
Strabismus Promotes Recruitment and Degradation of
Farnesylated Prickle in Drosophila melanogaster Planar
Polarity Specification
Helen Strutt, Vickie Thomas-MacArthur, David Strutt*

MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom

Abstract

The core planar polarity proteins are required to specify the orientation of structures that are polarised in the plane of the
epithelium. In the Drosophila melanogaster wing, the core proteins localise asymmetrically at either proximal or distal cell
edges. Asymmetric localisation is thought to be biased by long-range cues, causing asymmetric complexes to become
aligned with the tissue axes. Core proteins are then thought to participate in feedback interactions that are necessary to
amplify asymmetry, and in order for such feedback interactions to operate correctly, the levels of the core proteins at
junctions must be tightly regulated. We have investigated regulation of the core protein Prickle (Pk) in the pupal wing. The
core protein Strabismus (Stbm) is required to recruit Pk into asymmetric complexes at proximal cell ends, and we report
here that it also promotes proteasomal degradation of excess Pk, probably via a Cullin-1 dependent process. We also show
for the first time that Pk is farnesylated in vivo, and this is essential for Pk function in the wing. Notably, farnesylation of Pk is
necessary for it to be recruited into asymmetric complexes and function in feedback amplification, probably by reinforcing
weak direct interactions between Stbm and Pk. Furthermore, farnesylation is also required for Stbm to promote
proteasomal degradation of Pk. We propose that Stbm recruits farnesylated Pk into asymmetric complexes, but also
promotes degradation of excess Pk that would otherwise perturb feedback amplification.
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Introduction

The Prickle (Pk) protein is one of the ‘‘core’’ planar polarity

proteins which are necessary to polarise cells in the plane of

epithelia in Drosophila melanogaster and vertebrates [1–3]. For

example, in the fly wing the core proteins ensure that the single

trichome that emerges from each cell always points towards the

distal end of the wing. Furthermore, in the eye core proteins

regulate the orientation and chirality of photoreceptor clusters

(ommatidia). The core proteins localise asymmetrically at proximal

and distal cell ends in the wing, or at the R3/R4 photoreceptor

cell boundary in the eye. In the wing, Prickle localises proximally,

together with the transmembrane proteins Strabismus (Stbm, also

known as Van Gogh [Vang]) and Flamingo (Fmi, also known as

Starry Night [Stan]), whilst Fmi also localises to distal cell ends

together with Frizzled (Fz), Dishevelled (Dsh) and Diego (Dgo).

Loss of any single core protein disrupts the asymmetric

localisation of the others. Fz, Fmi and Stbm appear to assemble

into an intrinsically asymmetric intercellular complex that couples

adjacent cells, and Pk and the other cytoplasmic core proteins (Dsh

and Dgo) are then thought to organise intercellular complexes of

the same polarity into discrete membrane domains at the proximal

and distal cell edges [4]. This redistribution can be explained by

feedback models, consisting of either positive (stabilising) interac-

tions between complexes in the same orientation or negative

(destabilising) interactions between complexes in opposite orien-

tations [4–6].

As asymmetric complexes span cell boundaries, feedback

amplification would be sufficient to locally coordinate polarity

between neighbouring cells, but not necessarily sufficient to align

this with the axes of the tissue [7–9]. Thus it is widely believed that

upstream cues provide a weak polarising bias to each cell, which is

then coordinately amplified to give robust asymmetry. The nature

of these upstream cues is controversial, although in some contexts

it appears to involve gradients of activity of the atypical cadherins

Fat (Ft) and Dachsous (Ds) (reviewed in [10–12]).

The pk gene has three splice forms that give rise to three

isoforms of the protein product, PkPk, PkSple (hereafter Pk and

Sple) and PkM. Pk and Sple differ in that Sple has a longer N-

terminal extension, whilst PkM is only expressed in the embryo and

has no known function [13]. Loss of both Pk and Sple isoforms

(pkpk-sple mutants) results in adult phenotypes similar to those seen

upon loss of the other core proteins: hairs on the wing swirl in a

characteristic pattern as a result of trichomes forming in the centre

of cells in which the core proteins no longer exhibit noticeable

asymmetric localisation [7,14,15]. Similarly in the eye, ommatidia

adopt random chiralities and misrotate [16], and tarsal joint

duplications are seen in the leg [13].

In contrast, loss of only the Pk splice form (pkpk flies) does not

affect the eye or leg, but a strong polarity phenotype is seen in the
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wing whereby trichomes point towards vein 3 [14]. Conversely,

loss of the Sple splice form (pksple flies) does not affect the wing, but

ommatidia in the eye adopt random chirality and there are tarsal

joint duplications in the leg [13,16]. Furthermore, overexpression

of Sple in the wing gives a reversal of trichome polarity which is

similar to but more extreme than the pkpk phenotype, whilst

overexpression of Pk in the leg gives strong joint duplications [13].

It has been suggested that the pkpk and pksple mutant phenotypes are

due to specific roles for the two isoforms in interpreting global cues

in different tissues [17,18]. In particular, gradients of Ft/Ds

activity have been proposed to orient core protein complexes

containing Sple, but to have little influence on Pk-containing

complexes [19].

We have recently presented evidence that in order for feedback

amplification to occur correctly, the levels of core proteins at

junctions must be tightly regulated [20]. For example an excess of

core proteins might disrupt negative interactions by excluding too

much of a competitor protein from a membrane domain, or

disrupt positive interactions by causing excessive stabilisation of

complexes that then spread into inappropriate domains. In

support of this, we found that neddylation and ubiquitination

control the levels of Dsh at junctions and that this is required for

optimal polarisation [20]. Neddylation is the covalent attachment

of the small ubiquitin-like molecule Nedd8 to target proteins,

which can alter protein activity or stability, with Cullin (Cul) E3

ubiquitin ligase subunits being the best understood targets [21]. In

the wing, neddylation regulates a Cul-3-Diablo/Kelch E3

ubiquitin ligase which acts to remove excess Dsh from junctions,

and loss of this activity results in an increase in Dsh levels. This

promotes the accumulation of all the other core proteins and

results in reduced core protein asymmetry [20]. Interestingly,

overexpression of Dsh, Pk and Dgo all cause accumulation of the

other core proteins at junctions [5,22,23], leading to the possibility

that comparable mechanisms also control the levels of Pk and

Dgo. No such mechanisms have been identified in flies, although

levels of vertebrate Pk are regulated by a Smurf ubiquitin ligase

[24].

Pk is localised to proximal cell edges with Stbm, and as the two

proteins interact in vitro [6,23], it is thought that Pk is recruited to

junctions by Stbm. However, Pk has a prenylation motif at its C-

terminus (CaaX, where cysteine is the site of prenylation, a is an

aliphatic residue and X determines the type of prenyl group

added). Prenylation can take the form of addition of either a

farnesyl or geranylgeranyl moiety, and normally acts to allow

association of cytoplasmic proteins with cell membranes, although

a second signal is often needed for stable membrane association

[25]. If Pk is normally recruited to the plasma membrane by Stbm

an additional need for it to be prenylated is unclear, although it

could stabilise a weak interaction with Stbm [26,27]. Previous

studies have indicated that loss of the prenylation motif may

reduce the association of Pk with junctions [28,29], and that some

Pk phenotypes can be phenocopied with a farnesylation inhibitor

[30], but other experiments suggested that prenylation is not

essential for Pk function [6], and it has yet to be established

whether Pk is indeed prenylated in vivo.

Here, we demonstrate that Pk is turned over rapidly in pupal

wing cells, and that this turnover is dependent on Stbm activity.

Furthermore, we show that Pk is farnesylated in vivo, and that

farnesylation of Pk promotes its recruitment to junctions by Stbm,

where it participates in feedback amplification. Additionally, this

recruitment is also necessary for Stbm to promote degradation of

excess Pk.

Results

Pk degradation is regulated by Stbm
We and others have previously shown that loss of Stbm activity

causes Pk to become more cytoplasmic (Figure 1A, [6,23]),

consistent with Stbm recruiting Pk to junctions. Interestingly, Pk

did not seem to be merely redistributed from junctions to the

cytoplasm, but overall levels of Pk also appeared to increase

(Figure 1B). This was confirmed by Western blot analysis of total

Pk levels in wild type and stbm pupal wings (Figure 1C). The

increase in Pk levels was not due to increased transcription of pk, as

levels of EGFP-Pk expressed under control of the Actin5C

promoter also increased in stbm mutants (Figure S1A,B). There-

fore, Stbm both recruits Pk to junctions and regulates its levels.

To test whether Stbm regulates Pk levels by promoting its

degradation, we investigated Pk turnover in prepupal wings.

Interestingly, treatment of prepupal wings with MG132 to block

proteasomal degradation caused a substantial increase in Pk levels

(Figure 1D,E), consistent with Pk normally being rapidly degraded

in the proteasome. Importantly, if stbm mutant wings were treated

with MG132, there was no additional increase in Pk levels

(Figure 1D,E), suggesting that Stbm is necessary for the

proteasomal degradation of Pk. No accumulation of Pk was seen

if lysosomal degradation was blocked (Figure S1C), confirming that

degradation is through the proteasome rather than the lysosome.

Pk is farnesylated in vivo
We were interested in what else might influence Pk recruitment

by Stbm and its degradation. One possibility is that if Pk were

prenylated (by addition of either a farnesyl or geranylgeranyl

group) this could target it to membranes, and promote or

accelerate the interaction of Pk with Stbm. Previous analyses of

the requirement for Pk prenylation in flies have variously

concluded that the prenylation motif was not essential for Sple

function [6], or alternatively that it might be required for correct

localisation of Pk, but partially dispensable for localisation of Sple

[28]. However, as these experiments only looked at one Pk

isoform, or relied on overexpression to assay the effect of loss of the

prenylation motif, we decided to re-examine this issue.

We have recently performed an RNAi screen in the adult wing, in

which 10,000 RNAi lines were expressed using the MS1096-GAL4

Author Summary

The core planar polarity proteins are responsible for
polarising structures in the plane of epithelia. For example
in the fly wing, the core proteins are required for cells to
make hairs that point towards the distal end of the wing.
The core proteins localise asymmetrically in wing cells,
either at the distal cell end where the hair emerges or at
the opposite cell edge. To establish this asymmetric
localisation the core proteins must undergo feedback
interactions with each other, and it is thought that for
feedback to operate correctly, the amounts of the core
proteins at junctions must be limiting. We show that the
core protein Prickle is modified by a farnesyl lipid
molecule. This modification is essential for it to associate
with cell membranes where it can interact with another
core protein, Strabismus. Interaction with Strabismus
allows Prickle to participate in asymmetric complexes
and feedback interactions, but Strabismus also causes
degradation of excess Prickle. If Prickle doesn’t interact
with Strabismus, or if there is too much Prickle at cell
membranes, asymmetric localisation of the other core
proteins is compromised.

Regulation of Farnesylated Prickle by Strabismus
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driver (H.S, V.T.-M., C. Thomas and D.S., unpublished data). This

identified two genes encoding components of the HMG CoA

Pathway, which when knocked down caused trichomes to swirl

(Figure 2A,B, Table S1). The HMG CoA pathway is the

biosynthetic pathway that leads to formation of farnesyl and

geranylgeranyl isoprenoids, which are then covalently attached to

cysteine residues near the C-terminus of target proteins (Figure S2A,

[25]). Of the components identified in our screen, CG8239 encodes

diphosphomevalonate decarboxylase (MVD), which is required for

both farnesyl and geranylgeranyl synthesis, and CG17565 encodes

one of the two subunits of farnesyl-diphosphate farnesyl transferase

(FNTB), consistent with the possibility that Pk is normally

farnesylated.

To see whether Pk is a target of MVD and FNTB, we tested

directly if Pk is prenylated in vivo, using a phase extraction

technique that is commonly used to assess prenylation of other

proteins such as small GTPases. In this assay, proteins are

extracted using the detergent Triton X-114, which is fully miscible

with aqueous solutions at 4uC, but separates into aqueous and

detergent phases above 20uC [31], such that transmembrane

proteins and prenylated proteins are partitioned into the detergent

phase. We first carried out this assay on endogenous Pk protein;

however no prenylation of Pk was detected (data not shown),

possibly due to the Pk protein being several-fold larger than

proteins normally used in this assay, and thus not being efficiently

partitioned into the detergent phase by a small hydrophobic

farnesyl tag.

To circumvent this, we generated an engineered form of Pk that

is tagged at the N-terminus with Myc, and has a cleavage site for

Prescission protease (PP) followed by a HA tag within a non-

conserved region near its C-terminus (Figure S2B). This protein

was expressed in flies under control of the Actin5C promoter, and

was seen to localise asymmetrically in pupal wings and to fully

rescue pkpk-sple13 mutant wings (Figure S2C,D). As expected, no

cleavage at the PP cleavage site was observed in vivo; however

addition of PP to pupal wing extracts led to efficient cleavage, and

the release of a small HA-tagged C-terminal fragment of Pk

(Figure S2E), which could be tested for prior in vivo farnesylation

using phase extraction.

Figure 1. Stbm regulates Pk localisation and degradation. (A,B)
XY (A) or XZ (B) sections of Pk staining (green) in stbm6 clones, marked
by loss of ß-gal staining (red). The XZ section shows the two apposed
epithelia of the pupal wing, and the clone is only present in the top
epithelium. Scale bar 20 mm (A) or 10 mm (B). (C) Western blot probed
with anti-Pk showing Pk levels in w1118 and stbm6 28 hr pupal wings,
with a-Tubulin (Tub) as loading control. Pk levels are approximately 20-
fold increased in stbm6 wings. (D,E) Western blot (D) and quantitation
(E) of Pk levels relative to Actin levels, in w1118 or stbm6 prepupal wings
treated with 10 mM MG132, or DMSO control, for 5 hr at 25uC.
Quantitation from 4 biological replicates, error bars are s.e.m.,
**p = 0.01.
doi:10.1371/journal.pgen.1003654.g001

Figure 2. In vivo farnesylation of Pk. (A,B) Adult wings from
MS1096-GAL4, MVDIR-24253 (A) and 459.2-GAL4, FNTBIR-17565R-2 (B) flies. (C–
F) Western blots showing phase separation of the HA-tagged C-
terminus of Myc-Pk-PP-HA, after cleavage with Prescission protease.
Blots show HA staining or control Fz staining (bottom) of 28 hr pupal
wing extracts from ActP-Myc-pk-PP-HA/+ (C), MS1096-GAL4; FNTBIR-17565R-

2/+; ActP-Myc-pk-PP-HA/+ (D), ActP-Myc-pk-PP-HADCaaX/+ (E) or stbm6;
ActP-Myc-pk-PP-HA/+ (F), with total lysate, aqueous fraction (Aq) or
detergent fraction (Det). Fz partitions into the detergent phase, and a
cross-reacting band partitions only in the aqueous phase (asterisk).
doi:10.1371/journal.pgen.1003654.g002

Regulation of Farnesylated Prickle by Strabismus
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Using this methodology, the cleaved C-terminus of Myc-Pk-PP-

HA protein was seen to partition in both the aqueous and

detergent fractions, whereas a control blot for the transmembrane

protein Fz showed it partitioning exclusively in the detergent

fraction, and a cross-reacting band was exclusively cytoplasmic

(Figure 2C). This suggests that a substantial proportion of Pk is

farnesylated in vivo. This observation was confirmed in two ways.

Firstly, Myc-Pk-PP-HA was expressed in wings in which FNTB

was knocked down: in this case the HA-tagged C-terminus of Pk

partitioned almost entirely in the aqueous phase (Figure 2D).

Secondly, expression of a protein in which the C-terminal

prenylation motif was deleted (Myc-Pk-PP-HADCaaX) resulted

in its partitioning only to the aqueous phase (Figure 2E).

Pk farnesylation is essential for its function in the wing
We then tested whether farnesylation of Pk was necessary for its

function. EGFP-tagged Pk or Sple were expressed under control of

the Actin5C promoter, as either full-length forms or forms lacking

the prenylation motif (DCaaX). Whilst EGFP-Pk fully rescued pkpk-

sple and pkpk wings (Figure 3C,F, compare to Figure 3B,E), EGFP-

PkDCaaX did not show significant rescue (Figure 3D,G). There-

fore we conclude that farnesylation is required for Pk activity in

the wing.

Similarly, we saw complete rescue of pkpk-sple and pksple eyes and

legs using EGFP-Sple (Figure 4D,G, compare to Figure 4C,F, and

Figure S3B,C,D,F). Interestingly, EGFP-SpleDCaaX also gave

substantial (but not complete) rescue in both cases

(Figures 4E,H,S3E,G). Therefore we conclude, in agreement with

earlier findings in the eye [6], that farnesylation is only partially

required for Sple function in the eye and leg.

These differing results could indicate that farnesylation is more

important for Pk/Sple function in the wing than in the eye/leg, or

might indicate that Pk has a more critical requirement for

farnesylation than Sple (regardless of the tissue in which they are

Figure 3. Requirement for Pk/Sple farnesylation in the wing. (A–K) Images of the region around vein 3 distal to the posterior cross-vein (A–K)
and cartoons (A’–K’) of the dorsal surface of adult wings from wild type (A), pkpk-sple13 (B), pkpk-sple13; ActP-EGFP-pk/+ (C), ActP-EGFP-pkDCaaX/+; pkpk-

sple13 (D), pkpk1 (E), pkpk1; ActP-EGFP-pk/+ (F), ActP-EGFP-pkDCaaX/+; pkpk1 (G), ActP-EGFP-sple/+ (H), ActP-EGFP-spleDCaaX/+ (I), pkpk-sple13; ActP-EGFP-
sple/+ (J) and pkpk-sple13; ActP-EGFP-spleDCaaX/+ (K) flies. Mild swirls are present in the proximal regions of ActP-EGFP-spleDCaaX wings.
doi:10.1371/journal.pgen.1003654.g003

Regulation of Farnesylated Prickle by Strabismus
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active). To distinguish between these possibilities, we expressed

EGFP-Sple and EGFP-SpleDCaaX in the wing. When expressed

under the Actin5C promoter, EGFP-Sple caused a dominant pkpk-

like phenotype, with trichomes pointing proximally and towards

vein 3 (Figure 3H). Under these conditions, EGFP-Sple localised

asymmetrically, at cell edges opposite to the site of trichome

initiation (Figure S4A). A similar pkpk-like phenotype was seen

when EGFP-Sple was expressed in a pkpk-sple mutant background

(Figure 3J). However, EGFP-SpleDCaaX did not localise asym-

metrically (Figure S4B), did not cause a dominant phenotype

(Figure 3I) and did not alter the trichome polarity phenotype of a

pkpk-sple mutant (Figure 3K). Thus, EGFP-SpleDCaaX is unable to

substitute for EGFP-Sple in the wing.

In the converse experiment, expression of EGFP-Pk, but not

EGFP-PkDCaaX was able to give a dominant pksple-like phenotype

in the eye (Figure 4I,J). However, both EGFP-Pk and EGFP-

PkDCaaX rescued the misrotation (but not chirality) phenotype of

pkpk-sple eyes (Figure 4K,L). Therefore, EGFP-PkDCaaX is able to

partially substitute for EGFP-Pk in the eye.

We conclude from this that the wing is more sensitive than the

eye to loss of farnesylation activity, regardless of which isoform is

used. In the wing, we find that farnesylation is required for either

the Pk or Sple isoforms to participate in asymmetric complex

formation and for controlling alignment of asymmetric complexes

with the tissue axes. In the eye, farnesylation of Pk or Sple appears

partially dispensable for ommatidial rotation (which depends on

asymmetric complex formation), and farnesylation of Sple is also

largely dispensable for determination of ommatidial chirality (a

measure of correct coupling to the tissue axes). However, misex-

pression of Pk in the eye reveals an absolute requirement for farne-

sylation of Pk for disrupting ommatidial chirality and thus normal

coupling to the tissue axes (see Discussion).

Loss of farnesylation causes an increase in cytoplasmic
levels of Pk

Expression of RNAi targeting the two farnesyl transferase sub-

units (FNTA and FNTB) in pupal wings resulted in a disruption in

core protein asymmetry (Figure 5A,C) and trichome polarity (Figures 2B

and 5D). Notably, Pk also became more cytoplasmic, and overall

levels appeared to increase (Figure 5A,B,C). Furthermore, whilst

EGFP-Pk expressed under the Actin5C promoter localised strongly

to junctions and was distributed asymmetrically (Figure 5E), EGFP-

PkDCaaX was more cytoplasmic, and no asymmetry of the remain-

ing junctional population could be detected (Figure 5F). Similar

effects were seen for EGFP-Sple and EGFP-SpleCaaX (Figure

S4A,B), although EGFP-SpleDCaaX appeared more junctionally

localised than EGFP-PkDCaaX (compare Figures S4B and 5F).

We then investigated if loss of farnesylation did indeed lead to an

increase in total Pk levels. Our Actin-EGFP-pk and Actin-EGFP-

pkDCaaX transgenes were not inserted into the same genomic

location, so although levels of EGFP-PkDCaaX were higher (Figure

S4D), we could not exclude the possibility that this was due to

greater transcription of EGFP-pkDCaaX. However, the Actin-Myc-pk-

PP-HA and Actin-Myc-pk-PP-HADCaaX transgenes used for the

phase extraction experiments are inserted into the same genomic

location and should thus be expressed at equivalent levels. Notably,

there was three-fold more Myc-Pk-PP-HADCaaX protein in pupal

wings than Myc-Pk-PP-HA protein, similar to the amount of Myc-

Pk-PP-HA protein detected in a stbm mutant (Figure 5G,H).

Furthermore, in wings in which FNTB was knocked down, Myc-Pk-

PP-HA levels also increased (Figure 5G,H).

Finally, if the increase in levels of Pk that cannot be farnesylated

is due to it no longer being degraded, we would expect that

blocking proteasomal degradation would not cause any further

increase in Pk levels. Indeed, EGFP-PkDCaaX levels did not

increase after MG132 treatment (Figure 5I,J). We conclude that

non-farnesylated Pk escapes proteasomal degradation.

Farnesylation is necessary for Pk to be recruited and
degraded by Stbm

In stbm mutants, or when Pk cannot be farnesylated, we see the

same phenotype: a failure in recruitment of Pk to junctions, and a

failure in Pk degradation. One possibility is that Stbm could be

required for Pk farnesylation, and in the absence of farnesylation

Pk accumulates in the cytoplasm. Alternatively, farnesylation could

be required for Pk to interact with Stbm, and in the absence of this

interaction, Stbm is unable to promote the degradation of Pk.

We first examined whether Stbm was required to farnesylate Pk.

Significantly, phase extraction showed that Myc-Pk-PP-HA was

still farnesylated in the absence of stbm (Figure 2F), indicating that

this was not the case. Furthermore, we failed to detect

farnesylation of Pk in tissue culture cells regardless of whether

Stbm was cotransfected or not (Figure S5A).

We next examined if Pk farnesylation was required for Stbm

to bind to Pk. In tissue culture cells, both full-length Pk or

PkDCaaX could co-immunoprecipitate Myc-tagged Stbm,

suggesting that farnesylation is not an absolute requirement

for Stbm to interact with Pk (Figure S5B). However, high

magnification imaging of pupal wings showed that whilst some

unfarnesylated Pk localised in the vicinity of junctions, staining

was quite diffuse and the co-localisation of Pk with Stbm was

very poor (Figure 6A). Furthermore, EGFP-PkDCaaX local-

isation was not dependent on Stbm activity, as it was not

noticeably altered in a stbm mutant (Figure 6B). Junctional

localisation was also not dependent on endogenous Pk, as

again there is little alteration in EGFP-PkDCaaX localisation

in a pkpk-sple stbm double mutant (Figure S4C). Finally, overall

levels of EGFP-PkDCaaX did not alter in a stbm mutant

(Figure 6C,D).

Overall, this supports the view that although Stbm may be

capable of binding unfarnesylated Pk in vitro, this binding is

insufficient for Stbm to recruit Pk into asymmetric complexes, and

to promote degradation of excess Pk in vivo.

Regulation of Pk degradation via the SkpA SCF ubiquitin
ligase subunit

We have previously shown that loss of the Nedd8 conjugating

enzyme Ubc12 increases Dsh levels at junctions [20]. Loss of

neddylation modulates activity of a Cul-3 ubiquitin ligase complex,

which leads to increased levels of Dsh, and thus other core

proteins, at junctions. Interestingly, there also seems to be a second

target for neddylation, independent of Cul-3 and Dsh, as loss of

Dsh activity does not completely abolish the increase in levels of

the other core proteins seen in Ubc12 mutant wings [20].

A number of lines of evidence suggests that this second target could

be Pk. Firstly, levels of Pk were still elevated in dsh clones after Ubc12

knockdown, whilst levels of other core proteins were largely rescued

(Figure 7A,B). This suggests that Pk levels increase non-stoichiomet-

rically with respect to Stbm. Furthermore, a strong increase in total Pk

levels was observed in wings in which Ubc12 was uniformly knocked

down (Figure 7C,D). This is not a secondary consequence of increased

Dsh levels, as no corresponding increase in Pk levels was seen when

Cul-3 was knocked down, and Pk levels still increased when Ubc12 was

knocked down in a dsh1 mutant background (Figure 7C,D).

We then postulated that the neddylation pathway might act on Pk

indirectly by neddylating another Cullin. In our previous work we

Regulation of Farnesylated Prickle by Strabismus
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Figure 4. Partial requirement for Pk/Sple farnesylation in the eye. (A) Cartoon showing ommatidial polarity and rotation. In the eye imaginal
disc, photoreceptor cells are recruited in a wave from posterior (P) to anterior (A). Photoreceptor cell clusters are initially symmetric, but Fz (green)
becomes localised to the R3/R4 cell boundary, in the cell closest to the dorsal-ventral (DV) midline, or equator. Stbm/Sple (orange) localise to the
apposing cell edge. This specifies R3/R4 cell fate, and causes ommatidia to adopt opposite chirality on either side of the equator, and to rotate 90u in
opposite directions. In eyes in which upstream cues have been lost, core proteins localise asymmetrically and rotate 90u as normal, but the R3/R4 fate
decision is randomised and ommatidia adopt random chirality. In core polarity gene mutants, asymmetric localisation of the other core proteins is
lost or delayed, and ommatidia adopt random chirality and rotate to a random degree. (B–L) Adult eye sections (B–L), and cartoons (B’–L’), of a region
around the equator from wild type (B), pkpk-sple13 (C), pkpk-sple13; ActP-EGFP-sple/+ (D), pkpk-sple13; ActP-EGFP-spleDCaaX/+ (E), pksple1 (F), pksple1; ActP-

Regulation of Farnesylated Prickle by Strabismus
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identified the Cul acting on Dsh by analysing total Fmi levels, but

did not examine Pk levels. Therefore, we screened RNAi lines

targeting the remaining 4 Drosophila Cul proteins, looking for

changes in Pk staining. No evident increase in Pk levels at junctions

was seen when RNAi against Cul-2, Cul-4 and Cul-5 was expressed

in the pupal wing, and RNAi against lin19/Cul-1 caused larval

lethality (data not shown). However, RNAi targeting skpA, which

encodes a subunit of an SCF (Skp1/Cullin-1/F-Box) E3 ubiquitin

ligase, was not lethal when expressed at low temperatures, although

there was substantial disruption of cells within the expression

domain. Nevertheless, elevated levels of Pk were seen in cells

expressing the RNAi (Figure 7E). The specificity of this effect was

confirmed using an independent short homologous RNAi line

(Figure S6A). Furthermore, skpA knockdown caused an increase in

the cytoplasmic levels of Armadillo, a known Cul-1 target (Figure

S6B). Notably, total Pk levels also increased in wings in which skpA

was uniformly knocked down (Figure 7F,G). Therefore, we propose

that the interaction of Pk with Stbm at membranes promotes

proteolytic degradation of Pk via a Cul-1 dependent mechanism.

Discussion

Stbm regulates junctional recruitment and degradation
of farnesylated Pk

We find that whilst Stbm is required for recruitment of Pk into

junctional complexes [6,23], it also promotes Pk degradation. One

possibility is that if Pk forms asymmetric complexes with Stbm and

other core proteins, it is protected from degradation, but if Pk is

EGFP-sple/+ (G), pksple1; ActP-EGFP-spleDCaaX/+ (H), ActP-EGFP-pk/+ (I), ActP-EGFP-pkDCaaX/+ (J), pkpk-sple13; ActP-EGFP-pk/+ (K) and ActP-EGFP-
pkDCaaX/+; pkpk-sple13 (L) flies. pkpk-sple and pksple eyes are completely rescued by ActP-EGFP-sple. 9% and 5% of ommatidia are still inverted for pkpk-

sple13; ActP-EGFP-spleDCaaX/+ and pksple1; ActP-EGFP-spleDCaaX, respectively, but the misrotation phenotype is completely rescued. 1% of ommatidia
are misrotated in pkpk-sple13; ActP-EGFP-pk/+ and ActP-EGFP-pkDCaaX/+; pkpk-sple13 eyes.
doi:10.1371/journal.pgen.1003654.g004

Figure 5. Loss of farnesylation causes an increase in cytoplasmic Pk. (A–D) XY (A,C,D) and XZ (B) sections of pupal wings expressing ptc-
GAL4/FNTBIR-17565R-2; UAS-Dcr2/+ (A,B,D) or ptc-GAL4/+; FNTAIR-2976R-4/UAS-Dcr2 (C). In A-C, staining is for Stbm (green) and Pk (red), and in D staining is
for Fmi (green) and Phalloidin (red). (E,F) pkpk-sple13 clones, marked by loss of ß-gal staining (blue), in wings expressing ActP-EGFP-pk (E) or ActP-EGFP-
pkDCaaX (F). Staining is for GFP (green) and Pk (red in E) or Stbm (red in F). Yellow bar marks the ptc-GAL4 domain. Scale bar 20 mm (A,C–F) or 10 mm
(B). (G,H) Western blot (G) and quantitation (H) of Myc levels relative to Actin levels, in 28 hr pupal wings extracts from ActP-Myc-pk-PP-HA/+, ActP-
Myc-pk-PP-HADCaaX/+, MS1096-GAL4/w; FNTBIR-17565R-2/+; ActP-Myc-pk-PP-HA/+ and stbm6; ActP-Myc-pk-PP-HA/+ flies. Quantitation from 3 biological
replicates, error bars are s.e.m., p***,0.001, p**,0.01, p*,0.05. (I,J) Western blot (I) and quantitation (J) of GFP levels relative to Actin levels, in
extracts from ActP-EGFP-pkDCaaX prepupal wings treated with 10 mM MG132, or DMSO control, for 5 hr at 25uC. Quantitation from 2 biological
replicates, error bars are s.e.m.
doi:10.1371/journal.pgen.1003654.g005
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localised to the plasma membrane without entering an asymmetric

complex then Stbm triggers its degradation. If Pk functions in

feedback loops, this might act as a mechanism to restrict Pk action

to cellular sites where Stbm is in asymmetric complexes. Notably,

we recently reported a similar mechanism involving Dsh, whereby

a population of Dsh at junctions is subject to degradation mediated

by a Cullin-3/Diablo/Kelch E3 ubiquitin ligase [20]. Therefore,

this could be a general mechanism for limiting the amount or

activity of the cytoplasmic core proteins operating in feedback

loops.

We note that there seem to be differences in the ability of the

cytoplasmic proteins, when in excess, to stabilise the other core

proteins at junctions. Excess Dsh at junctions caused by loss of

Cul-3 or Dbo/Kel activity results in a striking accumulation of the

other core proteins [20], whilst there is only a mild increase in the

case of excess Pk (for example when Ubc12 activity is knocked

down in a dsh background, Figure 7A). This may suggest that Dsh

is better at stabilising the other core proteins than Pk, and is

consistent with the observation that loss of Dsh has stronger effects

on amplification of asymmetry [32].

How Pk might be targeted for degradation is unknown, but

degradation is dependent on the SCF complex component skpA

and the proteasome. It is unclear whether Pk is a direct target of an

SCF complex. Interestingly, in vertebrates a Smurf ubiquitin ligase

was demonstrated to target Pk for degradation [24]; however

Smurf is a HECT E3 ubiquitin ligase and thus does not act in a

complex with Cullins. Furthermore, no planar polarity defects

were seen when we expressed RNAi against the fly Smurf

homologue, although the extent of Smurf knockdown was not

assessed (E. Searle and D.S., unpublished data).

We also show for the first time that Pk is farnesylated in vivo, and

that farnesylation of Pk is a prerequisite for stable localisation of Pk

with Stbm, and for it to function in asymmetric complex formation

and clustering of core proteins into junctional puncta. Further-

more, farnesylation is also necessary for Stbm to control Pk levels,

consistent with Stbm triggering degradation of Pk that is already in

membranes.

Whether Pk localisation to junctions specifically requires

farnesylation, or whether another lipid modification could be

substituted, is unknown. Nevertheless, the chances of a cytoplas-

mic protein meeting a transmembrane protein are much lower

than the chances of two transmembrane proteins meeting [33].

Therefore, we propose that the role of farnesylation is to promote

Pk localisation to membranes, where it is more likely to interact

with Stbm. Hence farnesylation is required both for Stbm-Pk

containing asymmetric complexes to form, by synergising with

weak direct interactions between Stbm and Pk, and also for Stbm

to promote degradation of excess Pk.

Differential requirements for Pk and Sple farnesylation in
the wing and eye

Farnesylation is essential for Pk/Sple function in the wing, but

appears to be less important in the eye and leg. In the case of Sple,

the apparent reduced requirement for farnesylation for its activity

in the eye might have been due to its unique N-terminus bypassing

the need for farnesylation. Interestingly, EGFP-SpleDCaaX does

appear to localise better to junctions in the wing than EGFP-

PkDCaaX (compare Figures 5F and S4B). However, EGFP-

SpleDCaaX does not localise asymmetrically in the wing (Figure

S4B), nor can it rescue pkpk-sple mutants (Figure 3K), suggesting its

ability to partially rescue in the eye cannot be explained simply by

it associating more strongly to junctions.

An alternative explanation for the ability of non-farnesylated

Sple to partially function in the eye but not the wing is simply that

less Sple activity is necessary for the R3/R4 fate decision than for

trichome placement. In the eye, the core proteins localise

asymmetrically at the R3/R4 cell boundary [34,35], where they

operate to bias a Notch/Delta feedback loop that specifies R3 and

R4 photoreceptor cell fates [36–38]. In fz mutant eyes, the other

core proteins never adopt an asymmetric localisation, whereas in

stbm or pkpk-sple mutant eyes Fz does become asymmetric, but the

onset of asymmetry is delayed [34]. Interestingly, a Fmi:Fmi-Fz

complex can stably localise to junctions in the pupal wing [39]. In

the eye, a similar Fmi:Fmi-Fz complex may ultimately be sufficient

to generate asymmetry, when coupled to a Notch-Delta feedback

loop to further amplify differences in cell fate. In the absence of

Pk/Sple, this complex would form too late to correctly regulate

ommatidial rotation and chirality. Perhaps only a weak localisation

of Sple to membranes with Stbm is sufficient to bias the

orientation of Fz asymmetric localisation, and to do so early

enough for correct R3/R4 fate decision and rotation to occur. A

similar rationale could also explain the ability of EGFP-

SpleDCaaX to partially rescue the ectopic joints in pkpk-sple and

pksple legs, where joints are specified by a Notch/Delta feedback

loop, biased by the asymmetric localisation of the core proteins

[40,41].

Interestingly, ommatidial rotation is completely rescued by

EGFP-SpleDCaaX, whilst the rescue of chirality is incomplete.

Similarly, EGFP-PkDCaaX largely rescues the misrotation phe-

notype. However, only EGFP-Pk, but not EGFP-PkDCaaX can

cause a dominant eye chirality phenotype (indicating a failure to

couple to the tissue axes). Thus, ommatidial rotation appears to

Figure 6. Farnesylation is required for Stbm to promote Pk
recruitment to junctions and Pk degradation. (A) High magnifi-
cation image of pkpk-sple13 pupal wing clone, marked by loss of ß-gal
staining (blue), in wings expressing ActP-EGFP-pkDCaaX. Staining is for
GFP (green) and Stbm (red). Scale bar 5 mm. (B) stbm6 pupal wing clone,
marked by loss of Stbm (blue) staining, in wings expressing ActP-EGFP-
pkDCaaX. Staining is for GFP (green) and Fmi (red). Scale bar 20 mm.
(C,D) Western blot (C) and quantitation (D) of GFP levels relative to
Actin levels, in 28 hr pupal wing extracts from ActP-pkDCaaX/+ and
pActP-pkDCaaX/+; stbm6 flies. Quantitation from 3 biological replicates,
error bars are s.e.m., p = 0.40.
doi:10.1371/journal.pgen.1003654.g006
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Figure 7. The SkpA ubiquitin ligase subunit regulates Pk degradation. (A,B) dshV26 clones, marked by loss of Dsh staining (red), in wings
expressing ptc-GAL4/+; Ubc12IR-7375R-3/+, stained for Stbm (green in A) or Pk (green in B). Note that Pk still accumulates at high levels at junctions
when Ubc12 RNAi is expressed in dshV26 clones, but Stbm does not (arrows). Yellow bar marks the ptc-GAL4 domain. Scale bar 20 mm. (C,D) Western
blot (C) and quantitation (D) of Pk levels relative to Actin levels, in 28 hr pupal wing extracts from w1118, MS1096-GAL4; Ubc12IR-7375R-3/+, MS1096-GAL4;
Cul3IR-109415/+, dsh1 and dsh1 MS1096-GAL4; Ubc12IR-7375R-3 male flies. Quantitation from 3 biological replicates. p*,0.05, p**,0.01. (E) Pk (green), Stbm
(red) and Fmi (blue) staining of wings expressing ptc-GAL4/skpAIR-46605. Note that whilst the increase in Pk levels in wings expressing Ubc12 RNAi may
contribute to clustering of the other core proteins, the increase in Pk in wings expressing low levels of skpA RNAi is insufficient to do this. (F,G)
Western blot (F) and quantitation (G) of Pk levels relative to Actin levels, in 28 hr pupal wing extracts from w1118 and MS1096-GAL4/+; skpAIR-46605/+
female flies. Quantitation from 3 biological replicates, error bars are s.e.m,. p*,0.05.
doi:10.1371/journal.pgen.1003654.g007
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require less Pk/Sple activity than does coupling to the tissue axis.

We propose that when Pk is misexpressed in a wild type

background, it displaces Sple from asymmetric complexes, and

prevents Sple from mediating coupling to the tissue axes, but that

this displacement requires higher levels of Pk activity and is thus

enhanced by farnesylation. Therefore, whilst farnesylation pro-

motes membrane association of both Pk and Sple, this is only

essential for those aspects of Pk and Sple function that require the

highest levels of activity.

Materials and Methods

Fly stocks and genetics
Fly stocks are described in FlyBase. pkpk-sple13, stbm6, dshV26 and

dor8 are null alleles, and dsh1 is null for planar polarity. pkpk1 and

pksple1 do not express the Pk and Sple isoforms, respectively. RNAi

lines are from VDRC (MVDIR-24253, Cul-3IR-109415, skpAIR-46605),

NIG (FNTBIR-17565R-2, FNTAIR-2976R-4, Ubc12IR-7375R-3) or DRSC

(skpAshRNA-HMS00657).

Pk and Sple isoforms were tagged at the N-terminus with EGFP,

and for the DCaaX versions, the last 4 amino acids were deleted.

Myc-pk-PP-HA and Myc-pk-PP-HADCaaX were made by inserting

6 myc epitopes at the N-terminus, and deleting the last 4 amino

acids as required. Overlap PCR was used to insert a Prescission

protease cleavage site (LEVLFQGP) followed by a HA tag

(YPYDVPDYA) after amino acid 700 of the Pk open reading

frame, which is in an unstructured, poorly conserved region.

EGFP-pk and EGFP-pkDCaaX were cloned in pActP-FRT-polyA-

FRT. EGFP-sple, EGFP-spleDCaaX, Myc-pk-PP-HA and Myc-pk-PP-

HADCaaX were cloned in a modified pActP-FRT-polyA-FRT vector

with an attB site downstream of the polylinker, and inserted into

the attP2 landing site by øC31 integration. Transgenics were

generated by Bestgene and Genetivision.

Mitotic clones were induced using the FLP/FRT system and

Ubx-FLP. Expression from pActP transgenes used Ubx-FLP in the

wing, or ey-FLP in the eye, and for legs the FRT-polyA-FRT cassette

was flipped out in the germline using hs-FLP. For adult wings,

MVDIR-24253 was expressed using MS1096-GAL4 at 18uC and

FNTBIR-17565R-2 using 459.2-GAL4 at 29uC. For pupal wings,

RNAi lines were expressed using ptc-GAL4, with or without UAS-

Dcr2, and larvae were raised at 18uC and shifted to 25uC at 0 hr

APF (Ubc12 and skpA lines) or raised at 25uC and shifted to 29uC at

0 hr APF (FNTA and FNTB lines). For pupal wing Westerns,

RNAi lines were expressed with MS1096-GAL4, larvae were raised

at 18uC and male prepupae shifted to 29uC for 26 hr at 0 hr AP

(Ubc12/Cul-3 blot), or female larvae shifted to 25uC for 28 hr (skpA

blot).

Histology and immunolabelling
Adult wings were mounted in GMM and eye sections were

prepared as described [42]. Pupal wings were dissected at 28 hr

APF at 25uC and imaged as previously [43]. Primary antibodies

for immunostaining were rat anti-Pk (recognises both Pk and Sple

isoforms, [20]), mouse monoclonal anti-Fmi (DSHB, [44]), rabbit

anti-Stbm [45], rat anti-Ecadherin (Ecad, DSHB, [46]), mouse

monoclonal anti-Armadillo (Arm, DSHB), rabbit anti-GFP

(Abcam), mouse monoclonal anti-Myc 9E10 (DSHB), rabbit anti

ß-gal (Cappel) and mouse monoclonal ß-gal (Promega). Phalloidin-

A568 was from Molecular Probes.

Biochemistry and Western analysis
For pupal wing Westerns, 28 hr APF pupal wings were dissected

into sample buffer, and 1 pupal wing equivalent was loaded per

lane. For MG132 experiments, wing discs from 0 hr APF

prepupae were dissected in Schneider’s medium containing 10%

FCS, and then incubated for 5 hr in Schneider’s medium

containing 10 mM MG132 in DMSO (or DMSO control). Wings

were then transferred into sample buffer.

For phase extractions, total cell lysates from 120 28 hr pupal

wings were made in Tris-buffered saline (TBS, 50 mM Tris-HCl,

pH 7.5, 150 mM NaCl) containing 1% Triton X-114 (precon-

densed in TBS) and protease inhibitors (Roche). Lysates were

digested for 1 hr at 4uC with 0.5 u Prescission protease (Xerxes),

in the presence of 1 mM DTT and 0.5 mM EDTA. Samples were

then heated to 37uC for 2 min, and spun at 14K for 2 min at RT.

The upper aqueous phase and lower detergent phases were

separated and readjusted to TBS/1% Triton X-114, before

precipitating with chloroform/methanol and resuspending in

sample buffer. Recovery of the protein pellets was confirmed

using control antibodies for the aqueous and detergent fractions on

Westerns.

For tissue culture, Myc-pk-PP-HA, stbm-EYFP, EGFP-pk, EGFP-

pkDCaaX and Myc-stbm were cloned in pMK33ß. Phase extractions

were performed as above. For immunoprecipitations, lysates were

made in IP buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1%

Triton X-100, 16 protease inhibitor cocktail (Roche)), and used

rabbit anti-GFP serum (Abcam) and protein G sepharose (Xerxes).

Westerns were probed with rat anti-Pk [20], rabbit anti-Fz [47],

rabbit anti-GFP (Abcam), mouse monoclonal anti-Myc 9E10

(DHSB), rabbit anti-HA (Abcam), mouse monoclonal anti-

Tubulin DM1A (Sigma) and mouse monoclonal anti-Actin AC-

40 (Sigma), and imaged on X-ray film or a UVIprochemie gel

documentation system (UVItec) for quantitation. Bands from

Westerns of at least three biological replicates were quantitated in

ImageJ.

Supporting Information

Figure S1 EGFP-Pk localisation and levels are regulated by

Stbm. (A) stbm6 clone, marked by loss of ß-gal staining (red), in

pupal wings expressing ActP-EGFP-pk, stained for GFP (green).

Scale bar 20 mm. (B) Western blot probed with anti-GFP antibody

showing EGFP-Pk levels in ActP-EGFP-pk/+ and stbm6; ActP-EGFP-

pk/+ pupal wings, with Actin as loading control. (C) dor8 clone,

marked by intracellular accumulation of Fmi (red), stained for Pk

(green). No accumulation of Pk is seen inside the clone.

(TIF)

Figure S2 Analysis of Pk prenylation. (A) Schematic of the

biosynthetic pathway that produces farnesyl and geranylgeranyl

lipid adducts from HMG CoA. Protein names are in grey and the

fly genes are in red. The farnesyl-diphosphate farnesyl transferase

and geranylgeranyl transferase enzymes consist of alpha and beta

subunits, and farnesyl-diphosphate farnesyl transferase and type I

geranylgeranyl transferase share their alpha subunits (FNTA).

Both these enzymes target CaaX motifs, whilst type II geranylger-

anyl transferase targets CC or CaC motifs. Sterol synthesis occurs

downstream of farnesyl-PP, but there is no sterol branch in flies.

Modified from Santos and Lehmann [48]. (B) Diagram of the

Myc-Pk-PP-HA protein, showing the position of the PET/LIM

domains of Pk and the inserted Prescission protease (PP) cleavage

site and HA tag. (C) pkpk-sple13 clone, marked by loss of ß-gal

staining (blue), in wings expressing ActP-Myc-pk-PP-HA, stained for

Myc (green) and Pk (red). Note asymmetric localisation of Myc-Pk-

PP-HA in wild type and pkpk-sple mutant tissue. Scale bar 20 mm.

(D) Adult wing from pkpk-sple13; ActP-Myc-pk-PP-HA/+ fly. (E)

Western blot showing lysates from flies expressing ActP-Myc-pk-PP-

HA, before and after PP cleavage, probed with anti-Myc or anti-

HA antibodies. Cleavage produces a large N-terminal fragment
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tagged with Myc and a small C-terminal fragment tagged with HA

(arrows). A non-specific band on the HA blot is marked with an

arrowhead.

(TIF)

Figure S3 Partial requirement for Sple farnesylation in the leg.

(A–G) Adult legs from wild type (A), pkpk-sple13 (B), pksple1 (C), pkpk-

sple13; ActP-EGFP-sple/+ (D), pkpk-sple13; ActP-EGFP-spleDCaaX/+ (E),

pksple1; ActP-EGFP-sple/+ (F) and pksple1; ActP-EGFP-spleDCaaX/+
(G) flies. Tarsal segments 1–5 are marked in panel A. Black

arrowheads show joints, and grey arrowheads are partial ectopic

joints. 50% of pkpk-sple13; ActP-EGFP-spleDCaaX/+ and pksple1; ActP-

EGFP-spleDCaaX/+ legs contain a partial ectopic joint in T4.

(TIF)

Figure S4 Effects of deleting the prenylation motif of Pk or Sple

in the pupal wing. (A,B) 28 hr pupal wings expressing clones of

ActP-EGFP-sple (A) and ActP-EGFP-spleDCaaX (B), stained for GFP

(green) and Fmi (red). EGFP-Sple localises to distal cell edges, in a

region of the wing where trichome polarity is reversed. Scale bar

20 mm. (C) pkpk-sple13 stbm6 double mutant clone, marked by loss of

ß-gal staining (blue), in a 28 hr pupal wing expressing ActP-EGFP-

pkDCaaX. Staining is for GFP (green) and Ecad (red). (D) Western

blot showing GFP levels relative to Actin levels, in 28 hr pupal

wing extracts from ActP-EGFP-pk/+,and ActP-EGFP-pkDCaaX/+
flies.

(TIF)

Figure S5 In vitro analysis of Pk prenylation and binding to

Stbm. (A) Phase separation of the HA-tagged C-terminus of Myc-

Pk-PP-HA, after cleavage with PP. Cells were transfected with

pAc5.1-Myc-Pk-PP-HA, with (right) or without (left) pMK33ß-Stbm-

EYFP. Blots show HA staining of total lysate, aqueous fraction (Aq)

or detergent fraction (Det). No prenylation of Pk is observed

regardless of whether Stbm is co-transfected. (B) Western blots

showing co-IP of Myc-Stbm with EGFP-Pk and EGFP-PkDCaaX.

Note that Jenny et al [6] also showed in GST pulldowns that Pk

lacking the last 60 amino acids still binds to Stbm.

(TIF)

Figure S6 SkpA regulates levels of Pk at junctions. (A,B) 28 hr

pupal wings expressing ptc-GAL4/+; skpAshRNA-HMS00657/+, stained

for Pk (green), Stbm (red) and either Fmi (blue in A) or Arm (blue

in B). Yellow bar marks the ptc-GAL4 domain. Scale bar 20 mm.

(TIF)

Table S1 RNAi screen of HMG CoA pathway components. In

the initial screen, RNAi lines were crossed to MS1096-GAL4 at

29uC. Those lines where wings could not be mounted due to

lethality or where the wings were disrupted (shrivelled or curly)

were then crossed to MS1096-GAL4 at 25uC or 459.2-GAL4 at

29uC. Multiple wing hair phenotypes are common, and are most

likely caused by large cells/cell division defects.

(DOC)
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