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Abstract. The distribution of acetylated ct-tubulin in 
rat cerebellum was examined and compared with that 
of total ct-tubulin and tyrosinated ¢t-tubulin. From 
immunoperoxidase-stained vibratome sections of rat 
cerebellum it was found that acetylated a-tubulin, de- 
tectable with monoclonal 6-11B-l, was preferentially 
enriched in axons compared with dendrites. Parallel 
fiber axons, in particular, were labeled with 6-11B-1 

yet unstained by an antibody recognizing tyrosinated 
¢t-tubulin, indicating that parallel fibers contain ¢t-tu- 
bulin that is acetylated and detyrosinated. Axonal 
microtubules are known to be highly stable and the 
distribution of acetylated ct-tubulin in other classes of 
stable microtubules suggests that acetylation and possi- 
bly detyrosination may play a role in the maintenance 
of stable populations of microtubules. 

M 
ICROTUBULES are believed to be involved in nu- 
merous functions in the adult and developing brain, 
including cell division, cell migration, intracellu- 

lar transport along neuronal processes (32), the maintenance 
and growth of axons (33, 36), and the determination of cellu- 
lar morphology (26). The heterogenous functions of micro- 
tubules are likely to be subserved by a diversity of microtu- 
bule types. This diversity could be generated by assembly of 
microtubules bearing differing complements of associated 
proteins (MAPs) 1 or by differences in the forms of tt- and 
I~-tubulin subunits within the microtubule polymer. Multiple 
forms of ct- and 13-tubulin occur in brain as a result of the 
expression of multiple genes (11), and a series of posttransla- 
tional modifications including phosphorylation of 13-tubulin 
(19), reversible detyrosination/tyrosination of a-tubulin (27, 
34), and acetylation of the e-amino group of lysines of 
¢t-tubulin (29). 

Studies on the localization of MAPs in brain have demon- 
strated clear differences in the composition of microtubules, 
both between cell types and between axonal and dendritic 
processes of the same neurons (6, 30). MAP 2 is largely re- 
stricted to neurons, and is present on dendritic but not axonal 
microtubules (1, 7, 17). Conversely, the tau polypeptides are 
enriched in axonal microtubules (3). MAP 1 is present in 
both axons and dendrites but is enriched in dendrites (4, 24). 
A further protein, MAP 3, is present at high levels in glial 
cells in adult brain but is expressed transiently in growing 
axons (2). 

Little is known about the distribution of the various iso- 
types of ¢t- and I~-tubulin in brain. We have previously inves- 
tigated the localization of tyrosinated a-tubulin and found 
that it is present in dendritic but is absent or depleted from 

1. Abbreviations used in this paper: MAP(s), microtubule-associated pro- 
rein(s); PBT, 0.1% Triton X-100, 0.3% BSA in PBS. 

axonal microtubules in adult brain (8, 13). Tyrosinated a-tu- 
bulin is, however, transiently expressed by developing axons 
(14). A monoclonal antibody specific for acetylated a-tubu- 
lin has recently been described by Piperno and Fuller (31). 
Using this antibody we have investigated the distribution of 
this posttranslationally modified form of ¢t-tubulin in rat 
brain. Acetylated ¢t-tubulin is present in both neuronal and 
nonneuronal cells and appears to be co-distributed, with de- 
tyrosinated ¢t-tubulin being preferentially enriched in axons 
compared with dendrites. 

Materials and Methods 

Polyacrylamide Gel Electrophoresis 
and lmmunoblotting 
Cerebella from adult Wistar rats or pups aged 6, 10, or 18 d were 
homogenized in 5 mM Tris HC1, 2 mM EGTA, 0.1 mM phenylmethyl- 
sulfonyl fluoride, pH 8.0. Aliquots (100 ~tg of protein) were separated by 
SDS PAGE on 10 or 12.5% slab gels and transferred to nitrocellulose paper 
by transverse electrophoresis. Protein transfer was confirmed by staining 
with 0.2% Ponceau S. For immunoblotting, nitrocellulose sheets were 
washed with PBS, incubated with 3% BSA/0.2% Triton X-100/PBS for 
15 rain, 6-11B-I at a 1:10 dilution or YOL/34 at 1:5,000 for 60 rain, anti- 
mouse-biotin or anti-rat-biotin (as appropriate) at 1:600 for 60 min and 
horseradish peroxidase-streptavidin 1:600 for 30 min. The reaction was de- 
veloped with diaminobenzidine/H202. 

Cell Culture 
For granule cell-enriched cultures, cerebellae of 6-d-old rats were dis- 
sociated by trypsin treatment (16, 18) plated at a cell density of 1.4 × 103 
per mm 2 on poly-L-lysine-coated coverslips and maintained in DME, 30 
I.tg/ml insulin, 30 nM sodium selenite, 33 mM glucose, 290 ~tg/ml gluta- 
mine, 25 mM KCI, 25 U/ml penicillin, 25 Ixg/ml streptomycin. 

lmmunofluorescent Staining of Cell Cultures 
Cultures were fixed in 4% formaldehyde in PBS and permeabilized by incu- 
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bation in 0.1% Triton X-100, 0.3 % BSA in PBS (PBT) for 40 min. Cells were 
incubated with 6-11B-I at 1:10. Control coverslips were incubated with 
nonimmune mouse sera. The cultures were then incubated with anti-mouse 
Texas red (1:50) for 30 min. All reagents were diluted in PBT. The coverslips 
were washed with acid-alcohol at -10°C and mounted in 0.25% 1,4-diazo- 
bicyclo-[2.2.2.] octane, 0.002 % p-phenylenediamine in glycerol/PBS (9:1). 
Immunofluorescence was examined using a 63 x oil immersion lens on a 
Zeiss Universal microscope with the appropriate filters for Texas red fluo- 
rescence. 

Immunocytochemistry on Vibratome Sections 

Cerebella were fixed by immersion in 4% formaldehyde on PBS for 18 h 
and 50-100 ~m parasagittal sections were cut using a vibratome. Sections 
were incubated in PB'I" for 30 min followed by 6-11B-1 (1:10), YL1/2 
(1:1,000), or YOL/34 (1:1,000) overnight at 4°C. The sections were then in- 
cubated in either anti-mouse-biotin (1:100) or anti-rat-biotin (1:100), as ap- 
propriate, for 60 rain followed by horseradish peroxidase-streptavidin 
(1:150) for 30 min. All antibodies were diluted in PBT. The reaction was 
developed with diaminobenzidine/H202, the sections dehydrated in alco- 
hols, cleared in xylene, and mounted in D.P.X. (BDH Chemicals, Ltd., 
Dagenham, United Kingdom). 

Antibodies 

The mouse monoclonal 6-11B-1 (culture supernatant) against acetylated 
a-tubulin (31) was a gift from Dr. G. Piperno (The Rockefeller University, 
New York) and the rat monoclonals YL1/2 and YOL/34 (25) were gifts from 
Dr. J. Kilmartin (Cambridge University, Cambridge, England). Rabbit an- 
tisera against tyrosinated (anti-Tyr) and detyrosinated (anti-Gtu) ct-tubulin 
were a gift from Dr. J. C. Bulinski (University of California at Los Angeles). 
Second antibodies and horseradish peroxidase-streptavidin were purchased 
from Amersham International, Amersham, United Kingdom. 

Results 

In this study we have used three monoclonal antibodies 
specific for a-tubulin: the mouse monoclonal 6-11B-l, which 
is specific for acetylated ct-tubulin (acetyl-antibody, refer- 
ence 31); the rat monoclonal YL1/2, which is specific for 
tyrosinated a-tubulin (tyr-antibody, reference 35); and the 
rat monoclonal YOL/34 which recognizes all t~-tubulin iso- 
types (general antibody, reference 13). 

lmmunoblotting with 6-11B4 (Acetyl Antibody) 

The monoclonal 6-11B-1 was raised against sea urchin axo- 
nemes and recognizes acetylated ct-tubulin in the axonemes 
of a range of species (31). From immunoblotting of cerebel- 
lar homogenates (Fig. 1) it is apparent that the acetyl- 
antibody recognizes a polypeptide corresponding to rat brain 
a-tubulin. The staining with acetyl-antibody was consis- 
tently weaker than that with the general antibody in parallel 
experiments (Fig. 1), suggesting that acetylated t~-tubulin 
may be only a small proportion of total brain ~t-tubulin. 

Immunocytochemical Localization of Acetylated 
a-Tubulin in Adult and Developing Cerebellum 

In vibratome sections of adult cerebellum the acetyl-anti- 
body gave intense particulate staining within the molecular 
layer (Fig. 2 a) indicative of staining of granule cell axons 
(parallel fibers) cut in cross section. Granule cell bodies in 
the granular layer were also stained. Axons and glial cell 

Figure 1. Immunoblotting with 6-11B-1 (acetyl-antibody) and YOL/ 
34 (general antibody) using cerebellar homogenates. Homogenates 
from the cerebella of adult (a, c, and e) and 18-d-old (b, d, and f )  
rats were separated by polyacrylamide gel electrophoresis, trans- 
ferred to nitrocellulose, and tracks incubated with 6-11B-1 (a and b), 
YOL/34 (c and d), or without first antibody (e and f).  ¢t-tubulin 
(aT) was stained by 6-11B-1 and YOL/34 as well as a lower molecu- 
lar weight polypeptide (asterisk). Polypeptides stained nonspecifi- 
cally (i.e., in the absence of first antibody) are indicated by arrow- 
heads. 

bodies within the white matter were strongly stained by the 
acetyl-antibody (Fig. 2 b); this staining pattern in white mat- 
ter was indistinguishable from that with the general antibody 
(Fig. 2 c). 

The staining within the molecular layer with the acetyl- 
antibody can be seen more clearly at higher magnification 
in Fig. 2 d. No evidence was seen in any sections of staining 
of Bergmann glial fibers, Purkinje cell bodies, or Purkinje 
cell dendrites. In contrast, the general antibody stained the 
Bergmann glial fibers traversing the molecular layer, and the 
cell bodies and dendrites of Purkinje cells as well as the par- 
allel fibers of the molecular layer (Fig. 2 e). As we have 
shown previously (13, 14), the tyr-antibody stains Bergmann 
glia and Purkinje cell dendrites strongly but does not stain 
parallel fibers (Fig. 2 f ) .  The comparison of acetyl-antibody, 
tyr-antibody, and the general antibody staining in the molec- 
ular layer shows that parallel fiber axons are depleted in 
tyrosinated ¢t-tubulin but enriched in acetylated ct-tubulin. 

The interpretation of the staining patterns seen with the 
three monoclonals was supported by studies with other anti- 
bodies. These studies also indicated that the differences in 
the staining patterns with the monoclonals were not fortui- 
tous. A rabbit antiserum (anti-tyr, reference 22) against 
tyrosinated tx-tubulin stained vibratome sections identically 
to the tyr-antibody (YL1/2), and a rabbit antiserum (anti- 
Glu, reference 22) against detyrosinated ¢t-tubulin stained 
vibratome sections identically to the acetyl-antibody (data 
not shown). The staining pattern seen with the general 
anti-ct-tubulin monoclonal was indistinguishable from that 

Figure 2. Immunope rox idase  staining of  v ibra tome sect ions of  adult  cerebel lum.  Sect ions were s tained with 6-11B-I (acetyl-ant ibody;  a,  
b, and d), YOL/34 (general antibody; c and e), or YL1/2 (tyr-antibody; f) .  Intense particulate staining is present in the molecular layer 
(ML) with acetyl-antibody. Bergmann glial fibers (arrows) and Purkinje cell dendrites (Pd) are stained by the general antibody and the 
tyr-antibody (f)  but not the acetyl-antibody (d). In the white matter, staining with the acetyl-antibody (b) and the general antibody (c) 
can be seen in axons in cross section (arrows) and glial cell bodies (curved arrows). P, Purkinje cell body. Bar, (a) 50 l.tm; (b-f) 25 l.tm- 
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Figure 3. Immunoperoxidase stain- 
ing of vibratome sections of cere- 
bella of 7- (a) and 13- (b and c) 
d-old rats with acetyl-antibody (6- 
liB-l). Intense staining is present 
throughout the molecular layer 
(ML) at all ages with the acetyl- 
antibody. In b a longitudinal sec- 
tion through parallel fibers shows 
stained parallel fibers as streaks in 
the molecular layer. Cells in the ex- 
ternal germinal layer (EGL) were 
lightly stained at day 7 but un- 
stained at day 13. Cell bodies of the 
granular layer (GL) are stained at 
both ages. Purkinje cell bodies 
(P) are stained in sections from 
both ages. Bergmann glial fiber and/ 
or Purkinje cell dendrites were 
stained by the acetyl-antibody. Bar, 
25 ~tm. 

due to monoclonals against 13-tubulin or a polyclonal anti- 
body against a-  and 13-tubulin (13). Furthermore, the results 
with the anti-et-tubulin monoclonals did not depend on fixa- 
tion conditions, since similar results were obtained using im- 
mersion fixation in formaldehyde, perfusion fixation in 
glutaraldehyde plus formaldehyde (13), and rapid freezing 
followed by staining of cryostat sections (our unpublished 
observations). 

The ~t-tubulin of immature parallel fibers is tyrosinated 
until 10 d after birth, when there is a progressive detyrosina- 
tion of ct-tubulin in the maturing axons beginning in the 
lower (mature) region of the molecular layer (14). We there- 
fore examined acetyl-antibody staining of vibratome sections 
of developing cerebella to see if acetylation of a-tubulin in 
parallel fibers is also developmentally regulated. The results 
in Fig. 3 show that acetylated a-tubulin was preferentially 
localized in parallel fibers throughout the molecular layer, 
even at early stages of development. There was no evidence 
of differential labeling of mature/immature parallel fibers 
at any developmental stage, unlike the case for tyrosinated 
ct-tubulin (14). At no stage was staining of Bergmann gila or 
Purkinje cell dendrites by the acetyl-antibody detectable 
within the intense parallel fiber staining. The interpretation 
that the particulate staining in the molecular layer was due 

to parallel fibers in cross section was supported by Fig. 3, b 
and c. Fig. 3 c shows a saggital section of 13-d-old cerebel- 
lum with parallel fibers cut in cross section. Fig. 3 b shows 
a section in which the parallel fibers were sectioned longitu- 
dinally and can be seen as streaks in the molecular layer. 

Other Brain Regions 

Studies on the cerebral cortex, corpus callosum, and brain 
stem indicated an enrichment of acetylated and detyrosinated 
ct-tubulin in axons in these brain regions. Axons were rela- 
tively unstained by the tyr-antibody but intensely stained by 
the acetyl-antibody (data not shown), indicating that the 
results documented here are not peculiar to axons of the cere- 
bellum. 

lmmunofluorescent Staining of Cerebellar 
Granule Cells in Primary Culture 
Primary cultures of cells dissociated from the immature 
cerebellum have been extensively characterized (15) and 
shown to consist predominantly of granule cells and a small 
percentage of morphologically distinguishable nonneuronal 
cells. The granule cells extend processes in culture which are 
axonal in nature since they have synaptic-vesicle-containing 
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Figure 4. Immunofluorescent staining of granule cell cultures with the acetyl-antibody (6-lIB-1). All granule cells in culture are stained 
with the acetyl-antibody throughout their cell bodies and all their axonal processes. In the processes intense varicose staining is visible. 
Bar, 10 ~tm. 

varicosities (10). In cerebellar cultures it was found that the 
acetyl-antibody stained the cell bodies and varicose pro- 
cesses of all cells (Fig. 4). Acetylated ¢t-tubulin was present, 
therefore, in granule cell axons in vitro as well as in vivo. 

Discussion 

Little is known about either the distribution or physiological 
roles of the various isotypic and posttranslationally modified 
forms of ¢t- and 13-tubulin in developing and differentiated 
brain tissue (6). We have previously demonstrated that axons 
in adult brain, particularly those that are unmyelinated, are 
preferentially enriched in the detyrosinated form of ~t-tubulin 
(13) as shown by lack of staining with the tyr-antibody 
(YL1/2) and intense staining by rabbit anti-Glu. The segrega- 
tion of tyrosinated and detyrosinated ~t-tubulins to separate 
sets of microtubules has been shown in dividing and inter- 
phase cells in culture (21, 22). A monoclonal antibody 
against ¢t-tubulin, TU 01, has been shown to stain only 
microtubules of Bergmann glia in the cerebellum (23). 

Acetylation of tubulin on the e-amino group of lysine was 
first demonstrated as a posttranslational modification of 
flagellar ct-tubulin of Chlamydomonas (29). After the pro- 
duction of a monoclonal antibody specific for the acetylated 
form of ¢t-tubulin by Piperno and Fuller (31), this form of 
ct-tubulin was shown to be present in the axonemal microtu- 
bules from a number of sources and in stable cytoplasmic 
microtubules of Chlamydomonas (28). An activity able to 

acetylate ct-tubulin has been shown to be present in calf brain 
microtubules (20). However, the present report is the first to 
demonstrate the presence and localization of acetylated a-tu- 
bulin in mammalian brain. 

Acetylated ct-tubulin appears to be co-distributed with 
detyrosinated a-tubulin, both forms being predominantly 
present in parallel fiber axons in adult cerebellum. Axonal 
microtubules have been demonstrated to be relatively stable 
(9) and axons contain high levels of cold-stable microtubules 
(5). It appears then that the stable population of microtubules 
within axons is both acetylated and detyrosinated. The ap- 
pearance of these two posttranslational modifications on sta- 
ble microtubules may result from progressive modification 
over time of a class of microtubules with a low rate of turn- 
over (26), or conceivably the modifications themselves may 
result in increased stability of microtubules. The presence 
of acetylated a-tubulin in many flagellar microtubules (31) 
and in drug-resistant microtubules of Chlamydomonas (28) 
would support a role for acetylation in the stabilization of 
microtubule networks as suggested by Le Dizet and Piperno 
(28). 

There are two situations where acetylated et-tubulin is not 
co-distributed with detyrosinated ct-tubulin. First, axons of 
the cerebellar white matter are strongly stained by the acetyl- 
antibody and are also weakly stained by the tyr-antibody (12) 
and so do contain some tyrosinated a-tubulin. Secondly, im- 
mature parallel fibers of the 10-d-old cerebellum are stained 
by the tyr-antibody (14), indicating a high content of tyrosi- 
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nated et-tubulin. We have demonstrated here that these im- 
mature axons also contain relatively high levels of acetylated 
ct-tubulin. 

In conclusion, results from the use of acetylated a-tu- 
bulin-specific monoclonal 6-11B-1 indicate that acetylated 
¢x-tubulin is present in certain populations of stable micro- 
tubules, including axonal, drug-stable (28), and axonemal 
microtubules (31). Axonal microtubules also contain the 
detyrosinated form of ~t-tubulin, suggesting that these two 
posttranslational modifications may have a role in the 
specification and/or maintenance of stable microtubule net- 
works. 
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