed electro-

physiological recordings from IHCs of transgenic mice and

investigated whether efferent modulation of IHC spiking

activity is required for the maturation of IHC ribbon synapses.

3.1. Action potential activity in immature inner hair
cells from a9nAChR knockout mice

In immature IHCs, the ACh-activated current is mediated by

Ca2þ entering hair cells through a9a10nAChRs [27,28], which
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Figure 2. Efferent input is required for the development of the IHC synaptic machinery. Membrane capacitance recordings from apical coil IHCs of control and
a9nAChR KO adult mice (P15 – P32). (a) ICa and corresponding DCm recordings in response to 50 ms voltage steps (10 mV increments) from 281 mV. For clarity,
only the peak responses at 211 mV are shown. (b) Average ICa – voltage and DCm – voltage curves in control and a9nAChR KO IHCs. (c) Synaptic transfer curves
obtained by plotting the average DCm against the corresponding ICa for membrane potentials between 271 and 211 mV (see shaded area in (b)). Fits in (c) are
according to a power function DCm ¼ cIN

Ca, where c is a scaling coefficient and the power is N. The DCm traces shown on the left are averaged from 11 IHCs for
both control and a9nAChR KO mice.

Table 1. Properties of mature IHCs from a9nAChR and Syt-2 KO mice. Values are means+ s.e.m.; number of hair cells is in parentheses. IK, total outward Kþ

current; IK,f, Ca2þ-activated Kþ current; IK,n, negatively activating delayed rectifier Kþ current. Values are not significantly different between genotypes.

a9nAChR (P18 – P26) Syt-2 (P16)

control KO control KO

resting potential (mV) 267.8+ 2.5 (4) 271.8+ 3.6 (3) 276.9+ 1.0 (6) 276.0+ 1.3 (6)

IK at 0 mV (nA) 14.5+ 1.4 (4) 13.8+ 1.3 (8) 10.2+ 0.3 (6) 10.7+ 0.6 (6)

IK,n at 2124 mV ( pA) 288+ 17 (4) 281+ 54 (7) 430+ 33 (6) 396+ 54 (6)

IK,f at 225 mV (nA) 2.8+ 0.2 (4) 3.2+ 0.4 (8) 4.0+ 0.1 (6) 4.1+ 0.3 (6)
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activates SK2 channels [17,18,23]. While control IHCs showed a

large ACh-mediated current (figure 1a), cells from a9nAChR

knockout (KO) mice did not respond to ACh even in the

presence of a high extracellular concentration of the neuro-

transmitter (1 mM ACh, figure 1b). Immature IHCs, which

were held at 284 mV, respond with an inward current when

superfused with 30 mM KCl owing to a positive shift in the

Kþ reversal potential. The superfusion of KCl additionally

depolarizes the efferent terminals and triggers the release of

ACh-containing vesicles, which manifests in IHCs as inhibitory

postsynaptic currents (IPSCs) superimposed on the KCl-

induced inward current (figure 1c). Although both a9nAChR

control and KO IHCs showed a similar sustained inward current

response to extracellular KCl, only the former showed IPSCs,
further confirming that in the absence of a9nAChRs IHCs

were unable to respond to efferent input (figure 1c,d).

We then investigated the effect of the inhibitory cholinergic

efferent system on IHC firing activity during prehearing stages

of development. Spiking activity has been shown to influence

ribbon synaptic maturation during the second week of post-

natal development [13], a period when the ACh-activated

current reaches its maximal size [18,23]. Action potentials

in vivo are likely to be spontaneous throughout immature

stages of development [15]. However, under in vitro recording

conditions, spiking activity during the second postnatal week

can only be elicited by injecting depolarizing currents owing

to the reduced or negligible contribution from the depolarizing

resting mechanoelectrical transducer current [15]. In order to
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Figure 3. The amplitude of evoked efferent IPSCs is reduced in Syt-2 KO IHCs.
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clamp recordings of IPSCs from a control (black) and a Syt-2 KO IHC (red)
made at the holding potential of 284 mV. The release of ACh from efferent
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KCl. (c) IPSCs shown in (b) but on an expanded time scale. (d ) IPSCs from a
control and a Syt-2 KO IHC made as in (b) but using 30 mM extracellular KCl.
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mimic the evoked release of ACh from the efferent fibres [22],

we superfused IHCs with 30 mM ACh during depolarizing cur-

rent injections. ACh caused a large hyperpolarization in control

IHCs (213.7+0.5 mV, n ¼ 5, P8: figure 1e) that resulted in the

inhibition of action potential activity. All four P8–P9a9nAChR

KO cells tested failed to respond to ACh (figure 1f ). Despite

IHCs from a9nAChR KO mice being non-responsive to

efferent input, they showed similar Kþ currents (see the

electronic supplementary material, figure S1) and resting

membrane potentials (control: 255.7+0.7 mV, P4, n ¼ 7;

KO: 256.1+0.4 mV, n ¼ 10) to those of control animals.
3.2. The efferent activity promotes inner hair
cell development

Neurotransmitter release at IHC ribbon synapses becomes

more sensitive to Ca2þ entry from around the onset of hearing

in mice and gerbils [4,6]. This developmental change does

not occur when the frequency of IHC action potentials is artifi-

cially raised in vivo during a period spanning the second

postnatal week [13]. As an absence of inhibitory cholinergic

input to IHCs in vivo would likely increase the overall fre-

quency of action potential activity over the same time

window [22], we investigated presynaptic activity in IHCs
from mature a9nAChR KO mice by measuring the change in

cell membrane capacitance (DCm) with cell depolarization.

This allows us to estimate the magnitude of synaptic vesicle

fusion with the basolateral membrane [7,11]. Similar to conven-

tional synapses, synaptic vesicle fusion in immature spiking

IHCs shows a nonlinear (high-order) Ca2þ dependence,

which changes into a near-linear relation upon functional

maturation [4,6,11]. In a9nAChR KO adult IHCs, the maximal

size of the Ca2þ current (ICa) and corresponding DCm was simi-

lar to that of control littermates (figure 2a,b). However, the

exocytotic Ca2þ dependence was significantly ( p , 0.0001)

less linear in the a9nAChR KO (power of 2.56+0.26, n ¼ 11)

than in control cells (1.07+0.10, n ¼ 11, figure 2c: values are

from fits to individual IHCs). The steeper dependence on

Ca2þ influx found in a9nAChR KO IHCs (figure 2c) resembled

that observed in immature IHCs (see the electronic supplemen-

tary material, figure S2), indicating a failure in the normal

maturation of the synaptic machinery. The abnormal exocyto-

tic Ca2þ sensitivity was the only biophysical change that we

detected in adult IHCs from a9nAChR KO mice, which were

otherwise normal regarding other key biophysical properties

(table 1; see the electronic supplementary material, figure

S3a,c; see also [14]).

3.3. Synaptotagmin 2 is important for efferent activity
and normal action potential activity in immature
inner hair cells

The above findings suggest that a failure to respond to the

cholinergic efferent input in vivo is likely to favour a sustained

spiking activity in immature IHCs. In order to better under-

stand the mechanism underlying efferent system control

over IHC functional development, we recorded from IHCs

while attempting to manipulate the release of ACh from the

efferent terminals.

Synaptotagmin 2 (Syt-2), a Ca2þ sensor at most conven-

tional synapses [29,30], is expressed in the efferent terminals

throughout immature cochlear development [7,31,32]. The

only study that used a specific Syt-2 antibody tested in

the Syt-2 KO mice demonstrated some protein expression

also in the cytoplasm of immature IHCs during the first post-

natal week [31]. However, the presence of Syt-2 in IHCs is

still controversial.

Initially, we tested whether the absence of this synaptic

protein from the efferent terminals in Syt-2 KO mice affected

IHC responses. We found no evidence for a change in spon-

taneous ACh release from efferent terminals based on the

normal action potential frequency in immature IHCs (control:

2.6+0.4 Hz, n ¼ 12; Syt-2 KO: 3.2+0.5 Hz, n ¼ 7, figure 3a)

and size of spontaneous inhibitory postsynaptic potentials

(IPSPs; control: 6.6+ 0.2 pA, 66 events from six IHCs; Syt-2

KO: 6.4+0.2 pA, 69 events from seven IHCs, arrows in

figure 3a). We also investigated the evoked release of ACh

by depolarizing the efferent terminals with an elevation

of extracellular Kþ concentration from 5.8 mM to either 15

or 30 mM and measuring the amplitude and frequency of

IPSCs [17]. At –84 mV, IPSCs could be recorded from both

control and Syt-2 KO IHCs (figure 3b–d). We found that

the amplitude of evoked IPSCs was significantly larger in

control P5–P10 IHCs (15 mM Kþ: 44.1+0.4 pA, 2405

events from 24 IHCs, p , 0.0001; 30 mM Kþ: 131+11 pA,

1090 events from four cells, p , 0.015), than in Syt-2 KO
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age-matched cells (15 mM Kþ: 35.6+0.7 pA, 630 events from

15 cells; 30 mM Kþ: 82+ 10 pA, 819 events from six cells).

The frequency of evoked IPSCs was not significantly different
between the two genotypes (control: 5.0+2 Hz, n ¼ 4; Syt-2

KO: 2.7+ 0.7 Hz, n ¼ 6, P8–P9, 30 mM Kþ). These findings

show that in the absence of Syt-2, the evoked inhibitory
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efferent input to immature IHCs was reduced by 20% (15 mM

Kþ) and 40% (30 mM Kþ).

We then investigated how this change in the efferent

activity in Syt-2 KO mice affected the maturation of the

synaptic machinery. In immature IHCs, the maximal size of

ICa and corresponding DCm in control (ICa: 2550+24 pA;

DCm: 37+5 fF, n ¼ 14) was similar to Syt-2 KO mice (ICa:

2592+39 pA; DCm: 41+10 fF, n ¼ 8) (figure 4a,b). The exo-

cytotic Ca2þ dependence also showed a similar high Ca2þ

cooperativity (figure 4c) between the two genotypes (control:

power of 3.3+0.2; Syt-2 KO: 3.3+ 0.2; values are from fits to

individual IHCs). This result indicates that Syt-2 is not

required for exocytosis at immature IHC ribbon synapses

and questions its possible role or even its presence in imma-

ture IHCs [31,32]. In mature IHCs, where Syt-2 is considered

not to be present, the maximal size of ICa and corresponding

DCm (figure 5a,b) was also similar between Syt-2 KO mice

(ICa: 2147+5 pA; DCm: 15+1 fF, n ¼ 14) and control litter-

mates (ICa: 2142+11 pA; DCm: 14+2 fF, n¼ 8). However,

the exocytotic Ca2þ dependence was significantly ( p ,

0.0001) less linear in the Syt-2 KO (power of 2.51+0.23,

n ¼ 14) than in control cells (0.97+0.16, n ¼ 8; figure 5c:

values are from fits to individual IHCs). This result differs

from previous observations showing a normal linear Ca2þ

dependence, which may be owing to the use of different exper-

imental conditions (room temperature and high extracellular

Ca2þ [31]). The high-order dependence on Ca2þ influx found

in Syt-2 KO IHCs (figure 5c) resembled that observed in imma-

ture IHCs, indicating a failure in the normal maturation of the

synaptic machinery similar to that found in Syt-4 KO mice [7].

This result was surprising considering the different Ca2þ affi-

nity of the two synaptotagmin isoforms [33]. However, we

can exclude that Syt-4 influences synaptic maturation indirec-

tly via the efferent system, as seen for Syt-2, because its

absence affected neither the spiking activity [7] nor the IPSC

amplitude (control: 60.5+0.8 pA, 524 events from 21 IHCs;

Syt-4 KO: 62. 5+1.0 pA, 737 events from 31 IHCs, P5–P7).

The abnormal exocytotic Ca2þ sensitivity was the only bio-

physical change that we detected in adult IHCs from Syt-2

KO mice, which were otherwise normal regarding the other

key biophysical properties of mature IHCs (table 1; see the

electronic supplementary material, figure S3b,d).
4. Discussion
In this study, we found that the cholinergic efferent system des-

cending from the brainstem directly controls the developmental

increase in Ca2þ sensitivity of neurotransmitter release (i.e. lin-

earization of the exocytotic Ca2þ dependence [7]) at IHC ribbon

synapses (see the electronic supplementary material, figure S4).

This control is achieved by tightly regulating IHC action poten-

tial activity, most likely over a ‘critical period’ of immature

development known to be directly linked to the linearization

of the exocytotic Ca2þ dependence [13]. Additionally, we

show that Syt-2, one of the main Ca2þ regulators of exocytosis

at conventional synapses [33] and expressed in cochlear efferent

terminals [7,31,32], is involved in the release of ACh from the

efferent fibres, strongly indicating that Syt-2 plays a crucial

role in the maturation of the IHC synaptic machinery. This

work demonstrates a mechanism by which the central nervous

system regulates action potential activity in immature IHCs

and controls ribbon synapse maturation.
4.1. The efferent system regulates the maturation of the
inner hair cell synaptic machinery

The important question raised from our findings is how a

complete absence (a9nAChR KO mice) or reduction (Syt-2

KO mice) of efferent activity in immature IHCs impacts on

the biophysical properties of the presynaptic machinery in

mature IHCs. The opening of a9a10nAChRs in IHCs leads

to a Ca2þ influx that activates closely coupled SK2 channels,

which mediates IHC hyperpolarization and reduces cell

excitability [17,18,22,26]. Therefore, the efferent system acts

as a negative feedback mechanism that directly influences

the frequency of spontaneous action potentials that are a

characteristic of prehearing IHCs [15,21]. Because the IHC

resting membrane potential is tightly regulated by the effer-

ent system [17,21], even a reduction in evoked efferent

input to IHCs in vivo (e.g. in Syt-2 KO mice) is likely to pro-

duce an abnormal action potential activity in developing cells

[22]. Moreover, as the contribution from Syt-2-dependent

release from the efferent fibres becomes larger with depolariz-

ation, trains of efferent action potentials in vivo would make

this component more pronounced. In altricial rodents, the

maximal ACh responses are seen during the second week of

postnatal development [18,23]. Therefore, the largest efferent-

mediated inhibitory effect on IHCs occurs over the recently

identified ‘critical period’ of spiking activity (second postnatal

week), which has been shown to be crucial for the normal

developmental linearization of the exocytotic Ca2þ depen-

dence in adult cells [13]. The activity patterns that drive ACh

release from efferent terminals from the auditory brainstem

are still not understood [22], and their specific influence over

IHC function and development will only become evident by

performing extremely challenging in vivo recordings.

4.2. Role of synaptotagmin 2 and synaptotagmin 4
in the developing cochlea

Mature IHCs are functionally specialized for rapid and

graded neurotransmission in order to encode sound over a

wide dynamic range. IHC ribbon synapses differ from con-

ventional synapses because they seem to lack conventional

SNARE proteins [34] and express otoferlin as the main synap-

tic Ca2þ sensor for exocytosis [35] and vesicle replenishment

[7,36]. Moreover, the possible direct involvement of the clas-

sical Ca2þ-sensing proteins synaptotagmins 1 and 2 [33] in

IHCs remain largely unknown [37,38]. Otoferlin is a multi-

C2 domain Ca2þ-binding protein that shows Syt-1-like prop-

erties [39] but is not functionally equivalent [32]. Moreover,

otoferlin alone cannot account for the high-order to linear

change in Ca2þ sensitivity of exocytosis upon functional

maturation [7], nor for exocytosis that occurs in early post-

natal IHCs [31]. Instead, Syt-4, a unique but ubiquitous

isoform of synaptotagmin that does not bind calcium in the

C2A Ca2þ-sensing domain [33], is an essential element for

the linear exocytotic Ca2þ dependence in IHCs [7,38] and exo-

cytosis in hair cells from lower vertebrates [40]. The direct

involvement of Syt-4 in hair cell exocytosis is further sup-

ported by the fact that, unlike Syt-2 (see below), it does not

act as a modulator of IHC development through either the

activity of the efferent system (see Results above) or the audi-

tory afferents (as a retrograde regulator released by the

afferent auditory fibres [7].
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Similar to Syt-4 KO mice [7], we found that the absence of

Syt-2 prevented the linearization of the exocytotic Ca2þ depen-

dence in adult IHCs. However, the role of Syt-2 at IHC ribbon

synapses seems indirect because it has no role in exocytosis at

immature synapses (figure 4, see also [31]). Moreover, Syt-2

is not directly associated with developmental cues and is

only transiently expressed in IHCs during the first postnatal

week [31]. As such, Syt-2 is unlikely to be able to directly influ-

ence the maturation of the ribbon synapses, which is regulated

by the IHC action potential activity during the second post-

natal week [13]. Instead, we found that the absence of Syt-2

caused a significant reduction in the amplitude of IPSCs,

which suggests a decrease in efferent strength onto IHCs.

This result is consistent with previous findings showing redu-

ced neurotransmitter release at Syt-2-deficient neuromuscular

junctions [30].
 0163
4.3. Functional implications of the cholinergic
efferent system in the developing
mammalian cochlea

The development of neural circuits relies on the combina-

tion of intrinsic genetic programmes and the experience-

independent or spontaneous action potential activity that

occurs during immature development [41]. There is likely

to be at least two roles for the efferent input to IHCs (see

the electronic supplementary material, figure S4). During

the first postnatal week, ACh has been shown to be a major

player in generating tonotopic differences in pattern and

rate of firing activity in IHCs along the cochlea [21]. In the

a9nAChR KO mice, the altered action potential activity in

IHCs would most likely affect the afferent discharge pattern

[42], which in turn could disrupt the sharpening of tonoto-

pic maps in the auditory brainstem nuclei known to mainly

occur during the first postnatal week [43]. During the

second postnatal week, IHC action potential activity has

been shown to be required for regulating the maturation of

the Ca2þ dependence of neurotransmitter release at their

ribbon synapses [13]. Unlike other sensory systems, this

immature electrical activity is centrally modulated via ACh

released by the cholinergic efferent system descending from

the brainstem. This represents the first evidence for a devel-

opmental role of the cholinergic efferent input to IHCs and

highlights the need for exquisite control over the pattern of

IHC activity [13,44].
5. Material and methods
5.1. Mouse lines
a9AChR [45], Syt-2 [30] and Syt-4 [46] KO mice and their

control littermates were used in this study. In the UK,

animal studies were licensed by the Home Office under

the Animals (Scientific Procedures) Act 1986 and were

approved by the University of Sheffield Ethical Review Com-

mittee. In Argentina, animal studies were approved by the

Institutional Animal Care and Use Committees of INGEBI

and all experimental protocols were performed in accordance

with American Veterinary Medical Association’s AVMA

Guidelines on Euthanasia (June 2007)
5.2. Electrophysiology
Apical IHCs from a9nAChR, Syt-2 and Syt-4 KO mice and

their control littermates were studied in acutely dissected

organs of Corti from postnatal day 4 (P4) to P32. The day of

birth (P0) corresponds to E19.5. Syt-2 KO mice usually died

during the third postnatal week [30]. The cochleae were

dissected and kept in the following solution (in mM): 135

NaCl, 5.8 KCl, 1.3 CaCl2, 0.9 MgCl2, 0.7 NaH2PO4, 5.6

D-glucose, 10 Hepes-NaOH. Sodium pyruvate (2 mM), MEM

amino acids solution (50�, without L-glutamine) and MEM vita-

mins solution (100�) were added from concentrates (Fisher

Scientific, UK). The pH was adjusted to 7.5. In some exper-

iments, the extracellular solution used was (mM): 155 NaCl,

5.8 KCl, 1.3 CaCl2, 0.9 MgCl2, 0.7 NaH2PO4, 5.6 D-glucose and

10 Hepes buffer; pH 7.4. The dissected cochleae were transferred

to a microscope chamber and immobilized under a nylon mesh

attached to a stainless steel ring. The organs of Corti were

viewed with an upright microscope (Leica DM-LFS, UK; Zeiss

Axioskop microscope, Germany) with Nomarski optics.

Unless specified, electrophysiological recordings were per-

formed at near body temperature (34–378C) and were made

using an Optopatch (Cairn Research Ltd, UK) or an Axopatch

200A (Molecular Devices, USA) amplifier. Command voltage-

and current-clamp protocols were applied and data were

acquired using PCLAMP software and a DIGIDATA 1440A or a

DIGIDATA 1322A (Molecular Devices) board. Data analysis

was performed with PCLAMP software, ORIGIN (Origin Lab,

USA) or the Mini Analysis Program (Synaptosoft Inc., USA).

Statistical comparisons of means were made by Student’s

two-tailed t-test. Means are quoted +s.e.m. and p , 0.05 was

used as the criterion for statistical significance.

For whole-cell recordings of current and voltage responses,

soda and borosilicate glass pipettes were filled with (in mM):

131 KCl, 3 MgCl2, 1 EGTA-KOH, 5 Na2ATP, 5 Hepes-KOH,

10 Na2-phosphocreatine; pH 7.3. In some experiments, the fol-

lowing intracellular solution was used (in mM): 150 KCl, 3.5

MgCl2, 0.1 CaCl2, 5 EGTA-KOH, 5 Hepes-KOH, 2.5 Na2ATP;

pH 7.2. Unless otherwise stated, the membrane potentials

were corrected for the voltage drop across the series resistance

Rs and a liquid junction potential (LJP) of –4 mV. Current and

voltage traces were filtered at 2–10 kHz 8-pole Bessel and

sampled at 5–20 kHz. Data were stored in computer for offline

analysis. The pipette-filling solution used for exocytosis

measurements contained (in mM): 106 Cs-glutamate, 20

CsCl, 3 MgCl2, 1 EGTA-CsOH, 5 Na2ATP, 0.3 Na2GTP,

5 Hepes-CsOH, 10 Na2-phosphocreatine, pH 7.3. The different

superfused extracellular solutions containing ACh or elevated

Kþ were applied by a gravity-fed multi-channel pipette

positioned close to the patched hair cell.

Real-time changes in membrane capacitance (DCm) were

measured as previously described [7,11]. Briefly, a 4 kHz

sine wave command voltage (13 mV RMS) used for capaci-

tance tracking was superimposed on the holding potential

of –81 mV and was interrupted for the duration of the vol-

tage step. The capacitance signal from the Optopatch was

amplified (50�), filtered at 250 Hz 8-pole Bessel and sampled

at 5 kHz. DCm was measured by averaging the Cm trace fol-

lowing a voltage step (around 200 ms) and subtracting the

prepulse baseline. The Ca2þ current and DCm were recorded

in the extracellular presence of Kþ channel blockers TEA

(30 mM), 4-AP (15 mM) and, for mature IHCs, linopirdine

(80–100 mM) or, for immature IHCs, apamin (300 nM)
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[7,11]. Membrane potentials were corrected for the voltage

drop across the series resistance Rs and an LJP of –11 mV.
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33. Südhof TC. 2002 Synaptotagmins: why so many?
J. Biol. Chem. 277, 7629 – 7632. (doi:10.1074/jbc.
R100052200)

34. Nouvian R et al. 2011 Exocytosis at the hair cell
ribbon synapse apparently operates without
neuronal SNARE proteins. Nat. Neurosci. 14,
411 – 413. (doi:10.1038/nn.2774)

35. Roux I et al. 2006 Otoferlin, defective in a human
deafness form, is essential for exocytosis at the
auditory ribbon synapse. Cell 127, 277 – 289.
(doi:10.1016/j.cell.2006.08.040)

http://dx.doi.org/10.1113/jphysiol.2004.082214
http://dx.doi.org/10.1113/expphysiol.2011.059303
http://dx.doi.org/10.1113/jphysiol.2004.074740
http://dx.doi.org/10.1113/jphysiol.2004.074740
http://dx.doi.org/10.1038/nn.2293
http://dx.doi.org/10.1113/jphysiol.2009.168542
http://dx.doi.org/10.1038/nn.2456
http://dx.doi.org/10.1523/JNEUROSCI.3411-05.2005
http://dx.doi.org/10.1523/JNEUROSCI.0785-08.2008
http://dx.doi.org/10.1523/JNEUROSCI.0785-08.2008
http://dx.doi.org/10.1038/nrn2924
http://dx.doi.org/10.1073/pnas.1219578110
http://dx.doi.org/10.1073/pnas.1219578110
http://dx.doi.org/10.1113/jphysiol.2002.034801
http://dx.doi.org/10.1523/JNEUROSCI.0803-12.2012
http://dx.doi.org/10.1113/jphysiol.2003.043612
http://dx.doi.org/10.1113/jphysiol.2003.043612
http://dx.doi.org/10.1126/science.288.5475.2366
http://dx.doi.org/10.1113/jphysiol.2003.060137
http://dx.doi.org/10.1113/jphysiol.2003.060137
http://dx.doi.org/10.1371/journal.pone.0045732
http://dx.doi.org/10.1371/journal.pone.0045732
http://dx.doi.org/10.1038/nature06233
http://dx.doi.org/10.1038/nn.2803
http://dx.doi.org/10.1113/jphysiol.2005.087460
http://dx.doi.org/10.1523/JNEUROSCI.2102-04.2004
http://dx.doi.org/10.1002/(SICI)1096-9861(19960708)370:4%3C551::AID-CNE10%3E3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1096-9861(19960708)370:4%3C551::AID-CNE10%3E3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1096-9861(19960708)370:4%3C551::AID-CNE10%3E3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1096-9861(19960708)370:4%3C551::AID-CNE10%3E3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1096-9861(19960708)370:4%3C551::AID-CNE10%3E3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1096-9861(19960708)370:4%3C551::AID-CNE10%3E3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1096-9861(19960708)370:4%3C551::AID-CNE10%3E3.0.CO;2-M
http://dx.doi.org/10.1523/JNEUROSCI.2743-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.2743-11.2011
http://dx.doi.org/10.1016/0092-8674(94)90555-X
http://dx.doi.org/10.1073/pnas.051622798
http://dx.doi.org/10.1038/nature06308
http://dx.doi.org/10.1523/JNEUROSCI.3519-06.2006
http://dx.doi.org/10.1523/JNEUROSCI.3519-06.2006
http://dx.doi.org/10.1523/JNEUROSCI.2528-10.2010
http://dx.doi.org/10.1523/JNEUROSCI.2528-10.2010
http://dx.doi.org/10.1523/JNEUROSCI.5122-10.2011
http://dx.doi.org/10.1523/JNEUROSCI.5122-10.2011
http://dx.doi.org/10.1074/jbc.R100052200
http://dx.doi.org/10.1074/jbc.R100052200
http://dx.doi.org/10.1038/nn.2774
http://dx.doi.org/10.1016/j.cell.2006.08.040


rsob.royalsocietypublishing.org
Open

Biol3:13016

9
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