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ABSTRACT

MicroRNAs (miRNAs) regulate gene expression
by inhibiting translation of target mRNAs through
pairing with miRNA recognition elements (MREs),
usually in 3’ UTRs. Because pairing is imperfect,
identification of bona fide mRNA targets presents
a challenge. Most target recognition algorithms
strongly emphasize pairing between nucleotides
2–8 of the miRNA (the ‘seed’ sequence) and the
mRNA but adjacent sequences and the local context
of the 3’ UTR also affect targeting. Here, we show
that dispatched 2 is a target of miR-214. In zebra-
fish, dispatched 2 is expressed in the telencephalon
and ventral hindbrain and is essential for normal
zebrafish development. Regulation of dispatched 2
by miR-214 is via pairing with three, noncanonical,
weak MREs. By comparing the repression capacity
of GFP reporters containing different dispatched 2
sequences, we found that a combination of weak
sites, which lack canonical seed pairing, can effec-
tively target an mRNA for silencing. This finding
underscores the challenge that prediction algo-
rithms face and emphasizes the need to experimen-
tally validate predicted MREs.

INTRODUCTION

MicroRNAs (miRNAs) are highly conserved noncoding
RNAs that posttranscriptionally regulate gene expression,
usually by inhibiting translation (1–3). Mature miRNAs
are generated from long endogenous primary transcripts
by the RNAse III enzymes, Drosha and Dicer resulting in
�22-nt double-stranded RNAs (4–7). One strand of the
duplex gets assembled into the RNA-induced silencing
complex (RISC) coincident with target identification and
pairing (8,9). RISC identifies target mRNAs based on

complementarity between the miRNA and mostly
30 UTRmRNA sequences resulting in translational repres-
sion or, in cases where the pairing is perfect, degradation of
the mRNA (10). It has been suggested that 30–50% of
human genes are regulated by miRNAs, since a single
miRNA can target multiple mRNAs and a given mRNA
may be regulated by multiple miRNAs (11–13).
MiRNAs play essential roles in development, phys-

iology and disease processes (14,15). Consistent with this,
most miRNAs are expressed in a development-, tissue- or
cell type-specific manner (16,17). Direct cloning and geno-
mic analyses suggest the presence of hundreds of miRNAs
in higher eukaryotic genomes but only a small number
have been fully characterized (18–20). Besides identifying
the full complement of miRNAs, a major problem in func-
tional studies is the identification of the complete range of
target mRNAs. Bioinformatic approaches to identify
miRNA targets have been very effective in plants where
complementarity between miRNAs and their target
mRNAs is usually perfect (21). In contrast, pairing in
higher eukaryotes is typically imperfect with numerous
gaps, mismatches and G:U base pairs (22). Computational
and experimental evidence led to the ‘seed rule’, where base
pairing between nucleotides 2–8 of the miRNA (the seed
sequence) and its target mRNA is crucial (22–25). While
the ‘seed rule’ has been useful, there are many instances
where gene silencing is observed despite multiple gaps and
mismatches in the seed region (24,26,27). Additional work
has shown that other features in the 30 UTR beyond seed
pairing can affect silencing (24,28–31). Hence, a better
understanding of the exact requirements for miRNA
recognition is needed to facilitate predictive algorithms,
functional characterization studies, to better design
siRNAs in order to reduce potential off-target effects.
Previously, we showed that miR-214 functions to mod-

ulate the Hedgehog (Hh) pathway during zebrafish somi-
togenesis (27). Regulation of Hh signaling by miR-214
is primarily through targeting of Suppressor of Fused
(sufu). Here, we show that miR-214 also targets dispatched
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homolog 2 (disp2). Interestingly, for both sufu and disp2,
we identified three possible miRNA recognition elements
(MREs), but none of these sites contain a perfect seed
match for miR-214. Our results suggest that weak sites
which by themselves are capable of only minimal silen-
cing, can combine to effectively reduce gene expression
to levels comparable to that observed in the presence of
perfectly complementary sites.

MATERIALS AND METHODS

Microinjection

Fertilized one-cell zebrafish embryos were injected with
1 nl volumes at the following concentrations: 2 mg/ml of
miR-214, 4 mg/ml of disp2MO (50-TGGACCCGCTTTCC
ATGCTGGAGTA-30), 100 ng/ml of in vitro transcribed,
capped disp2 mRNA, 50 ng/ml of in vitro transcribed,
capped GFP reporter mRNAs.

Target protectors

Target protectors were named and designed as described
(32). Disp2TPmir214.1 (50-CTTGGTTGTGTAAAAGA
ACAGGCAC-30), disp2TPmir214.2 (50-ATGTATTCAT
GTGTAGAACAGTTAT-30), disp2TPmir214.3 (50-AGG
TATTATTTACCACAACATGCGA-30) were injected
into zebrafish embryos separately or in combination
with 1 nl at 1 mg/ml concentrations.

Molecular cloning

The disp2 (NM_212434.1) 30 UTR was amplified by
RT–PCR using a forward primer (50-AGAATTCAAT
GGAAAGCGGGTCCATTTCC-30) and a reverse
primer (50-GGTCTAGACCACAACATGCGATAGAA
TGTAT-30). The resulting DNA was cloned downstream
of the GFP ORF in the pCS2+vector (33). Deletion
mutants were created by reverse PCR (34) using the fol-
lowing primers. All clones were verified by DNA
sequencing.
Reverse primer for �3:
50-GGTCTAGAGGGTTCAAATGTCATATTG

CAGT-30

D1 forward primer:
50-TTACACAACCAAGCCATGAGT-30

D1 reverse primer:
50-TTGTACATTTGCAGTTCAAGG-30

D2 forward primer:
50-ATGAATACATTCTATCGCATG-30

D2 reverse primer:
50-ACGTTTAGAGTAAAATAACTG-30

D3 forward primer:
50-TACCTTTTCAAACTTGATTTG-30

D3 reverse primer:
50- TCATGTGTAGAACAGTTATAG-30.

Immunoblotting

Proteins were extracted from deyolked 1 day postfertiliza-
tion (dpf) embryos in lysis buffer (25mM HEPES, pH 7.5,
5mM MgCl2, 300mM NaCl, 1mM EDTA, 0.2mM
EGTA, 1mM DTT, 10% glycerol, 1.0% Triton X-100

and 1mM PMSF). 20 mg of total protein were then sepa-
rated on 10% SDS–polyacrylamide gels and transferred to
PVDF-plus membranes. Rabbit polyclonal antibodies
against GFP (Torrey Pines Biolabs, East Orange, NJ,
USA) and a-tubulin (Abcam, Cambridge, MA, USA)
were used at concentrations of 1 : 1000 and 1 : 500, respec-
tively. HRP-conjugated secondary antibodies against
rabbit (GE Healthcare, Piscataway, NJ, USA) were then
used for visualization with ECL. For quantification, GFP
levels were normalized to a-tubulin control levels after
which the ratio of GFP in the presence of miR-214 was
determined compared to that in the absence of miR-214.

Immunohistochemistry

Immunostaining was as described (27). Rabbit polyclonal
antibodies against Prox1 (Abcam) and 4D9 mouse mono-
clonal antibodies against Engrailed were used at concen-
trations of 1:1000 and 1:100, respectively. Secondary
antibodies against rabbit or mouse IgG were Cy3 or Cy2
conjugated (Jackson ImmunoResearch, West Grove, PA,
USA) and were used at 1:1000 and 1:500, respectively.
Embryos were mounted in 50% glycerol and imaged as
described (27).

RESULTS

Disp2 is a target ofmiR-214

Previous studies have shown that the expression of miR-
214 in zebrafish starts from the 6-somite stage, suggesting
an important role for this miRNA during early zebrafish
development (16,27,35). Overexpression of miR-214 in
zebrafish results in embryos consistently exhibiting a ven-
trally curved body axis at 48 h postfertilization (hpf)
(Figure 1B). A similar curling down phenotype was pre-
viously observed in embryos injected with three different
antisense morpholino oligonucleotides directed against
disp2 (36; data not shown) (Figure 1C). When prediction
algorithms were used to identify potential targets for miR-
214, we found three possible MREs in the 30 UTR of disp2
(Figure 1D). None of the three sites contain perfect
matches to the seed regions (nucleotides 2–8), but since
we previously showed that miR-214 targets sufu without
perfect seed pairing (27), we sought to determine whether
miR-214 could also target disp2.

To test whether disp2 is targeted by miR-214, we created
reporter constructs in which the entire disp2 30 UTR, or
portions thereof, was cloned downstream of the coding
region of GFP (Figure 2A). As a control, we also created
a construct in which two perfect MREs for miR-214 were
placed downstream of the GFP coding region (Figure 2A).
To assay silencing, synthetic mRNAs derived from these
reporters were injected into single-cell zebrafish embryos
in the presence or absence of exogenous miR-214 and
fluorescence levels in live embryos were determined at 24
hpf (Figure 2B–K). As expected, the presence of two per-
fect MREs for miR-214 led to efficient silencing of GFP in
the presence of miR-214 (Figure 2F and G). Decreased
fluorescence was also observed when the entire 30 UTR
from disp2 was inserted downstream of GFP (Figure 2D
and E). Deletion of the downstream half of the 30 UTR
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(�3) did not affect silencing, consistent with the fact the
none of the three predicted MREs are located in this
region (Figure 2H and I). In contrast, deletion of the
upstream portion, which contains all three predicted
MREs (�5), abolished silencing (Figure 2J and K).

To analyze silencing from the entire population of
injected embryos, lysates were prepared from embryos
injected as above and western blots were performed with
antibodies against GFP (Figure 2L and M). The presence
of either the entire 30 UTR (construct C) or the down-
stream half (�3) led to a reduction of GFP levels by
�60% in the presence of miR-214, similar to that observed
when the 30 UTR contained 2 perfect MREs (2MRE).
As above, silencing was not observed upon deletion of
the region containing the predicted MREs (�5) nor was
silencing observed when the 30 UTR was derived from the
GFP vector (GFP). As a specificity control, we also
co-injected an unrelated miRNA (miR-20) with the C con-
struct. No silencing of GFP was observed (Figure 2N).
Lastly, we injected antisense morpholino oligonucleotides
against miR-214 (214MO) to determine whether inhibition
of endogenous levels of miR-214 during early zebrafish
development would inhibit silencing of the GFP reporter.
As shown (Figure 2O–T), inhibition of endogenous levels
of miR-214 led to increased GFP levels. Together, the

fluorescence assays and western blots demonstrate that
disp2 is targeted by miR-214 and are consistent with silen-
cing mediated by the three predicted MREs.

Genetic interaction betweenmiR-214 andDisp2

Injection of zebrafish embryos with any of three different
antisense morpholino oligonucleotides against disp2
(disp2MO) results in embryos displaying a downward cur-
vature of the tail at 48 hpf (36) (Figure 3E; data not
shown). If miR-214 targets disp2, overexpression of miR-
214 in zebrafish embryos should recapitulate the curling
down phenotype. As shown in Figure 3, over 80% of miR-
214 injected embryos displayed the curling down pheno-
type. Interestingly, the percent of embryos displaying the
curling down phenotype was nearly identical between
injection of miR-214 and a morpholino against the trans-
lation start site for disp2 (disp2MO). If the effect of excess
miR-214 is specific, co-injection of disp2 mRNA should be
able to suppress the overexpression phenotype. As shown
in Figure 3C and F, there was a significant decrease in the
fraction of ventrally curved embryos when both miR-214
and disp2 mRNA were co-injected (from 84% to 55%).
Since most miRNAs target multiple mRNAs, it is likely
that miR-214 can still silence other mRNAs such that
partial phenotypic rescue is the expected result. These
results strongly suggest genetic interaction between miR-
214 and disp2, and further demonstrate that disp2 is
indeed a target of miR-214.
In early zebrafish embryos, disp2 is expressed primarily

in the central nervous system with highest expression in
the telencephalon and ventral hindbrain (36). While disp1
and disp2 are closely related, no Hh signaling defects have
been observed with loss of disp2 as compared to loss of
disp1 (36). However, loss of disp2 leads to loss of the
neural marker transcription factor Prox1 in the hindbrain
at 24 hpf (Kim,H.R., Nakano,Y. and Ingham,P.W.,
manuscript in preparation) (Figure 4E). If miR-214 targets
disp2, overexpression of miR-214 should also block Prox1
expression in the hindbrain at 24 hpf. To test this, we
marked the hindbrain midbrain boundary by immuno-
staining with CY2-tagged antibodies against Engrailed
(green) and co-stained to detect Prox1 expression in the
hindbrain. As shown in Figure 4, a significant decrease
(>50%) in the number of Prox1 positive hindbrain neu-
rons (red) was observed in embryos injected with miR-214
at 24 hpf (Figure 4B and F), similar to the decrease
observed in the disp2 morphants (Figure 4E and F). Sig-
nificantly, the decreased numbers of Prox1 nuclei caused
by injection of miR-214 could be rescued by co-injection
of disp2 mRNAs (Figure 4C and F). These data are con-
sistent with regulation of disp2 by miR-214 during early
zebrafish development.

Regulation of disp2 by miR-214 requires multiple
weak MREs

Based on the above results as well as previously published
work (27), we have shown that miR-214 targets both disp2
and sufu. Both genes contain three predicted MREs but
none of these elements obey the seed rule for
miRNA:mRNA pairing (22–25). One possibility is that
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Figure 1. Curling down phenotypes in zebrafish embryos. (A–C)
Overexpression of miR-214 results in ventrally curved embryos at 2 dpf,
a phenotype that mimics the effect of injection of antisense morpholino
oligonucleotides against dispatched homolog 2 (disp2MO). A wild-type,
uninjected embryo at 2 dpf is shown in (A) (UIC). (D) The 30 UTR
of disp2 contains three predicted MREs for miR-214.
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multiple weak MREs can act combinatorially to enable
efficient silencing similar to the effect of one or more perfect
MREs. We therefore sought to determine whether multiple
weak MREs are required for silencing disp2. For this,
six GFP reporter constructs (Figure 5A) were created by
deletion of one or more of the three disp2MREs. RNAwas
prepared from each of the resulting constructs, injected into
zebrafish embryos and analyzed for fluorescence in living

embryos (data not shown). Western blots were also per-
formed on embryo lysates in the presence and absence of
miR-214 (Figure 5). As in Figure 2, co-injection ofmiR-214
led to an almost 60% decrease in GFP levels when the
30 UTR contained all three weak disp2 MREs (Figure 5B
and C). When only two MREs were present, silencing of
GFP was roughly equivalent to that observed with all three
sites, regardless of the combination (Figure 5 D1, D2, D3).
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Figure 2. The disp2 is targeted by miR-214. (A) GFP reporters were constructed that contain the indicated 30 UTR sequences from disp2 (C, �3, �5),
a synthetic 30 UTR that contains two perfect pairing sites for miR-214 (2MRE), or the normal GFP 30 UTR sequence (GFP). The predicted MREs
for miR-214 are indicated by the colored rectangles. (B–K) mRNAs derived from the reporters in (A) were injected into single-cell embryos in the
presence or absence of co-injection of miR-214. Fluorescence was examined at 1 dpf in living embryos. (L and M) Western blots of lysates from
embryos injected as in (B–K) were performed with antibodies against GFP and the levels of GFP were quantitated as described in the Material and
Methods section. Relative GFP levels (� SEM) were plotted with asterisks representing significant decreases between the control GFP construct and
the indicated constructs. Significance was analyzed using Student’s t-test (P< 0.001 for constructs 2MRE and C, P< 0.01 for construct �3; n> 3).
(N) mRNAs encoding the complete disp2 30 UTR fused to GFP were injected in the presence and absence of miR-20. Embryo lysates were prepared,
and GFP levels were examined by western blot as above. (O–R) Single-cell embryos were injected as indicated in the presence or absence of antisense
morpholino oligonucleotides against miR-214 (214MO). Fluorescence was examined at 1 dpf. (S and T) Western blots of embryo lysates were
performed and quantitated as above. Relative GFP levels (� SEM) were plotted with asterisks representing significant decreases between the
GFP reporter alone and the indicated co-injections. Significance was analyzed using Student’s t-test (P< 0.001, n> 3).
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In contrast, single sites were mostly incapable of effective
gene silencing although relatively small decreases were con-
sistently observed, especially for MRE3 (Figure 5 D12).
The results from Figures 2 and 5 demonstrate that the
combination of three weak MREs are as effective in med-
iating silencing as two perfect MREs (2MRE) followed
followed closely by the presence of two weak sites, which
are far more effective than a single weakMRE. Thus, weak
MREs can act combinatorially to silence gene expression.

To further validate the role of each of the three weak
MREs, we would ideally like to create point mutations
that abolish MRE function. However, the results thus far
illustrate that the precise requirements for any particular
base are apparently quite flexible. Thus, to selectively
silence one or more of the three MREs, we chose to utilize
antisense morpholino target protectors designed to hybri-
dize to MREs and block the ability of miRNAs to effect
silencing (32). Three target protectors were designed com-
plementary to portions of each of the three MREs in the
30 UTR of disp2 (TP1, TP2, TP3). First, we co-injected all
three target protectors with the C construct and miR-214.
The presence of the three target protectors impaired

silencing in the presence of miR-214 (Figure 6A–F).
Co-injection of all three target protectors was not quite as
efficient at blocking silencing as was co-injection of anti-
sense morpholino oligonucleotides against miR-214
(Figure 2), but there was still a significant increase in
GFP levels. Next, we co-injected single and pairwise com-
binations of target protectors (Figure 6G and H). As
shown, each individual target protector was able to restore
GFP expression (from 10% to 30%) whereas pairwise
combinations varied from a 30% increase in GFP levels
to complete rescue in the presence of target protectors
1–2. Taken together, efficient silencing of disp2 30 UTR by
miR-214 requires contribution from multiple weak MREs.
Although none of the three MREs contain perfect seed
sequences, the three weak MREs can act combinatorially
to silence gene expression.

DISCUSSION

Dispatched Homolog 2 is a target of miR-214

Here, we provide several lines of evidence that support the
hypothesis that disp2 is a target of miR-214. First, using
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GFP reporters in zebrafish embryos, we were able to show
that silencing bymiR-214 requires the presence of the disp2
30 UTR. Second, overexpression of miR-214 produced a
curling down phenotype similar to that observed in disp2
morphants. Third, interference with disp2 function led
to the loss of Prox1 positive nuclei in the hindbrain at 24
hpf and overexpression of miR-214 phenocopied this
effect. Importantly, the loss of Prox1 nuclei by injection of
miR-214 could be rescued by co-injection of disp2 mRNA.
Similarly, the curling down phenotype could be partially

suppressed by co-injection of disp2 mRNA. Finally, consis-
tent with regulation by miR-214, disp2 is expressed in
the neural tube at 1 dpf, whereas miR-214 is not (27,36).
These data are entirely consistent with regulation of disp2
by miR-214.
One limitation of the above results is that the exact func-

tion of Dispatched 2 remains to be determined. Despite the
fact that it is very similar to Dispatched 1, loss of
Dispatched 2 does not lead to detectable Hh signaling
defects (36). Thus, while curling down of zebrafish embryos
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is generally indicative of Hh defects, this is not thought to
be the case for Dispatched 2. Complete understanding of
the significance of miR-214 regulation of disp2 will await
further functional analyses of Dispatched 2.

Combinatorial silencing

Many computational and experimental approaches have
been used to formulate general rules that allow accurate
identification of miRNA targets. Previous studies, as well
as the results reported here, suggest that base pairing
between the ‘seed’ region (residues 2–8 from the 50-end)
of the miRNA and the mRNA target is the most readily
identifiable determinant for predicting and establishing
specificity. However, perfect seed pairing is not necessarily
sufficient for repression. The degree of repression can also
be influenced by adjacent AU-rich sequences, the distance
between MREs and stop codons and accessibility of the
30 UTR (28–31,37). Our results demonstrate that even sites
that violate the pairing rules above can still serve tomediate
silencing provided the presence of multiple weak sites. This
finding further challenges prediction algorithms by increas-
ing the number of sites that serve as bona fide targets.
We previously showed that targeting of sufu by miR-214

is via three weak MREs and we extend that observation
here to show that disp2 is similarly regulated through the
cooperative action of three weak MREs. For all three
disp2 sites, there are gaps and G:U base pairs within the
seed region and the pairing with the 30-end of miR-214 is
even weaker. Individually, these sites are not effective tar-
gets but, surprisingly, in combination, can lead to silenc-
ing as effective as perfect sites. A different observation was
made previously in an invertebrate model system (24),
where multiple weak sites were not found to act combina-
torially, concluding that weak sites, which by themselves
cannot mediate silencing do not do so in combination.
This suggests that the rules for miRNA–mRNA recogni-
tion are not absolute and that the mechanisms of silencing
may be slightly different between species. Based on our
study, an additive model does not accurately reflect silen-
cing and instead, a synergistic model most closely approx-
imates the combined effects of multiple weak MREs.
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