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ABSTRACT

Promoterless gene trap vectors have been
widely used for high-efficiency gene targeting and
random mutagenesis in embryonic stem (ES) cells.
Unfortunately, such vectors are only effective
for genes expressed in ES cells and this has pro-
mpted the development of expression-independent
vectors. These polyadenylation (poly A) trap vectors
employ a splice donor to capture an endogenous
gene’s polyadenylation sequence and provide
transcript stability. However, the spectrum of
mutations generated by these vectors appears
largely restricted to the last intron of target loci
due to nonsense-mediated mRNA decay (NMD)
making them unsuitable for gene targeting appli-
cations. Here, we present novel poly A trap vectors
that overcome the effect of NMD and also employ
RNA instability sequences to improve splicing
efficiency. The set of random insertions generated
with these vectors show a significantly reduced
insertional bias and the vectors can be targeted
directly to a 5’ intron. We also show that this
relative positional independence is linked to the
human b-actin promoter and is most likely a result
of its transcriptional activity in ES cells. Taken
together our data indicate that these vectors are
an effective tool for insertional mutagenesis that
can be used for either gene trapping or gene
targeting.

INTRODUCTION

Since the advent of homologous recombination and the
development of embryonic stem (ES) cell technologies,
mouse genetics has become the principal approach for
elucidating molecular mechanism(s) in mammalian
biology. In the wake of a complete genome sequence, a
major focus of the mouse genetics community is to generate
mutations in every identifiable gene in the genome
(‘genome saturation’). Attempts to reach genome satur-
ation have involved multiple technologies including high-
throughput targeting via BAC recombineering and gene
trapping. Gene trapping is an attractive insertional muta-
genesis strategy as it relies on the random introduction of
DNA constructs into ES cells and does not involve the
generation of targeting vectors for homologous recom-
bination. In addition to generating a bank of mutations
in already annotated genes, gene trap vectors also continue
to aid in gene identification, generating insertions into
novel and previously uncharacterized transcripts. To fully
exploit gene trapping as a resource for genome scale
mutagenesis, the International Gene Trap Consortium
(IGTC) was established to coordinate screening efforts,
produce a searchable database and establish a public
repository of mouse ES cell lines harboring gene trap
insertions in every, or most genes of the mouse genome (1).
The most widely used gene trap vectors are

promoterless and contain a splice acceptor (SA) sequence
upstream of a selectable marker or reporter gene (‘SA-
type’ or ‘promoter trap vectors’) (2–4). When this type
of vector integrates into a gene transcribed in ES cells,
the gene trap cassette’s selectable marker is expressed
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under the control of the endogenous gene’s promoter.
Because the selectable marker in these vectors lacks a
promoter, they can also be particularly effective when
combined with homology arms and used for gene
targeting (‘targeted trapping’) (5). However, these vectors
have the caveat that they depend on the expression of the
disrupted gene. To circumvent this problem, vectors have
been designed that include a heterologous promoter
driving expression of a selectable marker that lacks a
poly A sequence, but include a splice donor (SD).
Integration of this type of vector upstream of a functional
poly A sequence then generates a stable transcript and
drug resistance (6–8). The uncoupling of antibiotic resist-
ance from the requirement for endogenous gene expres-
sion implies that poly A trap vectors can theoretically
disrupt a wider range of genes including those that are
not expressed in ES cells as well as non-protein coding
transcripts.
To date, based on data compiled by the IGTC,

gene trap insertions have been identified in approxi-
mately 40% of the genome (http://www.sanger.ac.uk
/PostGenomics/genetrap/). These have been generated
predominantly through the use of various SA-type gene
trap vectors, both plasmid- and retroviral-based (1), but
also include some poly A trap vector data. While, this is a
significant accomplishment, the rate of trapping new genes
is progressively diminishing and is currently �10% (i.e.
one new gene is trapped for every 10 gene trap clones
isolated) (9). This trend has also been observed in a
privately funded high-throughput gene trap initiative
(10), where the occurrence of new insertion events appears
to have plateaued at 60% genome coverage.
Based on the rate of accumulation of new mutations,

it appears that �60–70% of all mouse genes are predicted
to be accessible to SA-type vectors (9,11). The accessibility
of a locus to trapping (‘trappability’) correlates with both
gene size and expression levels (12). Furthermore, different
gene trap vectors appear to each have their own
insertional ‘hot spots’ (12) and it is now widely accepted
that genome saturation can be achieved only through the
use of a wider range of vector designs and approaches
targeting this ‘untrappable’ 30–40% of the mouse
genome (9). Towards this goal, a number of public
high-throughput initiatives (KOMP, EUCOMM,
NorCOMM) focusing mainly on the conditional disrup-
tion of currently untrapped loci by gene targeting have
emerged (13,14).
While the inclusion of poly A trap vectors in the IGTC

data set has been limited, the uncoupling of antibiotic
resistance from the requirement for endogenous gene
expression should enhance the accessibility of the
genome to trapping. However, these vectors have general-
ly not performed up to expectations, as the combination
of a strong internal promoter with an inefficient SD
can produce antibiotic resistance even in the absence of
splicing onto an endogenous transcript (10,15). Moreover,
despite attempts to resolve these problems with different
promoter and SD combinations (10,16–18) or through
the insertion of a synthetic intron within the selectable
marker gene (19), these vectors are limited because of
the action of an mRNA surveillance mechanism called

nonsense-mediated mRNA decay (NMD) (17,20). NMD
promotes the selection of insertional events in the 30-most
intron of target sequences as it triggers the degradation of
the selectable marker’s transcript based on the presence of
a premature termination codon (17–19). Although this
bias is still compatible with the engineering of 30 insertions
that generate non-null hypomorphic alleles, it clearly
jeopardises the mutagenic potential of these vectors and
limits their application in homologous recombination.
While, the generation of poly A trap vectors that include
an IRES downstream of the selectable marker appears
to resolve this problem (17), this cassette has not been
shown to function in a targeting context and the majority
of poly A trap vectors still suffer from an NMD-based
handicap.

Here, we describe a set of novel, expression-independent
trapping vectors that we show to be effective for both gene
trapping and gene targeting. These constructs contain a
novel poly A trap cassette that includes a previously
uncharacterized SD sequence derived from the rabbit
�-globin gene and a cis-acting mRNA destabilizing
AU-rich element (ARE) from the human GM-CSF gene
(21). We show that our vectors function efficiently as poly
A traps and that the ARE improves the performance of
the rabbit �-globin SD sequence by reducing the incidence
of background SD read-through events. Interestingly,
these vectors showed little 30 most intron bias in random
integration, and could also be targeted to the first intron
of the Oct4 locus. Importantly, we show that this ability
to overcome the extreme 30 bias generated by NMD is
dependent on the human �-actin promoter, and can be
transferred to other gene trap vectors via promoter
swaps. We also demonstrate the successful targeting
through the use of one of our poly A trap vectors of
Protocadherin 21 (Pcdh21), a gene that is expressed at
very low levels in ES cells and has been shown to be
inaccessible to targeted trapping approaches employing
expression-dependent SA-type vectors. Taken together,
we show that these expression-independent vectors are
efficient tools for gene identification and disruption of
previously uncharacterized novel transcripts.

MATERIALS AND METHODS

Vector construction

Vector pEHygroSD2ARE was constructed in two parts
using a PacI and AscI linker for assembly of the entire
vector. The construction of the 50 side of this vector
(pEGFP�hygro) was described in Tsakiridis et al. (22),
and the 30 side was engineered from pBKnSD (a kind
gift from Bill Skarnes), by inserting a synthetic oligo-
nucleotide containing the ARE sequence into the NcoI
of the second intron of the rabbit �-globin gene. This
entire cassette was flanked on the 50 side with PacI and
30 side with AscI and combined with pEGFPbhygro.

Vector pGTIV3 was constructed by permutation of the
50 side of vector pGTIV2 (a kind gift from Bill Stanford)
to the 30 side of pEHygroSD2ARE. The HindIII restric-
tion site was destroyed and replaced with an AgeI site
upstream of pEHygroSD2ARE (SA). An AgeI and an
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AscI restriction sites were introduced by PCR flanking the
50 cassette of pGTIV2 vector. The 50 AgeI/AscI side of
pEHygroSD2ARE was then replaced with the 50 AgeI/
AscI fragment of pGTIV2 to construct pGTIV3.

The retroviral gene trap vector GEP-IV3 was
constructed according to the following steps: (i) the
retroviral cassette pGEP� (23) was digested with ClaI/
XhoI and ligated to a XhoI/ClaI polylinker containing
FseI and SgrAI restriction sites: (50-TCGAGCGCCGGT
GATTTAAATCACGTCACTGCCCAAAGTTTAAAC
GGCCGGCCAT-30) (Vector pGEP-MCS). (ii) The plas-
mid vector pGTIV3 was digested using NdeI/AgeI and
ligated to a NdeI–FseI–loxP–AgeI oligo (50-TATGTCA
CGGCCGGCCATAACTTCGTATAGCATACATTAT
ACGAAGTTATA-30). The resulting vector was then
digested with MfeI/PacI and ligated to a MfeI–SgrAI–
loxP–PacI oligo (50-AATTGCGCCGGTGATAACTTC
GTATAGCATACATTATACGAAGTTATTTAAT-30)
(Vector pGTIV3-FseI-SgrAI). (iii) Vector pGTIV3-FseI-
SgrAI was digested with FseI/SgrAI and ligated to FseI/
SgrAI-digested pGEP-MCS to generate the pGEP-IV3
vector.

The Oct4 targeting vector pGTIV3-Oct4 was assembled
according to the following steps: (i) pOct4-50HindIII/NarI
plasmid which contains the Oct4 genomic DNA region
starting from a HindIII site 104 nt 30 of the Oct4 AUG
in exon 1 to a NarI site in exon 5, was digested with SphI
and ligated to a SphI–AgeI–NheI–FseI–NcoI–MfeI–PacI–
SgrAI–SphI polylinker (50-CACCGGTATGCTAGCGG
CCGGCCCCATGGCAATTGTTAATTAACGCCGGT
GGCATG-30) (Vector p246-MCS). (ii) Vector pGTIV3
was digested with AgeI/MfeI and ligated to AgeI/MfeI-
digested p246-MCS plasmid to generate pGTIV3-Oct4.
The control Oct4 targeting vector pGTIV2-Oct4 was
constructed during the following cloning steps: (i) Vector
pGTIV2 was digested with NotI and ligated to a NotI–
FseI–loxP–NotI oligo (50-GGCCGCATTTAAATCGTA
CTGCCCAAAGGCCGGCCGTTTAAACGTTAACGC
-30) (Vector pGTIV2-FseI). (ii) Vector pGTIV2-FseI was
digested with KpnI/AflIII and ligated to a KpnI–SgrAI–
AflIII oligo (50-CCGTACTGCCCAAACGCCGGTGCG
TACGCACGTGGTTTAAACGTTAACA-30) (Vector
pGTIV2-FseI-SgrAI). (iii) Vector pGTIV2-FseI-SgrAI
was digested with FseI/SgrAI and ligated to FseI/SgrAI
digested plasmid p246-MCS to generate pGTIV2-Oct4.
For the generation of the pGTIV3-Oct4-PGK and
pGTIV2-Oct4-b-actin Oct4-targeting vectors, both
pGTIV3-Oct4 and pGTIV2-Oct4 constructs were digested
using NsiI/RsrII and the resulting NsiI-PGK-RsrII frag-
ment was ligated to the NsiI/RsrII-digested pGTIV3-Oct4
vector while the resulting NsiI-b-actin P-RsrII fragment
was joined to the NsiI/RsrII-digested pGTIV2-Oct4
plasmid.

The Pcdh21 targeting vector pGTIV3-Pcdh21 was
constructed according to the following steps: (i) a
targeting vector plasmid containing the Pcdh21 50 and 30

homology arms (5 kb and 3 kb, respectively) flanking via
AscI sites the gene trap vector pTT0,1,2 (5) (a kind gift
from Roland Friedel) was digested using AscI to release
the gene trap construct and (ii) subsequently ligated to
a AscI–PacI–FseI–SwaI–AflII–EcoRI–SgrAI–MfeI–AscI

polylinker (50-CGCGCCACGGCCACAAGTTCAGCG
TGTCTTAATTAAGGCCGGCCATTTAAATCTTAA
GGAATTCCGTACTGCCCATCCGCCGGTGCAATT
GGG-30). (iii) The resulting Pcdh21-MCS plasmid was
then digested with FseI/SgrAI and ligated to the FseI/
SgrAI digested pGTIV3-FseI-SgrAI plasmid described
above (see GEP-IV3 construction) to generate the
pGTIV3-Pcdh21 vector.
All restriction enzymes were supplied by New England

Biolabs. All DNA fragment extractions were performed
using the Zymoclean Gel DNA Recovery Kit (Zymo
Research). All ligations were performed using the Quick
Ligation kit (New England Biolabs) according to the
manufacturer’s instructions.

Retrovirology

For virus production, the Phoenix ecotropic packaging
cell line (24) was transiently transfected with the pGEP-
IV3 proviral plasmid either by Lipofectamine2000
(Invitrogen) or by calcium phosphate precipitation and
the viral particle-containing supernatant was harvested
as described previously (24,25).

Cell culture and manipulation

E14TG2a cells were maintained as described previously
(22,26–28). Linearized plasmid vectors were introduced
into cells by electroporation using a GenePulserTM (Bio-
Rad) as described previously (4). After �7–10 days of
G418 selection (Sigma) (200–250 mg/ml) resistant colonies
were picked, replicated and expanded. For infection with
the pGEP-IV3 vector, E14TG2a cells were plated at a
density of 3� 105 cells on 10 cm2 dishes and after over-
night culture they were incubated with ES medium con-
taining 1 : 10 dilution of the viral supernatant and 4 mg/ml
polybrene (Chemicon International). After �20 h, the
medium was replaced and cells were subjected to G418
selection (250mg/ml) for �10 days. The NMD inhibition
experiment involved the plating of the selected ES cell
lines in 12-well plates and their treatment with 100 mg/ml
of cycloheximide (CHX) for 4 h. This was followed by
RNA extraction using the RNeasy mini kit (Qiagen).
The cell line carrying the EGFP reporter at the Nanog

locus (TNG) has been previously described (29). In these
cells, an EGFP-loxP-frt-IRES-puro-frt-SPA-MAZ-loxP
cassette (30) was placed in the first exon of Nanog such
that EGFP was initiated by the Nanog AUG codon.
Cre-deleted derivative cell lines were established by tran-
sient transfection of CAG Cre-IRES PuroR-pA using
Fugene (Roche) according to the manufacturer’s
instructions. The following day ES cells were trypsinized,
re-plated at clonal density and expanded. Cre-mediated
deletion of the loxP-frt-IRES-pac-frt-SPA-MAZ-loxP cas-
sette was verified by preparing DNA from individual
clones and Southern analysis for the expected alteration
in restriction enzyme digestion pattern.

PCR analysis and sequencing

For 30RACE PCR total RNA was extracted from individ-
ual trapped ES cell clones grown in 6-well plates using
TRIZOL (Invitrogen). RNA samples were then poly A
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enriched using the Oligotex mRNA kit (Qiagen) and
30RACE PCR was performed by employing the
GeneRacer kit (Invitrogen) according to the manu-
facturer’s instructions. The sequences of the gene trap
vector specific primers (NeoA and NeoB) that were used
in conjunction with the kit’s primers are shown in
Supplementary Table 1. PCR reactions were per-
formed using the Peltier Thermal Cycler PTC-200 (MJ
Research). The thermal cycling parameters employed
were: 948C for 2min; 948C for 30 s, 728C for 2min (X5);
948C for 30 s, 708C for 2min (X5); 948C for 30 s, 688C for
30 s and 728C for 2min (X20). The resulting PCR
products were cleaned up using the PCR Product Pre-
Sequencing kit (USB Corporation) and sequenced directly
using primers NeoC or T2 (for sequences see Supple-
mentary Table 1). The sequencing reactions were carried
out using the BigDye Terminator Cycle Sequencing ready
Reaction Kit (Perkin Elmer) by the School of Biological
Sciences Sequencing Service (Ashworth Laboratories,
University of Edinburgh).
For semi-quantitative RT–PCR analysis, RNA was

isolated from wild-type E14TG2a cells as described
above and cDNA synthesis was performed using an
oligodT primer and Superscript III Reverse Transcriptase
(Invitrogen) following the manufacturer’s instructions.
Primer sequences are shown in Supplementary Table 1.
The thermal cycling parameters employed were: 948C for
2min; 948C for 30 s, 558C for 30 s and 728C for 1min
(X25–30).
For quantitative real-time PCR analysis, total RNA

from CHX-treated cells and controls (1mg) was used for
cDNA synthesis employing SuperScript III RT
(Invitrogen) according to the manufacturer’s instructions.
Real-time PCR was then performed with the LightCycler
480 using the Universal Probe Library System (Roche).
The sequences of the primers used are shown in
Supplementary Table 1. Primers for EGFP were used
with UPL probe no. 67, for Neo with probe no. 51 and
for TATA-binding protein (TBP) with probe no. 97.

Bioinformatics

Vector integration sites were determined by performing
BLAST analysis of the RACE tags using the NCBI
(blastn, http://www.ncbi.nlm.nih.gov/BLAST/), Ensembl
Mouse (http://www.ensembl.org/Mus_musculus/blast
view) and UCSC (http://genome.ucsc.edu/index.html?
org=Mouse) databases. Conservation analysis of the
RACE tags was performed using the UCSC web genome
server (http://genome.ucsc.edu/index.html?org=Mouse).

Southern blotting

For Southern blot analysis of the Oct4-targeted clones a
324 bp sequence located �1141 bp upstream of the first
exon of Oct4 was used as a probe. For Southern blot
analysis of Pcdh21-targeted clones, a 733 bp sequence
located directly downstream of Pcdh21 exon 10 was
used. Probes were prepared by PCR using genomic
DNA from wild-type E14TG2a ES cells and a high-fidelity
Phusion DNA polymerase (Finnzymes). Genomic DNA
was extracted from targeted ES cell clones using the

DNeasy kit (Qiagen). DNA samples were digested with
EcoRI (Oct4) or EcoRV (Pcdh21) (New England
Biolabs). Southern blotting was performed according to
ref. (31). Radioactive signals were detected using
Hyperfilm MP (Amersham) or a Fuji Scanner FLA-3000
(analysed with Aida Image Analyser v.400 software).

Flow cytometry and fluorescence microscopy analysis

Oct4-targeted clones were analyzed for Venus expression
by flow cytometry which was performed using a
FACSCalibur bench top cytometer equipped with a
488 nm laser (Becton Dickinson) without compensation.
Data were analyzed using Cellquest software (Becton
Dickinson). Controls were mock transfected cells and
non-electroporated wild-type cells. EGFP expression was
visualized using an Olympus IX51 inverted microscope
(Olympus). Image acquisition and processing were carried
out using the Volocity (Improvision) software package.

RESULTS

The inclusion of an ARE improves poly A trap
SD function

To design an efficient, expression-independent, gene trap
vector we first sought to address the background problems
associated with poly A trap vectors. These vectors are
known to generate drug-resistant ES cell clones from
non-genic vector integrations where antibiotic resistance
is a consequence of transcriptional readthrough rather
than proper SD usage. We used an RNA instability elem-
ent (ARE) from GM-CSF (21) to destabilize transcripts
generated from the vector in the absence of true splicing
events to a downstream endogenous SA sequence. The
ARE sequence was placed into the second intron of the
�-globin gene (Figure 1) so that when splicing occurs via
the strong constitutive SD from exon 2 of �-globin, this
instability element is removed from the gene trap
transcript. This SD cassette was placed downstream of
the human �-actin promoter driving expression of the
neomycin resistance gene (neo).

As our goal was to generate insertions that would
both produce a mutation and provide a readout of the
endogenous gene’s expression pattern, these SD cassettes
were combined with two different promoterless expression
modules. pEHygroSD2ARE combines the SD cassette
with a SA-module employing the En-2 SA to drive the
expression of a triple fusion between egfp, lacZ and the
hygromycin resistance gene (egfp�hygro) (22) (Figure 1).
In addition, to generate a particularly sensitive readout
of endogenous gene expression we employed a second
SA-module (32) that includes a translational amplifier
from the 50 UTR of the homeobox gene Gtx (33) and
the enhanced YFP, Venus (34) (plasmid vector pGTIV3
and retroviral vector Gep-IV3) (Figure 1).

To assess the ability of the ARE to enhance gene
trap efficiency and reduce background, we compared
pEHygroSD2ARE with an identical vector lacking the
ARE (termed pEHygroSD2). Both vectors were electro-
porated into E14TG2a ES cells and colonies selected in
G418. Interestingly, the vector containing the ARE
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produced consistently 1.7-fold fewer G418 resistant
colonies (40� 3 per plate) than did the vector without
the ARE (67� 6.5 per plate) (Table 1) suggesting that a
significant proportion of the neo resistant colonies
obtained in the absence of the ARE contain unspliced
neo message and are therefore not true gene trap events.
This finding is consistent with a previous study reporting a
similar level of reduction in the number of drug-resistant
colonies as a result of the inclusion of an ARE (35).
To determine whether the ARE had a direct effect on
the nature of integration, we expanded a subset of these
colonies and used 30RACE to sequence the gene trap tran-
script generated by each integrant. In the vast majority of
pEHygro2SD2ARE clones (77%), we were able to detect
correct SD usage and no evidence of a read-through tran-
script (Table 1). This contrasts significantly with RACE
sequences obtained from clones derived from
pEHygro2SD2 insertions, where we observed only 11%
correctly spliced transcripts (Table 1). Thus, the presence
of the ARE sequence led to a 7-fold improvement in the
number of properly spliced integrants and hence enhanced
this vector’s performance.

Transcripts disrupted by this new set of vectors

To assess the performance of our vectors in insertional
mutagenesis, we introduced them into E14TG2a ES
cells either by electroporation (pEHygroSD2ARE and
pGTIV3) or retroviral infection (Gep-IV3) and analyzed
the gene trap insertions within the resulting G418 resistant
clones by 30RACE PCR. We generated 118 unique
sequence tags which were used for all subsequent analysis.
The majority of the resulting properly spliced 30RACE
products contained a poly A signal sequence and a poly
A tail (data not shown). 30RACE sequences were analyzed
using the BLAST (or BLAT) algorithm and the NCBI,

Ensembl and UCSC mouse databases (NCBI m37
mouse assembly). An overview of the resulting 30RACE
products is shown in Supplementary Table 2. Of the 118
sequence tags we obtained, 43% matched reported
transcribed sequences (Figure 2A), a similar level to that
obtained with other poly A trap vectors (16,18). Of these,
25% matched exons of known genes, and 18% were
found to be homologous to EST transcripts (Figure 2A).
In addition to these sequences, we also identified tags that
appeared spliced to intronic sequences of known genes,
probably representing previously undiscovered splice
variants (17%), exons or introns in GENSCAN-predicted
transcripts (15%) and sequences within regions of the
genome that do not appear to map to any known tran-
script (3%). In a number of cases, we observed that these
RACE tags contained sequences corresponding to mul-
tiple downstream exons and some examples of this are
shown in Supplementary Figure S1. We obtained a signifi-
cant fraction (22%) of insertions where the RACE
sequence was homologous to repeats and retrotransposon
sequences (Figure 2A). Because it has been reported that
retroviral vectors have a different insertional bias than
plasmid based vectors (12), we examined the distribution
of integrants for each type of vector independently
(Figure 2A) and found little difference in the spectrum
of sequence tags, although the plasmid-based vectors
appear more efficient at identifying previously
unannotated transcripts. We also found that a fraction
of the sequence tags (�20%) corresponding to regions of
known transcripts were in the opposite transcriptional
orientation from the trapped gene (Supplementary
Table 2), a phenomenon that has been observed previ-
ously with other gene trap vectors (19,23).
While, some of the sequence tags corresponding to

GENSCAN-predicted, intronic or unknown sequences
could represent cryptic or orphan 30 exons, we believe
the majority of them correspond to novel transcripts and
alternative/additional exons. Thus, many of these 30RACE
sequences were found to be conserved between different
species (Figure 2B). Moreover, part of this conservation
appears in distinct clusters with the intervening sequence
missing from the RACE product, indicating that these
sequences represent conserved intron/exon structures
(Figure 2B, clone E7c-B5). Similar conserved and appar-
ently multi-exonic RACE tags have been observed with
other gene trap vectors (23). To confirm that these novel
sequences represented true spliced transcripts, we

Figure 1. Schematic representation of the poly A trap constructs
employed. SA, splice acceptor; pA, polyadenylation signal; P,
promoter; neo, neomycin phosphotransferase gene; SD, splice donor;
ARE, AU-rich element; Gtx, synthetic sequence containing Gtx motifs;
En2, engrailed-2; HA 3/5, Human adenovirus type 3/5; bhygro, fusion
between b-galactosidase and hygromycin resistance genes; LTR, long
terminal repeat; EGFP, enhanced green fluorescent protein.

Table 1. The ARE enhances the performance of the �-globin splice

donor

Vector Average
(SD) G418R

clonesa

Number
G418R clones
analyzed

Correct
SD usageb

(%)

SD read-
throughb

(%)

pEHygroSD2 67 (�3) 45 11 69
pEHygroSD2ARE 40 (�6.5) 43 77 16

aPer electroporation plate.
bPercentages representing RACE products indicative of vector
degradation or concatemer formation are not included.
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performed a further round of 30RACE PCR on selected
clones belonging to this category. Using nested primers
based on the initial RACE sequences we obtained further
downstream sequence indicating the presence of multiple
downstream exons and putative splicing patterns
(Supplementary Figure S2). Thus in the cases we have
been able to examine, these uncharacterized sequences
appear to represent genuine genes rather than individual
cryptic 30 exons. To further test whether these sequence
tags that did not map to known exons/ESTs do in fact
represent de novo transcripts, we examined the expression
of a set of them in wild-type ES cells. Transcripts were
selected for analysis based on the expression of the
50 reporter in our vectors, indicating that they should be

expressed in wild-type undifferentiated ES cells. Primers
were designed to detect the expression of representative
trapped sequences of each class; exons of a GENSCAN-
predicted transcript (clone E7a-E7, Figure 2C), transcripts
derived from intronic sequence of a curated predicted
GENSCAN gene (clones E7a-G6 and E7a-F3,
Figure 2C), and a sequence that did not map to any
known or predicted transcript (clone E7b2-G1,
Figure 2C). Figure 2C shows that all these trapped
sequences are indeed expressed in unmodified ES cells
indicating that this series of poly A trap vectors is effective
at identifying previously uncharacterized or predicted
transcripts. A closer inspection of the GENSCAN
transcripts contained within our sequence tag set revealed

Figure 2. Nature of poly A trap insertions. (A) BLAST hit distribution of sequence tags derived from the plasmid vectors pEHygro2SD2ARE and
pGTIV3 (left) (N=75), the retroviral vector Gep-IV3 (middle) (N=43) and their combination (right) (N=118). (B) Conservation analysis of two
indicative sequence tags that were not homologous to any known or predicted transcripts. Genome mapping and conservation analysis were
performed using the UCSC genome browser. Red lines represent the boundaries of homology between the tag and the genome. (C) RT–PCR
analysis of E14TG2a ES cells using primers designed on RACE products that are not homologous to known exons/ESTs. The trapped ES cell clone
IDs that gave rise to the analyzed 30RACE products are shown on the left. The BLAST-based genome mapping (ENSEMBL genome browser) of the
RACE transcripts is also shown. RT, reverse transcriptase.
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that a significant proportion (8/17, 47%) of them have not
been previously trapped by other poly A or SA-type gene
trap vectors (Supplementary Table S3) suggesting that
our vectors can potentially aid the identification and dis-
ruption of previously uncharacterized, novel transcripts.

We also compared the sequence tag set described in
Figure 2A to the complete set of tags available on the
IGTC database (www.igtc.org). We found that the major-
ity (46/49) of the known genes trapped by our vectors have
been previously disrupted by SA-type (promoterless)
vectors (Supplementary Table S4) although four of
these genes (D2Wsu81e, Bank1, Dpp10, Pitpnm2,
Supplementary Table S4) have only been trapped in a
screen employing C57BL/6N ES cells (36). Interestingly,
two of the sequence tags generated through the use of our
vectors (Shd, Grin2b, Supplementary Table S4) represent
novel integrations indicating that the �-actinP-neo-b-
globin-SDARE poly A trap vectors have the potential to
‘enrich’ for insertions within previously untrapped loci.
Both genes are not expressed in early embryonic
development, are tissue-specific (37–39) and examination
of EST/expression databases (Mouse Genome Infor-
matics: http://www.informatics.jax.org/ and Gene Expres-
sion Omnibus repository: http://www.ncbi.nlm.nih.gov
/sites/entrez?db=geo&cmd=search&term=) suggests
they are not expressed in undifferentiated ES cells.
Targeted trapping of Grin2b has thus far been unsuccess-
ful (www.eucomm.org).

Expression-independent vectors that do not exhibit
a severe 3’ bias

One of the major limitations associated with poly A trap
vectors is their inability to generate stable, selectable
integrations outside of the last intron of their target
genes due to the action of NMD (17). As a result, we
were surprised to find that integrations generated by our
vectors do not exhibit the severe 30 bias observed with the
widely used poly A trap vectors (17–19) (Table 2).
Interestingly, as the stop codon in our vector sequence
was located 333 nucleotides upstream of the �-globin
splice junction (Supplementary Figure S3), all transcripts
generated by this vector regardless of the integration site
should have been susceptible to NMD and we should not
have been able to obtain any selectable integrants (40).
However, not only did we obtain integrations, but also
the distribution of these integrations did not show the
typical 30 bias exhibited by standard poly A trap vectors.
Thus, as shown in Figure 3, the majority of the clones
analyzed (63%) contained vector insertions within the
50-end of their target genes, while only 23% of integrations
occurred in the 30-most intron. This result indicates that
poly A trapping using the �-actinP-neo-b-globinSDARE
vectors may somehow overcome the effect of NMD.

To test whether these particular poly A trap vectors
were indeed effectively able to overcome the inhibitory
activity of NMD, we asked whether they could function
as a selection cassette, when targeted directly to a 50 intron
of a gene by homologous recombination. We compared
the ability of pGTIV3 to function as a selection cassette
when placed in the first intron of the ES cell regulator

Oct4 (41) to the established poly A trap vector pGTIV2
(32). We selected pGTIV2 as it exhibits a 30 integra-
tion bias (W. Stanford and T. Tanaka, personal
communication) and is identical to pGTIV3 apart from
the SD-selection cassette (Figure 4A). Both gene trap
vectors were flanked by sequence homologous to the
Oct4 locus and introduced into E14TG2a ES cells.
Based on the number of antibiotic resistant colonies
produced with both versions of this targeting vector
(Figure 4B), targeting of the non-30 biased pGTIV3

Table 2. Overview of known disrupted genes and their trapped exons

Gene identity Total
number
of exons

Number
of trapped
exonsa

Gene symbol Accession number

Ylpm1 NM_178363 22 2
Rfx4 AY342003 18 8
Q8VE10-2 AK033896 8 7
Pnrc2 AK077403 3 2
Zmat4 NM_177086 7 1
Larp7 NM_138593 13 1
Esrrb NM_011934 7 6
Tmem57 BC037192 11 10
ENSMUSESTT00003795807 AK140938 5 4
ENSMUSESTT00000017789 BF019192 4 3
Tcerg1 BC040284 22 8
Cds2 AK170888 13 12
ENSMUSESTG00000015152 AK013487 5 1
Dnahc8 NM_013811 95 94
Gna13 NM_010303 4 1
Flvcr2 NM_145447 10 9
Slc39a14 NM_144808 10 9
D2Wsu81e NM_172660 12 11
Skap2 NM_018773 13 7
D2Ertd750e NM_026412 9 1
Shd NM_009168 7 3
Zbtb24 NM_153398 7 6
Ccnd2 NM_009829 5 1
Gas6 NM_019521 15 13
Ppfibp1 NM_026221 28 14
Pde6a NM_146086 22 4
Oxa1l NM_026936 10 9
Bank1 NM_001033350 17 9
Trappc6 NM_030057 6 5
Dpp10 NM_199021 26 20
Gm672 NM_201354 13 2
Pitpnm2 NM_011256 25 24
Nvl NM_026171 23 9
F730014I05Rik NM_146129 17 16
Ube2k NM_016786 7 6
ENSMUSESTG00000017061 BB642399 3 2
CD59b NM_181858 5 1
Grin2b NM_008171 13 8
Fgf14 NM_207667 5 3
Fnbp1 NM_001038700 14 8
Grik4 NM_175481 19 18
Tdgf1 NM_011562 7 1
RP23-14F5.7-001 BE630360 3 1
Lemd1 NM_001033250 4 1
Gm525 NM_001033266 4 1
Gusb NM_010368 12 8
Nob1 NM_026277 9 8
ENSMUSESTP00000030261 LOC100048565 3 2
Q5F2E7-2 NM_001024205 4 1

aNumber of exons downstream of vector integration site. Genes
consisting of two exons were excluded.
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vector appeared 9-fold more efficient than pGTIV2
(Figure 4B). As these vectors contain a promoterless re-
porter (Venus), we were able to measure the percentage of
cells expressing Venus immediately after electroporation
and determine that a similar percentage of the population
was able to express the 50 promoterless reporter in each of
these constructs prior to selection (0.36% for pGTIV3 and
0.26% for pGTIV2) (Figure 4B). Since the Venus reporter
is dependent on endogenous Oct4 expression through a
SA, this transcript is not NMD sensitive and therefore
we can conclude from the comparable number of Venus
positive cells in both electroporations that there were no
significant differences in the efficiency with which these
vectors integrate and that differences in the numbers of
G418 positive colonies represent the ability of the neo
SD cassette to function in a 50 intron. The location of
this cassette within the 50-most intron of Oct4 was
confirmed by Southern blot indicating that 2/14 (15%)
of G418-resistant, Venus positive, pGTIV3-electroporated
clones were correctly targeted (Figure 4B), whereas ana-
lysis of a comparable number of pGTIV2-containing
clones revealed the absence of any targeting events
(Figure 4B).

The human b-actin promoter is linked to
NMD-independent integration

As our poly A trap vectors are able to generate antibiotic
resistant clones irrespective of the site of integration
and therefore appear to overcome the effect of NMD,
we wanted to know if this property was linked to the
presence of particular sequences. It has been previously
shown that certain promoter sequences can affect the
post-transcriptional fate of mRNAs and rescue otherwise
NMD-sensitive transcripts from NMD (42). Furthermore,
NMD efficiency is variable (43,44) and transcripts
expressed at high levels are often not completely
eliminated by NMD probably due to saturation of the
NMD machinery (45–47) (Oliver Mühlemann, personal

communication). We therefore sought to investigate
whether the human �-actin promoter used in the selection
cassette of all our vectors mediates relatively unbiased
gene trapping and targeting. To test this possibility, we
swapped the human �-actin promoter present in our
NMD-independent pGTIV3-Oct4 targeting vector with
the PGK promoter present in the NMD biased
pGTIV2-Oct4 vector (depicted by the arrow in
Figure 4A). We found that the �-actin containing,
pGTIV2-Oct4 vector yielded about 34-fold more
G418-resistant colonies (average of 128 colonies/
electroporation) than pGTIV3-Oct4-PGK (3 colonies/per
electroporation) (Figure 4C). Correct targeting of this
cassette to the first intron of Oct4 was confirmed by
Southern blot in the majority of the neo resistant,
Venus-positive clones (14/19, 73%) electroporated with
vector pGTIV2-Oct4-b-actin (Figure 4C). However, in
all six neo resistant clones obtained with pGTIV3-
Oct4-PGK no targeting was detected (data not shown).
From this we conclude that the ability of our SD vectors
to generate antibiotic resistance outside of the last intron
of a gene is linked to the specific nature of the promoter
employed.

Interestingly, we noticed that a series of older poly A
trap vectors (pMS1-3) used by the IGTC also contain the
human �-actin promoter. These vectors, (pMS1, pMS2
and pMS3, http://www.cmhd.ca/genetrap/vectors.html)
(8) have not been used extensively, but we were able to
identify 114 insertions in genes with known intron-exon
structure. This data set is summarized in Figure 5 (a
detailed list of the pMS vector insertions analyzed is
shown in Supplementary Table S5) and we found that,
as with the vectors reported here, pMS vectors also
appear to overcome the NMD mediated 30 bias,
supporting the notion that the �-actin promoter can
confer positional independence to poly A trap vectors.

While these data indicate that our vectors are immune
to the positional bias generated by NMD, it had been
reported previously that an Ig-m minigene driven by the
human �-actin promoter is susceptible to NMD (48). To
examine whether poly A trapping/targeting with our
human �-actin promoter-containing constructs is subject
to NMD we treated selected cell lines with the NMD
inhibitor CHX (49). Thus in instances where a targeted
transcript is subject to NMD, limited treatment of this
cell line with CHX should result in enhanced transcript
levels detectable by quantitative RT–PCR. To confirm
that we could detect NMD in this fashion we exploited
an EGFP reporter cell line for the ES cell regulator, Nanog
(50) that could be rendered sensitive to NMD by transfec-
tion with the Cre recombinase. This strategy is shown
in Figure 6A and features an EGFP cassette inserted
into the first exon of Nanog directly at the Nanog transla-
tion initiation codon followed by the EGFP stop codon
and a LoxP flanked IRES-puro poly A cassette. The
unrecombined cell line expresses EGFP from the Nanog
locus as the EGFP coding sequence reads directly into the
IRES-puro poly A without splicing. However, following
Cre mediated recombination, the IRES-puro poly A is
removed, placing the EGFP stop codon into exon 1 of
Nanog and generating a spliced transcript downstream

Figure 3. Distribution of vector insertion sites within trapped genes.
The analysis includes clones containing pEHygro2SD2ARE, pGTIV3
and Gep-IV3 vector integrations. Only integrations within genes with
well-defined exon–intron structure were included. Insertions within
two-exon genes were excluded from the analysis. The 50- and 30-introns
were defined as being 50 and 30 to the middle exon or intron of a gene
respectively, according to ref. (17). Vector insertions defined as ‘3’-most
intron’ were independently counted and excluded from the 30 intron
group. N=49.
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of EGFP, which is now sensitive to NMD. Consequently,
following Cre transfection, EGFP expression is no longer
detected (Figure 6B). When these cells and the
unrecombined parental cell line were treated with CHX,
levels of EGFP transcript were significantly increased only
in the recombined NMD sensitive cell line (Figure 6C

and D). As CHX treatment under these conditions
appeared an effective antagonist of NMD, we asked
whether it stimulated levels of neo mRNA produced by
gene trap integrations located in the first intron of target
genes. Surprisingly, we found that CHX treatment led to
enhanced neo mRNA levels when neo expression was

Figure 4. Targeted poly A trapping of the Oct4 locus. (A) Schematic representation of the targeted insertion of vectors pGTIV3 and pGTIV2 into
the first intron of the mouse Oct4 locus. The location of the probe used for Southern blot analysis of the targeted clones is shown in red. The
genomic organization of Oct4 is not drawn to scale. Unbiased insertional preference should theoretically give rise to neomycin resistant clones while
tendency to insertion into the 30 most intron should be associated with loss of neomycin resistance. (B) Top: number of G418 resistant colonies
obtained after ES cell electroporation with the pGTIV3 and pGTIV2 Oct4 targeting vectors. The fractions of electroporated cells expressing Venus
prior to G418 selection are indicated. Numbers and percentages are an average of three electroporation experiments. Bottom: Southern blot analysis
of G418 resistant, Venus positive, pGTIV3 and pGTIV2-Oct4 targeted clones. Genomic DNA was digested using EcoRI (restriction sites are shown
in A). Correctly targeted clones should yield an 11 kb (wild-type) and a 15 kb (targeted) band and are indicated by an asterisk. DNA from wild-type
E14TG2a ES cells and an independently Oct4 targeted clone (expected bands of 6 and 11 kb) were also included as negative and positive controls,
respectively (first two lanes from the left). The analysis of 15 pGTIV2-Oct4 targeted clones is also shown separately (bottom). (C) Targeted poly A
trapping of Oct4 after promoter swap between vectors pGTIV3-Oct4 and pGTIV2-Oct4. The human �-actin promoter of the insertionally unbiased
pGTIV3-Oct4 vector was exchanged for the PGK promoter present in the 30 biased pGTIV2-Oct4 vector (represented by the arrow in A). Top:
number of G418 resistant colonies obtained after electroporation with the pGTIV3-Oct4-PGK and pGTIV2-Oct4-b-actin modified constructs.
Bottom: Southern blot analysis of G418 resistant, Venus positive clones electroporated with the pGTIV2-Oct4-b-actin vector. Genomic DNA was
digested and probed as in B. Correctly targeted clones should yield an 11 kb (wild-type) and a 15 kb (targeted) band and are indicated by an asterisk;
(n=2).
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driven from either the first intron of Oct4 (clones 23 and
28, Figure 6E) or a 50 gene trap insertion (V-1, Figure 6E).
As our �-actin driven SD cassettes are subject to NMD,

some other property must make them immune to the
extreme 30 bias observed with other poly A trap vectors.
Although our vectors contain a minimal promoter frag-
ment of 468 bp upstream of the human �-actin transcrip-
tion start site, we considered whether this promoter might
be able to generate sufficient levels of neo transcript even
in the presence of NMD to allow for antibiotic selection.
Thus, we compared the level of neo transcript in the three
NMD sensitive clones described in Figure 6E to the level
generated by selectable random integrants containing the
30 biased PGK promoter-driven neo poly A trap cassette
(pGTIV2). In all cases, we observed that the �-actin pro-
moter driven levels of neo expression were higher than
those generated by the PGK promoter, despite the
destabilizing activity of NMD on the �-actin driven
transcripts (Figure 6F), We presume that the four PGK
neo clones used here contained integrations in the last
intron of their target locus as these vectors typically
exhibit a severe 30 bias (80–90%) (17–19) (W. Stanford,
T. Tanaka, personal communication) and neo expres-
sion in all four clones failed to respond to CHX
(Supplementary Figure S4). Taken together these
observations support the notion that as a stable chro-
mosomal integrant, the particular �-actin promoter frag-
ment employed here is effective at generating sufficient
transcript levels in ES cells to guarantee success in
selection despite mRNA surveillance mechanisms such
as NMD.

Gene targeting of a locus expressed at low levels
in ES cells

The accessibility of a set of 127 genes to gene targeting
with high efficiency promoterless vectors was recently
tested and found to be directly proportional to the level
of expression of the target locus in ES cells (5). The ability
to target our SD vectors to a 50 intron suggests that they
might be a new and effective means for the targeting of
those genes inaccessible to promoterless vectors. To test
this possibility, we selected the gene Pcdh21 that was both

expressed at low levels in ES cells and found by Friedel et
al. (5) to be untargetable. We replaced the SAbgeo cassette
in their original targeting vector with pGTIV3 (Figure 7)
so that we could assay the effectiveness of our SD cassette
with identical homology arms. Upon introduction of this
vector into ES cells we expanded 20 colonies and found a
correctly targeted clone (Figure 7B). We conclude from
this our NMD-independent poly A trap cassettes may be
effective tools for use in targeted trapping of genes that are
not expressed in ES cells.

DISCUSSION

In this article, we have described a series of expression-
independent gene trap vectors that do not suffer from the
extreme 30 insertional bias observed for other poly A trap
vectors. We found that the incorporation of an ARE in
the design of these vectors reduced significantly the occur-
rence of ‘background’ drug resistant ES cell clones arising
from SD readthrough events. The use of these vectors also
appears to enrich for insertions within unknown and
predicted novel transcripts. Importantly, we also show
that our poly A trap vectors can be introduced via hom-
ologous recombination into the 50 side of two different
genes and this suggests that our expression and NMD-
independent poly A trap vectors may be effective tools
for disrupting genes expressed at low levels in ES cells.

Our initial vector design incorporated an RNA instabil-
ity element from the 30 UTR of the human GM-CSF gene.
This element was designed to ensure that viable
integrations are only achieved when splicing removes
this sequence from the transcript generated by the vector’s
internal promoter, thereby promoting the selection of
‘true’ poly A trap events. The combination of this element
with a SD encompassing exon 2 and the adjacent intronic
sequence from rabbit �-globin, appears to make a particu-
larly effective selection unit. While RNA destabilizing
sequences have been incorporated into other poly A trap
vectors (16,18,35), their effectiveness had not been tested
at the molecular level. Here, we report the first evidence
that these elements can be introduced into the intronic
sequence downstream of a SD to achieve a 7-fold enrich-
ment in correctly spliced gene trap transcripts.

Analysis of the set of sequence tags generated through
the use of this new class of SD vectors suggests that these
function efficiently as poly A trap vectors. The percentage
of sequence tags that were homologous to either predicted
open reading frames or ESTs (43%) was similar to that
achieved with other poly A trap vectors (16,18). We also
identified at least two well-characterized late neural
markers (Shd and Grin2b) that are unequivocally not
expressed in ES cells and have not been trapped by
promoterless vectors. However, in addition to these
sequences, we identified an additional set of sequence
tags (18%) that were not homologous to any known
exonic or EST sequences. While similar sequences have
been identified with other poly A vectors they were gen-
erally dismissed as ‘non-genic’ (12). However, we show
that some of these transcripts are expressed in wild-type
ES cells and thus represent genuine transcripts that are not

Figure 5. Distribution of vector insertion sites within genes trapped by
the �-actin promoter-containing pMS1 (blue), pMS2 (yellow) and
pMS3 (red) gene trap vectors. The classification of the insertions is
the same as in Figure 3. A detailed list of the pMS insertions used
for the analysis is shown in Supplementary Table S5. N=40 for pMS1
and pMS3 and N=34 for pMS2.

e129 Nucleic Acids Research, 2009, Vol. 37, No. 19 PAGE 10 OF 14



Figure 6. Assessing the effect of NMD inhibition. (A) Schematic representation of the strategy employed for the generation of Nanog-GFP ES cells.
An EGFP-loxP-IRES-Puro-pA-loxP cassette was placed in the first exon of the ES cell pluripotency factor Nanog directly at the Nanog translation
initiation codon. Cre recombinase removes the loxP flanked polyadenylation signal (and preceding IRES-PuroR) causing the EGFP termination
codon to be placed in the first exon of the 4-exon Nanog transcript. The Nanog genomic locus was not drawn in scale. ATG, Nanog translation
initiation codon; TC, termination codon; Puro, puromycin resistance gene. White boxes represent untranslated exonic regions and solid
black boxes coding regions (B) Left: fluorescence microscopy of Nanog-GFP ES cells before and after expression of Cre recombinase. Brightfield
images of the same cell populations are also shown. Right: real-time RT–PCR expression analysis of EGFP in Nanog-GFP ES cells before and after
expression of Cre recombinase. (C and D) Real-time RT–PCR analysis of relative EGFP expression levels in Nanog-GFP ES cells before (C) and
after (D) removal of the loxP flanked cassette in the presence or absence of CHX. Values were normalized to the expression levels of the house-
keeping gene TBP. Error bars represent SD, CHX. (E) Relative neo expression levels in two Oct4-targeted ES cell clones (23 and 28) and one gene
trap clone (V-1) carrying a vector insertion within the first intron of the F730014I05Rik gene with or without CHX treatment. Data are shown as
relative expression to the CHX untreated controls. Values were normalized to the expression levels of the housekeeping gene tbp. The graph is
representative of three independent experiments and error bars correspond to SD, CHX. (F) Comparison of relative neo expression levels between
four ES cell clones (1–4) carrying insertions with the PGK-neo-containing vector pGTIV2 and clones 23, 28 and V-1 which have been targeted
(23,28) or trapped (V-1) using �-actin-neo vectors. Values were normalized to the expression levels of the housekeeping gene TBP.
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yet present in the EST databases. While our analysis
suggests at least some of these transcripts are expressed
in undifferentiated ES cells, their identification exclusively
by poly A traps suggests that their level of expression
cannot be selected for using promoterless vectors. The
presence of similar sequences in the gene trap databases
has been commented on (23,51) and some of these
sequences have been shown to be expressed during devel-
opment and in a tissue-specific manner (16,23,51). The
level of conservation observed in some of these transcrip-
tion units, suggests that we may have identified a number
of previously uncharacterized exons, novel alternatively
spliced variants or non-coding RNAs.
From the sequence tags we identified in known genes,

it became apparent that our poly A trap vectors do not
exhibit the severe NMD mediated 30-most intron bias
observed in other vectors of this class. However, while
we observed that 63% of our vector insertions localized
to the 50 half of a gene, these vectors cannot be considered
completely unbiased as we also observed a considerable
set of insertions (23%) in the last intron of their target
locus. Does this represent a bias? According to Shigeoka
et al. (17), the addition of an IRES to a poly A trap vector
shifted the frequency of 30 most insertions from 88% to
6%, but they also reported that 70% of their insertions
were found in the 50 half of target genes. Thus, while the
IRES appears to have eliminated the influence of NMD,
their use of a retrovirus may have introduced a slight 50

bias (11,52). As even plasmid based promoterless vectors
exhibit some 50 bias (52), it is difficult to establish criteria
for unbiased integration. Thus, while it is impossible to
say whether our vectors are truly unbiased, they represent
a considerable improvement over the majority of poly A
trap vectors.
To demonstrate explicitly that these vectors could

function at the 50-end of a gene, we targeted our SD cas-
sette to the 50-end of the Oct4 gene by homologous

recombination, an achievement not possible with an
equivalent 30 biased poly A trap vector. As SD vectors
have been in use for some time now and the majority
are susceptible to NMD, we thought it important to
determine the sequences responsible for this surprising
finding. Based on promoter swaps between a 30 biased
poly A trap cassette and our vectors we established that
this NMD independence was due to the �-actin promoter.
Although neo expression from our vectors was still subject
to NMD we found that neo transcript levels generated
from the �-actin promoter were greater than that achieved
by NMD-independent selectable integrants employing the
PGK promoter. Thus, the strength of the human �-actin
promoter fragment used here is sufficient to overcome the
inhibitory effect of NMD and establish drug resistance in
the majority of insertions regardless of intronic position.
This was particularly surprising as it has been previously
reported that the PGK promoter is stronger than �-actin
in human T cells (53). While we were unable to determine
the �-actin promoter fragment used in that study, it is
likely that the human �-actin fragment used in our gene
trap vectors is particularly effective in ES cells. Although,
our data demonstrates that promoter strength is respons-
ible for the effective NMD independence of our vectors,
they may also accrue an additional advantage from the
particular neo gene used here. As far as we can determine,
all poly A trap vectors that exhibit a severe 30 bias also
employ a mutant version of the neomycin phospho-
transferase gene, which has been shown to be associated
with a reduction in the enzyme’s activity without affecting
the stability of neo mRNA or protein levels (4,54).

We believe the major determinants of the efficient and
relatively unbiased performance of our vector were pro-
moter strength and message stability. A strong promoter,
like �-actin, would normally produce high levels of splice
donor read-through and in most cases require an RNA
instability element (ARE) to ensure these transcripts were

Figure 7. Targeted poly A trapping of the Pcdh21 locus. (A) Schematic representation of the targeted insertion of vector pGTIV3 into the fifth intron
of the mouse Pcdh21 locus. The location of the probe used for Southern blot analysis of the targeted clones is shown in red. The genomic
organization of Pcdh21 is not drawn to scale. Only 10 of the 17 Pchd21 exons are shown. (B) Southern blot analysis of representative G418 resistant
ES cell clones electroporated with the pGTIV3-Pcdh21 vector. Genomic DNA was digested using EcoRV (restriction sites are shown in A). Correctly
targeted clones should yield an 10.8 kb (wild-type) and a 14.8 kb (targeted) band and a correctly targeted clone is indicated by an asterisk.
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not expressed at levels sufficient for selection. While a
weak promoter would not generate significant levels of
splice donor read-through, it would be sensitive to
NMD. Thus, the highly effective vectors generated here
were the result of a fortuitous and inseparable combin-
ation of a strong promoter with a means to target
unspliced message for degradation.

Our observation that the �-actin promoter can produce
sufficient transcript in the presence of NMD to generate
viable antibiotic resistance suggests that in cell types that
express high levels of a target gene, NMD may not be
sufficient to generate a null phenotype. As a result,
phenotypes that rely on the introduction of premature
stop codons (e.g. through Cre-lox mediated exon removal)
as a means to target degradation of a transcript may not
always represent true nulls, but in fact produce truncated
protein products and this suggests some care should be
taken in the design of conditional targeting vectors.

For the first time, we have shown that a poly A trap
vector can be employed for gene targeting applications.
We found that our vectors could be used for the successful
targeting of both Oct4 and Pcdh21. Previous attempts to
target Pcdh21 using a SA-type gene trap construct have
been unsuccessful (5). Consistent with this observation,
Pcdh21, unlike Oct4, is expressed at low to negligible
levels in ES cells. Interestingly, there is a clear difference
in our observed targeting frequencies for Oct4 and Pcdh21
and perhaps this reflects some influence of the endogenous
gene’s expression levels on the efficiency of selection
for SD vectors. Global analysis of available gene trap
insertions suggests that poly A trapping efficiency is
modestly influenced by gene expression levels with high
expression enhancing the trappability of a locus �2-fold
as compared to 75-fold for promoterless vectors (12). So is
targeted poly A trapping a more efficient means to target
low level expressed genes? Promoterless vectors are unable
to access these genes and Pcdh21 is listed as a failed pro-
ject by EUCOMM (http://www.eucomm.org/) based on
attempts with traditional promoter containing vectors.
Thus our vectors may represent an improvement in tar-
geting over existing technology, although this is yet to be
rigorously tested. Despite this caveat, this work represents
the first demonstration that poly trap vectors may be
effective tools for gene targeting.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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