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Abstract

Active Labour Market Policies (ALMPs) often exclusively target towards the

long-term unemployed. Although it might be more efficient to intervene earlier

in order to prevent long-term unemployment rather than to cure it, the climate

of austerity in Eurozone countries is spreading a tendency to further reduce the

basic counselling for those who become unemployed. This study investigates the

impact on employment chances of a relatively light and inexpensive intervention.

In a field experiment in a public employment office in Flanders, a random selection

of clients were invited for a mandatory information session in the first month of

the unemployment spell, while the control group were invited after four months

of unemployment. Although the average intention-to-treat effect we find is not

significant, the early intervention appears to be very beneficial for those with low

education.

Keywords: Active Labour Market Policies; Unemployment; Natural Field Experiment

JEL Classifications: D04; D61; J64; J68
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1 Introduction

The design of Active Labour Market Policies (ALMPs) is constantly being debated in

academia, in the media, and at many policy levels. Despite the fact that public employ-

ment services, re-integration programmes and subsidies absorb a substantial amount

of public spending, the impact of ALMPs is not unambiguously positive (Card et al.,

2010). Indeed, the mechanisms through which these programmes can affect unemployed

workers’ behaviour are rather diverse. Well-known is that intensive training programmes

and subsidized jobs might lead to a locking-in effect (Van Ours, 2004) in case of a high

work load of the training programme and consequently little time for the participants to

search for a new job. Mandatory training programmes might also have a threat effect,

which is illustrated by a peak in the transition from unemployment to employment just

before the date at which such programmes become mandatory (Graversen and Van Ours,

2011).

Many training or coaching programmes, especially the more expensive ones, are often

only available for those who have been unemployed for an extensive period of time. For

example, Van der Klaauw and Van Ours (2013) study employment bonuses that are

available for individuals with an unemployment spell that exceeds one year. Blundell

et al. (2004) meticulously evaluate the employment effects of the extensive New Deal

programme for 18-24 year olds in the United Kingdom, which involves mandatory job

search assistance and wage subsidies. However, these treatments only start six months
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after first receiving job seekers allowance. Moreover, in their search for further spending

cuts, European governments try to replace their traditional employment services by

digital self-service applications. In Flanders, since 2015 registration of the unemployed

is being more centralized. While the unemployed had the option to come to a local

office and to enrol face-to-face at the counter and have a chat for a few minutes with

a caseworker, they are now being asked to enrol through the Internet or by telephone

through the central service line.

While obviously the long-term unemployed are the most vulnerable group with the

largest distance to the labour market, one might find good reasons to intervene earlier

into the unemployment spell in order to prevent long-term unemployment rather than to

cure it. Indeed, the well-documented scarring effects of long-term unemployment such as

lower mental health (Knabe and Rätzel, 2011), and lower earning potential and reduced

career opportunities (Hijzen et al., 2010; Oreopoulos et al., 2012) might imply that the

late timing of such programmes dampens their efficiency. In addition, Kroft et al. (2013)

conclude from a natural field experiment that, ceteris paribus, long-term unemployed

applicants are less likely to receive a response from employers. Hence, it seems that

governments are in search for the right balance in their ALMPs. On the one hand, one

aims to preserve sufficient resources for intensive re-integration programmes of vulner-

able groups such as the long-term unemployed. On the other hand, one needs to make

sure that unemployed workers for whom the distance to the labour market is not yet too

far receive appropriate guidance and monitoring in order to accelerate the transition to
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work, and, most importantly, to prevent the unemployed ending up in a vicious circle of

long-term unemployment. A fairly recent literature in behavioural economics has indeed

indicated that it is often possible to significantly steer human behaviour in various fields

in a very inexpensive way (e.g. Fellner et al., 2013; Altmann and Traxler, 2014 and

Crossley et al., 2014). In a labour market context, Altmann et al. (2015) investigate

through a large-scale natural field experiment the effect of an information brochure, sent

out four to eight weeks after becoming unemployed, on the job finding rate of German

unemployed job seekers: the brochure offers information about the labour market con-

ditions as well as on evidence-based facts such as the effectiveness and importance of

devoting time to job search, the consequences of unemployment (e.g. reduced mental

health), and different alternative job search strategies. They conclude that sending out

such brochures has a small positive effect on the exit rate out of unemployment, at least

for those who are at risk of becoming long-term unemployed. Given the inexpensive na-

ture of the intervention, such a campaign can be seen as highly cost-effective. One might

therefore wonder whether it is efficient to backload reintegration efforts to high-costs in-

terventions for the long-term unemployed as trying to prevent long-term unemployment

could be both much cheaper and more effective. This paper aims to contribute to our

understanding of how rather cheap early interventions can improve the transition from

unemployment to work.

In this way our paper also contributes to the academic literature in this field which

mainly focuses at high-costs interventions for the long-term unemployed. In a field ex-
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periment in a public employment office in Flanders, a random selection of clients were

invited for a mandatory information session in the first month of their unemployment

spell, while the control group were invited for this session after four months of unemploy-

ment. The information session comprises of a 2.5-hours collective session followed by a

five-minutes one-on-one interview with a caseworker. It is important to note that we will

be measuring the intention-to-treat effect of the information session: some unemployed

will find a job after being formally contacted but before having attended the informa-

tion session, whereas others who got an invitation might not appear at the information

session for different reasons.

On average, we find a positive though insignificant overall effect of being allocated to

the treatment group on the job-finding rate. However, we have strong evidence that the

treatment has had a major positive impact on the job-finding rate of the low-educated.

The remainder of the paper is structured as follows. Section two gives some back-

ground information on the case study, and outlines the randomized intervention. Section

three documents the procedure for implementation of the randomized intervention, of-

fers descriptive statistics as well as evidence of compliance. Section four details the

hypotheses and the main empirical model, while Section five discusses the main results

and extensions. Section six concludes.
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2 The Randomized Intervention and Its Context

During the period of the case study, the coaching, mentoring and training of the unem-

ployed was a regional matter in the Federal State of Belgium. In Flanders, the regional

employment agency is called the Flemish Employment and Vocational Training Office

(FETO).1 Our partner for the case study is a local FETO office in a coastal area. The

FETO has a well-established practice across all its offices to divide the unemployed in

three main age categories, the category below 25 (youngsters), the category in the age

range of 25 to 49 (middle-aged) and the category of 50 and above (older) (VDAB, 2015a).

Each age group has its own coaching programme with its own approaches. The young-

sters, on the one hand, are highly prioritized and are being coached very intensively in

a mandatory programme. The older unemployed, on the other hand, have traditionally

enjoyed a softer regime with less monitoring and surveillance.2 Implementing a ran-

domized intervention for these two groups would imply ethical issues for the former (a

randomized denial instead of a randomized access) and practical issues for the latter

(such as small sample sizes).

For the above reasons, we have focussed on the middle group, aged 25 to 49. At

the time of the trial, a mandatory collective information session was the first active

1At that time, the National Employment Office (NEO), which also coordinates the financing of
benefit payments, was responsible for judging the appropriateness of the job search efforts of the unem-
ployed, and was allowed to impose benefit sanctions if job finding efforts were repeatedly found to be
below the minimum threshold. This implied that the FETO, responsible for monitoring, would transmit
the client’s file to the NEO which could then decide about sanctions.

2However, from April 2009 onwards, a coaching programme for the older unemployed was intro-
duced, with the maximum age for whom the programme is mandatory increasing from 52 in April 2009
up to 57 from 2012 onwards (VDAB, 2014).
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attempt of the public employment service (FETO) to get in touch with this age group

of unemployed individuals. A formal invitation was sent out with a proposed date, time

and place to attend a session. In case the invitees were unable to attend the information

session because of an application interview or another legitimate reason, they were being

asked to notify the agency the day before the information session at the latest. If

not, they would be discarded from the FETOs unemployment registry.3 Generally,

the FETO tried to invite around 30 individuals per information session, although the

turn-up is generally significantly lower due to cancellations or illegitimate absences.

The first 2 to 2.5 hours of an information session were dedicated to a collective part.

The participants received an overview of the working of the employment office and the

different services located in the building. Next, they were taught about certain rights

(such as reimbursement of travel costs when going to an application interview), and

about a range of ALMPs such as employers subsidies, training trajectories and training

subsidies. The session then continued with a demonstration of the FETOs website, and

participants were shown how they can create an online profile and CV, find job vacancies

that match their preferences and skills, and how they can set up E-mail alerts. Finally,

participants were invited to take place behind a computer and optimize their own online

profile. After the collective part, there were short one-on-one meetings between each

participant and a caseworker.

3In reality, however, the policy was slightly less strict. In case invitees did not turn up without
communicating a legitimate reason, they would receive a reminder by registered post. If they still did
not respond, their file would be discarded from the FETOs unemployment registry and transmitted to
the NEO, that could then decide on applying benefit sanctions.
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The target of the FETO was to invite the middle aged for a collective information

session within three months after being enrolled as unemployed. However, the timing of

sending out this first invitation did in practice vary a lot across individuals, which created

a potential context of implementing an experiment that randomizes and dichotomizes

this waiting list. The Flemish Ministry of Labour ruled that such an intervention was

compliant with internal ethical procedures as it would not lead to suboptimal use of

resources nor to discrimination. Moreover, the results of the experiment could be im-

portant in the debate on the reforming of the employment agency, which made that the

FETO was keen to facilitate the research project. We hence agreed that the treatment

group would be contacted to attend such a collective information session right after the

start of their unemployment spell, i.e., within the first four weeks. The control group

would only receive an invitation around four to five months after they entered unem-

ployment, with the aim to offer them an information session five months after entering

unemployment.

Attending an information session could lead to follow-ups and participants could be

encouraged to apply for certain subsidies or to start a training trajectory. It should be

noted, however, that the control group basically had the same opportunities for other

FETO services during the first months of the unemployment spell than the treatment

group. Moreover, they were free to visit a FETO branch to make an appointment and

to talk to a caseworker, to call the central service number where specialized agents could

give them advice, or to apply online for employment and training subsidies.
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3 The Implementation of the Randomization and

Descriptives

3.1 The Sample and the Randomization

The case study area4 is relatively poor, and its unemployment rate is high compared to

the level of Flanders, as is shown in Figure 1 for the period January 2010 until June 2015

and for the age range of 25 to 49. The curve representing the case study area is at all

times clearly above the curve depicting the situation at the level of Flanders. Between

January 2010 and June 2015, the unemployment rate depicted for the case study area

fluctuates between 5.8 and 8.9, and is between 0.6 and 2.1 percentage points higher than

the corresponding region-level unemployment rate.

The sample inflow spans the period from 1 January 2014 until 31 January 2015.

After that date, the inflow in the experiment has been ceased since the implementation

of new and more centralized procedures (see VDAB, 2015b) compromises comparability

with the earlier inflow.5

The labelling for the experiment was accomplished by the central IT services based

in the FETO headquarters in Brussels. Individuals were assigned to the experiment, on

the first day of the unemployment spell when the following conditions were being met:

4This is the area for which the local FETO office that we collaborate with is responsible.
5We are, however, still able to track our sample after the inflow has been ceased.
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• They are residing in the area for which the FETO office participating to the case

study is responsible.

• They belong to the middle aged group (25-49).

• At the time of enrolment, the central database does not flag that the individual is

impeded to participate (e.g. not speaking Dutch, being chronically ill).

• They did not attend any information session during the last two years.

The use of a random generator built into many statistical software packages would

be an obvious way to divide the sample into a control and a treatment group. However,

the nature of the trial implies that the sample is building up continuously, which com-

plicates this procedure. Since the intervention starts almost right from the start, any

delays in assignment should be avoided. Hence, to make the randomization feasible and

transparent, we agreed upon a randomization rule that is based on the day-of-month

of the individual’s date-of-birth. Those who were born on an even day of the month

were allocated to the treatment group, while those born on an odd day of the month

were allocated to the control group. Since the date-of-birth is a variable included in the

dataset, we could easily verify that the labelling was implemented correctly by the IT

services.
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3.2 Descriptives and Compliance

The total sample contains 1,549 individuals, of which 789 belong to the control group

and 760 to the treatment group. The slightly larger size of the control group is in line

with the fact that there are more odd than even days in a year. We use anonymized

standard data from the FETO, for which the FETO has the permission to use these for

research purposes from the Belgian Privacy Commission. This permission is structural

and does not need to be obtained for each individual research project, nor is explicit

consent required from the individuals to whom these data refer. The downside is, of

course, that our admin data include a rather limited list of variables.

Table 1 shows descriptive statistics of both the treatment and control group of base-

line values of observable characteristics. The last column shows P-values of tests, that

test the null hypothesis of equality between control and treatment group.6

A large proportion in our sample has low education (32.1% in the treatment group

versus 29.8% in the control group). In both the treatment and control group, just under

half the sample is female. Furthermore, 7.6% and 8.9% are labelled as foreigners in

our sample for the treatment and control group respectively.7 Finally, it is interesting

6We use Pearson χ2-tests for the categorical variables and Mann-Whitney tests for the ordered
variables.

7One is labelled as foreigner if one of the unemployed worker’s current or past nationalities is from
outside the European Free Trade Association. We should emphasize that the proportion of foreigners
among the unemployed in our case study region is larger than in our sample, since the experiment does
not include those for whom it was known a priori that their knowledge of Dutch was insufficient to
benefit from the information session.
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to note that only less than a third of the unemployed enrolled themselves through the

online platform (28.8% in the treatment group and 30.6% in the control group).

The last column shows us that only for the age, the null hypothesis of equality be-

tween treatment and control group can be rejected at the 5% significance level. Hence,

it seems reasonable to assume that we are dealing with type I error, and we will attempt

to mitigate this sampling error by including baseline characteristics as controls in our

estimation models. Moreover, since we have access to the exact date-of-birth in our

data, we have been able to verify that the IT services have implemented the randomiza-

tion procedure correctly: those born on an even day of the month were all labelled as

treatment group, and those born on an odd day of the month were all labelled as control

group.

Finally, an important question remains whether indeed the instructions have been

followed by the job coaches and the experiment has been carried out correctly. Although

it was not possible to retrieve reliable data on the exact date individuals have received a

first invitation for an information session, we do have reliable attendance data, since these

are being meticulously registered as they are important for monitoring purposes. The

latter data can offer us a second-best compliance check, as they inform us about whether

the time elapsed between enrolment is in line with the template of the experiment.

As mentioned earlier, due to a variety of reasons many unemployed workers in the

treatment group did not attend the information session: only 33% of the subjects in

the treatment group have eventually attended a session. Conditional on having followed
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the information session, the median time elapsed between inflow into the sample and

attending a session equals 56 days, and 89% of the treated individuals who actually

attended an information session did so within the 120 days time span after their inflow

into the sample.

The timings of the control group’s attendance is more informative to judge whether

the FETO office managed to comply with the experiments template: we would expect

individuals to have participated outside the 120-days time span after inflow into the

sample. For individuals in the control group and conditional on having attended an

information session, the median time elapsed between the inflow into the sample and

attendance equals 192 days. Only two out of the 74 cases have a higher risk to be

noncompliant, as they attended an information session 22 and 57 days after inflow,

respectively. This means that an invitation might have been sent well before the target

of four to five months after enrolment, but it might also indicate that these individuals

spontaneously asked to attend a session. The other cases were within the range of 157

and 364 days, which is in accordance with the experiment’s template. We need to stress

that the descriptives on attendance only serve the purpose of a second-best compliance

check. As the control group gets the invitation later in the spell, it is obvious that a

smaller percentage than in the treatment group will eventually attend a session since

those in the control group had more time to find a job.

14



4 Baseline Empirical Framework and Pathways to

Impact

4.1 Baseline Empirical Framework

Throughout our analysis, we will attempt to measure intention-to-treat effects rather

than treatment effects of the information session. Firstly, many will never complete the

treatment and attend a session as they can delay attendance until having found a job.

Secondly, despite filtering at the central level based on available data, after the start of

the experiment, it sometimes turned out that ones situation had changed (moving to

another region, turning 50) or that the central database was not up to date. We will

not exclude these misclassified individuals from the experiment, since misclassifications

and other issues will be detected more frequently in the treatment group than in the

control group, and hence removing them would distort the random allocation. We should

hence interpret the estimation results as a lower bound of the effect that such an early

intervention can have on the treated.

All individuals who enter our sample are initially unemployed. As we deal with a

randomized experiment, we are able to show clear-cut nonparametric causal evidence

by presenting overlay scatter plots of treatment and control group, that depict the

percentage of individuals at work in function of the number of days after inflow into the
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sample. Further regression models (with parametric restrictions) will then help us to

get some more insights into the statistical significance of these results.

We will estimate the exit rate into part-time or full-time employment. Our data

contain many other categories which the unemployed could transit to, e.g. full-time

training, work-disabled etc. However, we will only concentrate on finding a job instead

of a competing risk model for two sets of reasons. First, there are a few statistical reasons:

our sample is too small to divide the data into many different outflow categories, and

multiple categories might bias our estimates in case of irrelevant alternatives. Second,

there are pragmatic concerns that weigh in. A batch procedure regularly updates the

FETO datafiles with information about clients having found a job, through matching the

FETO records with a central database of the Belgian social security. The transition to

categories other than work would only be registered if they are entered manually (either

by the caseworker or the unemployed), and since the treatment group is contacted earlier

than the control group, we might risk measuring the correction of administrative files

rather than an actual change in the individual’s status.

For each individual, the research period is truncated at 120 days after being en-

rolled as unemployed because after that time the employment service will start inviting

the control group for the information session, and other measures such as reduction of

unemployment benefits might start influencing the results.8 On average, 41% of all un-

8The baseline model will investigate whether during these 120 days, there is a transition to work,
but will not investigate unemployment recurrence. We will however partly address this concern in one
of the extensions.
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employed workers have experienced a transition into work within these first 120 days.

There obviously is considerable heterogeneity across groups. For example, the average

transition rate for those with low education is only 34%, compared to 43% and 49% for

those with intermediate and high education, respectively.

Exit rates from unemployment to employment are generally very much dependent

on calendar time. The economic development as well as seasonal effects9 will determine

in- and outflow. Moreover, the limited number of observations require us to make a

careful trade-off between flexibility and efficiency. Hence, the regression model which

seems most appropriate for the baseline analysis and which has been applied often in

employment research (e.g. Dohmen and Pfann, 2004) is the Cox proportional hazard

model.

With the Cox proportional hazard model, one can estimate the hazard rate λ(t, t0, AT , X),

which is the chance that one finds a job on a certain day t, conditional on the day t0

of becoming unemployed, on a dummy AT indicating whether one is allocated to the

treatment group or not, and on a set of covariates X. The hazard rate can in turn be

written as:

λ0(t, t0) exp(β0 + β1AT +Xβ)

Where λ0(t, t0) is a time-dependent baseline hazard, β0 a constant and β a vector of

coefficients to be estimated. Hence, the hazard rate is the baseline hazard multiplied

9As Figure 1 illustrates, since our case study takes place in a coastal area, unemployment peaks
in winter time. In the whole of Flanders unemployment peaks after the summer due to the inflow of
school leavers into the labour market.
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by an exponential factor that depends on the values of At and X. The exponential

function is used merely to ensure that the hazard rate will never turn negative. In the

regression tables, we will show the exponentiated versions of the estimated coefficients,

as they are easy to interpret as a proportional change in the baseline hazard rate. The

exponentiated β-coefficients will always be strictly larger than 0: if βj > 1, there is a

positive association between the exit rate and xj and vice versa.

The main independent variable is AT , a dummy which takes one when being allocated

to the treatment group, zero otherwise. Since the allocation to the treatment group is

exogenous by construction, we do in principle not need to include controls. However, for

completeness and to mitigate potential sampling bias, we will also show specifications

including baseline covariates discussed in Section 3.2. We are well aware that the impact

of the treatment might be heterogeneous across groups. E.g., Altmann et al. (2015)

find that providing information has the largest impact for groups that are most at

risk to become long-term unemployed. Therefore, we add an analysis which allows the

treatment effect to be different for unemployed individuals with low, intermediate-level

or high education, three groups across which we see a large heterogeneity in overall exit

rates. Hence, the estimated hazard rate will be modified as:

λ0(t, t0) exp(β0 + β1AT ∗ EL + β2AT ∗ EIL + β3AT ∗ EH + β4 ∗ EL + β5 ∗ EIL +Xβ)
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With EL, EIL, and EH dummies for low education, intermediate level education and high

education respectively. Also, as an additional check, we will run split-sample regressions

according to education instead of using the above model with interaction terms. The

reason for this check is twofold. Firstly, such split-sample regressions are not subject

to a concern that interaction terms in nonlinear models can lead to considerable biases

(Ai and Norton, 2003). Secondly, we can relax the assumption that the baseline hazard

function is the same across the education levels.

4.2 Partial versus General Equilibrium Effects

We are aware that there might be a difference between a partial equilibrium effect (as

measured throughout the analysis) and a general equilibrium effect (Crépon et al., 2013;

Gautier et al., 2012): Expanding the treatment to the whole region or country might

lead to a zero-effect due to crowding out, even if there is a positive partial equilibrium

effect in a pilot study. The presence of such crowding-out might lead us to overestimate

the impact of the treatment on the treatment group (or the partial equilibrium effect).

Indeed, we are estimating how much the treatment group works more relative to the

control group. However, this relative effect can be a mixture of the treatment group

working more, and the control group working less. In the worst case scenario, one extra

day of work for an individual in the treatment group is one day less for an individual in

the control group. Under the latter scenario, the intention-to-treat effect on the number

of days worked should be halved to obtain a correct estimate. It seems, however, very
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unlikely that the extreme case holds. The study (control and treatment group) only

considers the middle-aged for one local area, so if there is complete crowding out, the

price is not likely to be paid entirely by the control group, but also by other age categories

as well as by the unemployed in adjacent areas.

4.3 Pathways to Impact

Insights from recent behavioural economics teach us that we can change people’s per-

ceptions in a relatively inexpensive way.

Firstly, individuals might learn from the information session itself and effective coun-

selling might lead to more successful job search. For example, research by Altmann et al.

(2015) shows that merely providing information about job search strategies, the labour

market and related issues will have a small positive impact on the job finding rate for

certain subgroups.

Secondly, being contacted early in the unemployment spell might lead to an increase

in perceived social norms, that is, the expectations of friends and relatives. Since peo-

ple are likely to be sensitive to social norms on the importance of finding a job when

choosing their actions (Ellickson, 1998), higher perceived social norms might encourage

individuals to intensively search for jobs right from the start. Similarly, being contacted

might lead to higher perceived monitoring. In a context of tax compliance, Fellner et

al. (2013) find that rather neutral mailings can have a large impact on people’s per-
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ceived chance of being inspected. We can expect that a very early intervention might

positively affect the exit rate from unemployment through similar channels as receiving

a letter to attend a mandatory information and coaching session conveys a message of

strict monitoring. This might be an important channel since, as we saw above, we are

measuring an intention-to-treat effect and only a fraction of the treatment group will

have attended the session within the 120-days time span under study.

Finally, one might also expect that there are channels through which a negative

impact can occur. The unemployed might feel offended to be contacted and hence mon-

itored straight from the start.10 Hence, one might decide to punish the employment

agency in a way that is not too costly for themselves (Belot and Schröder, forthcoming).

The latter channel is not likely to play an important role in this context, since delay-

ing exit from unemployment (compared to the counterfactual) will always bring along

substantial costs for the individual such as foregone income.

5 Results

5.1 Descriptive Nonparametric Results

Let us first turn to the graphs depicted in Figures 2 to 4. All figures are overlay scatter

plots of treatment and control group. The X-axis shows the number of days from enrol-

10In fact, we received some anecdotal evidence on this from the local FETO office.
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ment into unemployment (or, more precisely, from inflow into the sample) ranging from

zero to 120. The Y-axis shows the percentage of individuals into employment. Hence, all

curves in all three figures will start at the crossing of X- and Y-axis, since by definition

one is unemployed at day Zero.

The two scatter plots in Figure 2 depict the relationship between days-since-inflow

and percentage at work for the entire sample. The figure reveals that there is hardly

any difference in percentage at work between treatment and control group up to 60 days

after inflow. From day 60 onwards the treatment group is slightly more at work than

the control group. At day 90 the figure reveals a jump in the difference in percentage

at work in favour of the treatment group. This difference remains more or less the same

until the end of the experiment at day 120. Figure 3 shows the results for the subsample

of the low-educated. The figure clearly reveals the widening of a gap in the percentage at

work from day 30 onwards. At that day the percentage at work starts increasing faster

for the treatment than for the control group. At the end of the period the difference

in percentage at work is about 10 percentage points in favour of the treatment group.

Finally, Figure 4 shows us the development of the percentage at work for the group

of intermediate- and high-educated. The figure shows that for the unemployed with an

intermediate or high educational background no consistent differences over time between

treatment and control group can be detected.
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5.2 Baseline Regression Results

Table 2 contains the baseline results of our analysis. Column 1 presents a Cox propor-

tional hazard model which only includes a treatment dummy. In column 2, baseline

controls have been added to the model. Columns 3 and 4 show models that are identical

to the models displayed in Columns 1 and 2, respectively, but allow for a heterogeneous

treatment effect across the different education levels.

The baseline specification in column 1 shows a coefficient on the treatment dummy

of 1.11, which means that the intention-to-treat leads to a multiplication of the baseline

hazard rate by 1.11. Standard errors are, however, large such that the coefficient is not

significantly different from one at conventional significance levels (P=0.19).

We could think of several reasons why the overall effect is not significant. Firstly,

the impacts of ALMPs can be heterogeneous, and a treatment can be more useful for

one group of individuals than for another. Secondly, the actual point estimate is not

that small given the modesty of the intervention. Since the standard errors are large, we

might well be facing power issues. Indeed, the relatively small sample size is restrictive,

given the fact that we are studying an inexpensive and light intervention (which means

that we want to be able to detect even small effects), and given that we are measuring an

intention-to-treat effect rather than a treatment effect of participating in a mandatory

information session in itself.
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Column 2 shows that including the available baseline controls hardly alters the co-

efficient on the treatment dummy. The coefficients on the controls reveal however some

interesting patterns. The exit rate for those with low education is clearly lower than the

exit rate for those with high education (with a coefficient of 0.66), and also being a for-

eigner is associated with almost a halving of the exit rate (coefficient of 0.56). However,

the estimation results do not show any significant differences by gender and age, nor for

those who enrolled through the Internet in the unemployment registration.

Columns 3 and 4 show that there are heterogeneous treatment effects across levels

of education. Both models offer us almost identical results. Looking at column 4, it

turns out that, although being low-educated is associated with a much lower exit rate

compared to being high-educated (coefficient of 0.54), the interaction term between low-

educated and the treatment dummy is large with a magnitude of 1.50 and a P-value

of 0.01. This means that low-educated unemployed workers who are allocated to the

treatment group have a Hazard rate which is 1.50 times higher than the exit rate of

low-educated individuals in the control group. For these low-educated individuals, the

impact of being allocated to the treatment group appears to be substantial, even if one

only wishes to accept the lower bound of 1.09 of the 95% confidence interval as the

actual impact of the intention-to-treat.11

11The investigation of heterogeneous effects might come with worries of data mining. However, we
believe that our choice for education has a strong conceptual basis since the exit rate from unemployment
to employment varies a lot by the level of education. One might obviously let the data speak, and run
a large set of models with different interaction effects. Unfortunately, we do not have much reliable
administrative data for such an exercise, but there does not seem to be an interaction effect with gender.
There seems to be an interaction effect with being foreign but being foreign is highly correlated with
being low-educated.
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Results of split-sample regressions, with the sample split according to the level of

education, are presented in Table 3. It is reassuring to see that the split-sample regression

results show very similar results for the low-educated as the regressions with interaction

terms in Table 2.

As mentioned in Section 3.1, we chose the day-of-month of one’s date-of-birth to

divide the sample into a treatment and control group rather than a random generator,

and this was for practical reasons. However foreigners who come from less developed

countries often do not have an official birth certificate, and their registered date-of-birth

might then be a guestimate. This guestimate is then often the first day of the month or

year, which would jeopardize the compliance of our experiment. Indeed, from the 128

foreigners in our data, four of them are born on January 1, which is an unusual high

number. In total, 12 of them are born on the first day of the month. Hence, Table 4

shows results of similar specifications as displayed in column 3 and column 4 of Table

2 again, but now after excluding the 12 non-natives who were born on the first day of

the month. We see that the interaction term of being treated and having low education

decreases somewhat, but still remains significant with a P-value of 0.02.

Although we seem to be able to identify a positive causal intention-to-treat effect for

the low-educated, the analysis remains rather reduced-form as it is hard to disentangle

the different channels through which this effect occurs. Obviously, the information given

throughout the information session can be very useful to optimize search strategies and to

get prepared for the job market. However, there are some indications to make us believe
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that the monitoring and social norms channels could play an important role as well, and

that not just the information session itself, but also merely being contacted to attend

a mandatory information session, can invoke behaviour changes. Firstly, as we saw in

Section 3.2, only around 33% of the individuals in the treatment group actually attended

a session. Secondly, we have explored whether attending a session was a predictor of

transition from unemployment to employment. It turns out, however, that those who

actually attend a session stay in unemployment significantly longer than people in the

control group, and others in the treatment group who did not participate into the session.

Keeping in mind the positive intention-to-treat effect on employment chances, the latter

clearly indicates a selection effect: those who actually participate in the information

session are those with the lowest chance to find a job, and the latter results could

indicate that the positive intention-to-treat effect is driven not just by the information

session itself, but by being contacted to attend the information session. This reasoning

is obviously speculative: since this concerns a comparison of session attendants of the

treatment group with the entire control group, we cannot exclude that the treatment

effect is caused by the fact that hard-to-place individuals attending a session in the

treatment group find a job more quickly than their counterparts in the control group.

5.3 Cost-Benefit Analysis

The baseline models give us an idea of the shift in exit rates between the treatment and

control group. For a cost-benefit analysis of this labour market policy instrument, it is

26



desirable to estimate the actual difference for treatment and control groups in number of

days worked during the 120-days time span after a workers inflow into unemployment.

The latter would also be a response to the concern that our Cox proportional hazard

models do not take into account unemployment recurrence. Therefore, in Table 5, we

show similar analyses as in column 3 and column 4 of Table 2, but now analyzing the

data using a Zero-inflated Poisson count model.

The dependent variable is now the number of days one has been in regular part-time

or full-time work during the 120 days after entering the sample, which equals to zero for

around 59% of the sample.12 The Zero-Inflated Poisson Model consists of two equations.

First, there is a Logit equation which estimates the odds of having worked zero days, and

next a Poisson equation which estimates the workdays conditional on having worked a

strictly positive number of days. The results of each of both models are presented across

three columns. A first column shows us the marginal effect on workdays conditional on

having worked a strictly positive number of days, a second column the change in log of

odds of having worked zero days, and a final column offers us the overall marginal effect

on the number of workdays.

Both models again show us a significant impact on the low-educated subsample.

According to the full model, being treated and low-educated changes the log odds of

having worked Zero days by -0.5. Interestingly, conditional on having worked a positive

number of days, being allocated to the treatment group reduces the number of days

12As for interim work we cannot measure the exact number of days that these occasional jobs have
taken. Therefore we cannot take account of these employment spells in our analyses.
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worked by 0.06 days. The overall marginal effect, however, is positive and amounts to

6.5 (P-value of 0.04). After converting this latter number to a five-day working week by

multiplying by 5/7, we find that allocation to the treatment group leads to an increase of

4.7 working days for those with low education in the 120-days time span after becoming

unemployed. Table 6 contains results from models similar to those displayed in Table 5,

but now OLS regressions have been used rather than Zero-inflated Poisson models: the

former regressions are easier to read than the latter, and although they are less suitable

given the distribution of the dependent variable, we do not need to be concerned about

the biases that can arise when including interaction terms in nonlinear models. Even

though the standard errors in Table 6 seem to be somewhat larger than in Table 5, it is

reassuring to see that results are very similar.

An approximate cost-benefit analysis shows promising results for the endorsement

of the cost-effectiveness of this early intervention. The FETO has advised us that the

total cost of one information session can be estimated at EUR 785.13 Since generally

30 individuals are invited for each information session, this boils down to around EUR

26 per head.14 Concerning the benefits, the NEO advised us that on average, the daily

benefit payment to a low-educated unemployed individual amounts to EUR 38. This

means that the procedure is already cost-effective if it would return one additional day

13EUR 750 is staff cost, half a day administration plus two times half a day for the two caseworkers
being present at the session. The cost of a room is EUR 35 for half a day.

14We decided to divide the costs by the number of invitees rather than by a guestimate of the number
of individuals turning up, since we are measuring intention-to-treat effects and since these costs are not
dependent on the number of people actually showing up.
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of employment within these 120 days. Our estimate of 4.7 days is hence clearly above

this threshold.

We need, however, to make three additional remarks. Firstly, one might argue that

we are underestimating the costs of the treatment, since after the information session

there might be follow-ups and people could decide to start a costly training programme.

Even though we cannot entirely exclude the possibility of an underestimation of these

costs, we have good reasons to believe that these will be minor. The FETO indeed

runs an extensive set of courses, varying from short online modules to more intensive

training. However, within the 120-days window which we are investigating, only 6%

in the treatment group participated in a training programme, compared to 4% of the

control group. Secondly, one might worry that crowding out does play a role, and that

the 4.7 days are hence an overestimate of the intention-to-treat effect. As discussed in

Section 4.2, under the very unlikely worst-case scenario, we would need to correct this

regression estimate by halving it. This would leave us with a return of 2.35 days, which

would still mean that the treatment is cost-effective. Thirdly, there is a chance that the

post-unemployment job quality is different between the treatment and control group.

Unfortunately, we do not have access to wage or other related data. At the start of our

project, we have investigated the possibilities of merging the administrative data from

the FETO with other wage- and employment-related data, which are coordinated by the

Belgian Social Security. However, such a merge would not comply with the strict rules

of the Belgian Privacy Commission, as it would increase the chance to be able to identify
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the individuals in the dataset, and to extract sensitive personal information. We hence

need to stress that the cost-benefit analysis needs to be interpreted with a margin, and

seen as a first rough estimate.

5.4 Increasing the Time Span

Finally, one might like to obtain an idea of the longer-term impact on employment of

being allocated to the treatment group. Therefore, Table 7 repeats the estimations

displayed in Table 5, but now extending the time period to 150 and 180 days after

entering unemployment. Hence, we now allow our research period to overlap with the

time period in which individuals allocated to the control group are being contacted as

well.

The overall marginal effect of being allocated to the treatment group and having

low education increases to 9.0 when we extend our research period to a 150-days time

span, and to 10.8 when we extend the time span to 180 days (P-values of 0.03). After

converting the results to a five-day working week, we obtain that being allocated to the

treatment group increases the number of days worked by 6.4 in a 150-days time span

and 7.7 in a 180-days time span.

Table 9 further investigates whether the difference in employment status between

treatment and control group persists or rather diminishes over time. The table shows

the marginal effects of Probit models with the same independent variables as in Table
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7. The dependent variables of the specifications are dummies which take the value one

if the individual is in work on day 120, 150, or 180 respectively. For those with low

education, column 1 of Table 9 shows that for the unemployed in the treatment group,

the probability of being in work on day 120 is almost 11 percentage points higher than

for those in the control group (P-value =0.02). For the days 150 and 180, this effect

decreases to around 6 percentage points, and the estimates are not significant any more

at conventional significance levels. This slight convergence over time after the period of

the field experiment is probably at least partly due to the fact that after four months,

individuals in the control group are also being invited for the information session and

become hence subject to the same procedures as those in the treatment group.15

6 Conclusion

Unemployment has been an all-time important social issue, and is especially salient in the

era of the post-2008 financial crises. While it is well-known that unemployment is as a

drama at the individual level and is a burden to a society’s economy, there is still a lot to

learn about which kind of ALMPs are effective in which context. Although governments

are well-aware of the importance to tackle unemployment, austerity measures have often

led to directing resources to the long-term unemployed, and to economize on the coaching

of those who freshly entered an unemployment spell. There might however be good

15For completeness, models in Table 7 and Table 9 have been replicated with OLS regressions in
Table 8 and 10 respectively, and again results seem to be confirmed with these alternative specifications.
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reasons to believe that early interventions are most effective as they could prevent long-

term unemployment. If workers are unemployed for a longer time they might find it much

harder to get back on track because of the well-documented scarring effects reducing

mental and physical health (see, for example, Knabe and rätzel, 2011) and because of

the negative signal a long unemployment spell sends to potential employers (Kroft et al.,

2013). Fortunately, we have learnt from recent behavioural economics that even cheap

interventions can induce behaviour changes (see, for example, Altmann and Traxler,

2014; Fellner et al., 2013) and hence in this paper, we evaluate whether contacting

the unemployed right from the start to attend a mandatory information session has a

positive impact on the transition from unemployment into work. While those allocated

to the treatment group were contacted within the first four weeks of the unemployment

spell, those allocated to the control group were contacted around four to five months

after entering unemployment with as an aim to offer them a session five months after

registration.

We find that contacting the unemployed at the start of the cycle has a positive impact

on the probability to find a job: especially those with low education will benefit, and

will have worked 4.7 days more than their counterparts in the control group during the

first four months after entering unemployment.

Even though the randomization of the timing of contacting the unemployed facilitates

the measurement of a causal intention-to-treat effect on the exit rate from unemployment

to employment, the analysis is reduced-form when it comes to disentangling the different
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channels through which such an effect can occur. There are several possibilities, and an

obvious one is that individuals receive very relevant information during the information

session that can help them to look for a job more efficiently and to better prepare

themselves for the labour market. However, we also argued that at least a significant

part of the effect might well be due to merely having received a formal invitation to

attend a mandatory information session, rather than due to the information session

itself.

Obviously our results should not be used to argue that the intervention should only

be applied to those with low education. Since the intervention is very cheap, it would be

cost-effective even if on average, it would lead to less than one additional day of employ-

ment. Our sample however (n =1,549) does not offer us sufficient statistical power to

measure such small effects with statistical significance. Moreover, in other institutional

contexts, the size and the distribution of the impact of similar early interventions might

be different from the one we studied.

The main message that can be taken from our study is that relatively cheap early in-

terventions (with a mandatory component) targeting freshly-unemployed individuals can

have a significant positive impact on the transition into work, making these interventions

highly cost-effective. Our paper hence contributes to the recent behavioural economics

literature that has shown that light and inexpensive interventions can induce relatively

large behaviour changes. Moreover, it contributes to the on-going policy debate on how

to allocate resources to ALMPs by showing that a minimum of personal coaching instead
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of digital self-service facilities for those who have just become unemployed is likely to

be very cost-effective.
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Table 1: Baseline Characteristics for Treatment and Control Group: A Randomization
Check

Characteristic T reatment Control P-value
Categorical Variables

% female 47.4 49.3 0.45
% foreigner 7.6 8.9 0.37
% enrolment through Internet 28.7 30.5 0.39

Ordered Variables

average age 35.7 36.5 0.05
quarter of inflow 0.16
% inflow Quarter 1 26.7 24.8
% inflow Quarter 2 19.3 18.2
% inflow Quarter 3 24.5 24.1
education 0.84
% low education 32.1 29.8
% intermediate education 49.1 53.4

P-values are derived from Pearson χ2-tests for the categorical variables and Mann-
Whitney tests for the ordered variables. The null hypothesis = equality between the
samples of control and treatment group.
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Table 2: Estimation of Transition to Work Using Cox Proportional Hazard Models:
Baseline Results

spec 1 spec 2 spec 3 spec 4

treatment 1.109 1.099
(0.088) (0.087)

treatment * low educ 1.511 1.497
(0.242)*** (0.240)**

treatment * intermediate educ 0.994 0.979
(0.107) (0.106)

treatment * high educ 1.007 1.024
(0.173) (0.176)

low education 0.666 0.513 0.541
(0.079)*** (0.090)*** (0.096)***

intermediate education 0.871 0.872 0.888
(0.089) (0.126) (0.130)

female 0.897 0.901
(0.071) (0.072)

age 0.998 0.997
(0.005) (0.005)

enrolment through Internet 1.104 1.108
(0.096) (0.097)

foreigner 0.562 0.562
(0.101)*** (0.101)***

N 1,549 1,549 1,549 1,549

* p < 0.1; ** p < 0.05; *** p < 0.01

Standard Errors in Parentheses

Coefficients Are Exponentiated
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Table 3: Estimation of Transition to Work Using Cox Proportional Hazard Models: Split
Sample Results

Sample Low Educated Remaining Sample

spec 1 spec 2 spec 3 spec 4

treatment 1.500 1.488 1.003 0.991
(0.240)** (0.239)** (0.092) (0.091)

female 0.946 0.895
(0.150) (0.082)

age 1.015 0.991
(0.011) (0.006)

enrolment through Internet 0.978 1.152
(0.196) (0.112)

foreigner 0.498 0.607
(0.156)** (0.133)**

N 479 479 1,070 1,070

* p < 0.1; ** p < 0.05; *** p < 0.01
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Table 4: Estimation of Transition to Work Using Cox Proportional Hazard Models:
Removing Foreigners Born on First Day of Month

spec 1 spec 2

treatment 1.091
(0.086)

low education 0.670 0.550
(0.080)*** (0.097)***

intermediate education 0.869 0.883
(0.089) (0.129)

female 0.890 0.895
(0.071) (0.071)

age 0.998 0.997
(0.005) (0.005)

enrolment through Internet 1.103 1.107
(0.096) (0.097)

foreigner 0.600 0.597
(0.110)*** (0.109)***

treatment * low educ 1.463
(0.234)**

treatment * intermediate educ 0.979
(0.106)

treatment * high educ 1.017
(0.175)

N 1,537 1,537

* p < 0.1; ** p < 0.05; *** p < 0.01

Standard Errors in Parentheses

Coefficients Are Exponentiated
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Table 5: Estimation of Days Worked within 120 Days after Inflow Using Zero-Inflated
Poisson Models

Poisson Logit Overall marginal Poisson Logit Overall marginal

treatment * low educ -0.067 -0.529 6.657 -0.063 -0.517 6.510
(0.019)*** (0.196)*** (3.183)** (0.020)*** (0.199)*** (3.186)**

treatment * intermediate educ -0.011 -0.007 -0.182 -0.014 0.023 -0.739
(0.013) (0.144) (2.329) (0.013) (0.146) (2.336)

treatment * high educ -0.041 -0.033 -0.591 -0.063 -0.045 -0.976
(0.022)* (0.241) (3.908) (0.022)*** (0.245) (3.917)

low education 0.115 0.886 -11.080 0.103 0.822 -10.250
(0.022)*** (0.227)*** (3.676)*** (0.022)*** (0.234)*** (3.747)***

intermediate education 0.062 0.207 -1.635 0.048 0.207 -1.989
(0.018)*** (0.200) (3.234) (0.019)** (0.205) (3.284)

female 0.022 0.166 -2.045
(0.010)** (0.106) (1.698)

age 0.000 0.002 -0.023
(0.001) (0.007) (0.116)

enrolment through Internet 0.009 -0.159 2.768
(0.011) (0.121) (1.930)

foreigner -0.109 0.668 -13.477
(0.024)*** (0.214)*** (3.434)***

N 1,549 1,549

* p < 0.1; ** p < 0.05; *** p < 0.01

Standard Errors in Parentheses

The second model includes month-of-inflow dummies.
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Table 6: Robustness Check: Estimation of Days Worked within 120 Days after Inflow
Using OLS

Spec. 1 Spec. 2

treatment * low educ 6.463 5.944
(3.527)* (3.520)*

treatment * intermediate educ -0.197 -0.442
(2.744) (2.742)

treatment * high educ -0.729 -1.235
(4.649) (4.634)

low education -10.770 -9.635
(4.188)** (4.256)**

intermediate education -1.499 -1.951
(3.839) (3.875)

female -2.137
(1.962)

age -0.012
(0.134)

enrolment through Internet 2.698
(2.249)

foreigner -11.588
(3.589)***

Constant 30.323
(3.346)***

R2 0.01 0.03
N 1,549 1,549

* p < 0.1; ** p < 0.05; *** p < 0.01
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Table 7: Estimation of Days Worked within 150 and 180 Days after Inflow Using Zero-
Inflated Poisson Models

150-days time span 180-days time span

Poisson Logit Overall marginal Poisson Logit Overall marginal

treatment * low educ 0.052 -0.334 9.011 0.080 -0.256 10.823
(0.016)*** (0.192)* (4.080)** (0.014)*** (0.190) (5.036)**

treatment * intermediate educ -0.009 0.052 -1.426 -0.060 -0.073 -1.162
(0.011) (0.145) (3.068) (0.010)*** (0.144) (3.829)

treatment * high educ -0.024 0.019 -1.312 -0.053 -0.033 -1.869
(0.018) (0.245) (5.193) (0.016)*** (0.246) (6.507)

low education -0.018 0.734 -16.128 -0.047 0.723 -21.414
(0.019) (0.229)*** (4.862)*** (0.016)*** (0.228)*** (6.041)***

intermediate education 0.006 0.191 -3.763 -0.009 0.190 -5.461
(0.015) (0.205) (4.342) (0.013) (0.205) (5.429)

female -0.006 0.123 -2.830 -0.014 0.105 -3.498
(0.008) (0.105) (2.219) (0.007)** (0.104) (2.762)

age 0.000 0.002 -0.030 0.001 0.006 -0.098
(0.001) (0.007) (0.152) (0.000)** (0.007) (0.189)

enrolment through Internet 0.020 -0.146 3.834 0.065 -0.012 3.645
(0.009)** (0.119) (2.531) (0.008)*** (0.119) (3.161)

foreigner -0.120 0.660 -18.465 -0.112 0.658 -23.029
(0.019)*** (0.205)*** (4.364)*** (0.017)*** (0.200)*** (5.320)***

N 1,549 1,549

* p < 0.1; ** p < 0.05; *** p < 0.01

Standard Errors in Parentheses

All models include month-of-inflow dummies.
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Table 8: Robustness Check: Estimation of Days Worked within 150 and 180 Days after
Inflow Using OLS

150-days time span 180-days time span

treatment * low educ 8.068 9.513
(4.606)* (5.712)*

treatment * intermediate educ -0.925 -0.855
(3.588) (4.448)

treatment * high educ -1.576 -2.177
(6.063) (7.518)

low education -15.293 -20.608
(5.569)*** (6.906)***

intermediate education -4.006 -6.009
(5.070) (6.287)

female -2.988 -3.548
(2.568) (3.184)

age -0.036 -0.088
(0.175) (0.218)

enrolment through Internet 3.667 3.873
(2.942) (3.649)

foreigner -15.828 -20.051
(4.697)*** (5.824)***

R2 0.03 0.03
N 1,549 1,549

* p < 0.1; ** p < 0.05; *** p < 0.01
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Table 9: Marginal Effects of Probit Estimations on Working at Day 120, 150 and 180
Respectively after Inflow in Sample

at day 120 at day 150 at day 180

treatment * low educ 0.283 0.164 0.147
(0.123)** (0.119) (0.119)

treatment * intermediate educ 0.003 -0.036 0.027
(0.091) (0.091) (0.090)

treatment * high educ 0.032 -0.053 0.023
(0.153) (0.153) (0.152)

low education -0.534 -0.465 -0.420
(0.145)*** (0.142)*** (0.142)***

intermediate education -0.152 -0.160 -0.128
(0.128) (0.128) (0.128)

female -0.086 -0.050 -0.059
(0.066) (0.065) (0.065)

age -0.002 -0.004 -0.006
(0.005) (0.004) (0.004)

enrolment through Internet 0.101 0.037 -0.007
(0.075) (0.075) (0.075)

foreigner -0.413 -0.387 -0.389
(0.130)*** (0.125)*** (0.125)***

N 1,549 1,549 1,549

* p < 0.1; ** p < 0.05; *** p < 0.01

Standard Errors in Parentheses

All models include month-of-inflow dummies.
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Table 10: Robustness Check: LPM Estimates of Working at Day 120, 150 and 180
Respectively after Inflow in Sample

at day 120 at day 150 at day 180

treatment * low educ 0.094 0.058 0.052
(0.044)** (0.045) (0.045)

treatment * intermediate educ 0.002 -0.014 0.011
(0.034) (0.035) (0.035)

treatment * high educ 0.012 -0.021 0.009
(0.058) (0.059) (0.059)

low education -0.191 -0.176 -0.159
(0.053)*** (0.054)*** (0.055)***

intermediate education -0.059 -0.063 -0.050
(0.049) (0.050) (0.050)

female -0.032 -0.019 -0.023
(0.025) (0.025) (0.025)

age -0.001 -0.001 -0.002
(0.002) (0.002) (0.002)

enrolment through Internet 0.036 0.012 -0.005
(0.028) (0.029) (0.029)

foreigner -0.137 -0.139 -0.140
(0.045)*** (0.046)*** (0.046)***

R2 0.04 0.03 0.03
N 1,549 1,549 1,549

* p < 0.1; ** p < 0.05; *** p < 0.01
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Figure 1: The Course of Unemployment over Time at the State Level and the Case
Study Region: Ages 25-49
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Figure 2: The Percentage of Individuals in Work in Function of the Number of Days
since Enrolment at the Employment Office: Full Sample
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Figure 3: The Percentage of Individuals in Work in Function of the Number of Days
since Enrolment at the Employment Office: Sample of Low-Educated
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Figure 4: The Percentage of Individuals in Work in Function of the Number of Days since
Enrolment at the Employment Office: Sample of the Intermediate- and High-Educated
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