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Abstract Sexual selection determines the elaboration of mor-
phological and behavioural traits and thus drives the evolution
of phenotypes. Sexual selection on males and females can
differ between populations, especially when populations ex-
hibit different breeding systems. A substantial body of litera-
ture describes how breeding systems shape ornamentation
across species, with a strong emphasis on male ornamentation
and female preference. However, whether breeding system
predicts ornamentation within species and whether similar
mechanisms as in males also shape the phenotype of females
remains unclear. Here, we investigate how different breeding
systems are associated with male and female ornamentation in
five geographically distinct populations of Kentish plovers
Charadrius alexandrinus. We predicted that polygamous pop-
ulations would exhibit more elaborate ornaments and stronger
sexual dimorphism than monogamous populations. By esti-
mating the size and intensity of male (n=162) and female (n=
174) melanin-based plumage ornaments, i.e. breast bands and

ear coverts, we show that plumage ornamentation is predicted
by breeding system in both sexes. A difference in especially
male ornamentation between polygamous (darker and smaller
ornaments) and monogamous (lighter and larger) populations
causes the greatest sexual dimorphism to be associated with
polygamy. The non-social environment, however, may also
influence the degree of ornamentation, for instance through
availability of food. We found that, in addition to breeding
system, a key environmental parameter, rainfall, predicted a
seasonal change of ornamentation in a sex-specific manner.
Our results emphasise that to understand the phenotype of
animals, it is important to consider both natural and sexual
selection acting on both males and females.

Keywords Ornamentation . Sexual selection . Breeding
system . Kentish plover .Melanin

Introduction

‘Hence that male which at [the selection] time is in fullest
vigour, or best armed with arms or ornaments of its species,
will gain in hundreds of generations some small advantage
and transmit such characters to its offspring…’ (Darwin
1842). Darwin (1842) already realised that selection by fe-
males on male ornaments may drive male morphological evo-
lution. He also acknowledged that the same principle may
apply to females (Darwin 1871). However, understanding
the function of a phenotype and how a certain phenotype
may evolve remains a fundamental aim of sexual selection
research. Prime candidate phenotypes in which to investigate
these questions are ornaments used in sexual displays. Con-
sistent individual differences in the elaboration of such orna-
ments may signal attractiveness of an individual, and more
attractive individuals are often more successful in obtaining
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additional partners and thus less likely to provide parental care
(Magrath and Komdeur 2003; Houston et al. 2005; van Dijk
et al. 2012). Hence, mating success and parental care are in-
trinsically connected as important aspects of breeding systems
(Owens and Bennett 1997; Thomas and Székely 2005;
Alonzo 2010) and are often associated with ornamentation.
Consequently, breeding systems may be expected to drive
the evolution of ornamentation.

Variation in breeding opportunities is likely to determine to
what extent ornamentation should predict mating success and
parental care. With increasing breeding opportunities, sexual
selection on traits that enhance mating success, i.e. traits sig-
nalling attractiveness, should intensify (Wiklund and Forsberg
1991; Gonzalez-Voyer et al. 2008; Bedhomme et al. 2009).
This in turn may be determined by the environment influenc-
ing sex differences in, for example, the costs of producing
ornaments or of being deserted (Kvarnemo and Ahnesjo
1996) and the benefits of choosiness (e.g. ‘good parent hy-
pothesis’; Heywood 1989; Hoelzer 1989; Owens and Thomp-
son 1994). Breeding opportunities are an important determi-
nant of this balance of costs and benefits of choosiness. As a
result, selection should act more strongly on the sex with more
breeding opportunities (males in most species, which can of-
ten secure more than one female; Arnold and Duvall 1994).
Mating systems are thus often associated with the extent of
male and female ornamentation, so that plumage dimorphism
is largest in polygynous or lek species, compared to species
with any other mating system, including polyandrous species.
Therefore, the fact that males exhibit more elaborate orna-
ments in polygynous and lek species as a result of increased
intensity of sexual selection, while males and females exhibit
drabber plumage in species with other mating systems, ap-
pears to be an important explanation behind differences in
sexual dimorphism observed between species (Dunn et al.
2001).

In addition to social selection pressures influencing the
divergence of phenotypic variation, different ecological set-
tings also play an important role in the evolution of sexual
traits (Andersson 1994; Mobley and Jones 2009; McGraw
et al. 2010). Breeding system variation displayed both within
and between populations is likely to result from the coevolu-
tion of reproductive behaviours of males and females within
an ecological setting (Emlen and Oring 1977; Davies 1991),
which may directly explain the variance in sexually selected
traits across a species’ range (Cockburn et al. 2008; Roulin
et al. 2009, 2011). For example, barn owls (Tyto alba) living in
the tropics display larger eumelanic spots than those found in
temperate zones, which is possibly due to a higher abundance
of parasites in the tropics, since individuals with larger
melanin-based spots are more resistant to ectoparasites
(Roulin 2004; Roulin et al. 2009). The environment may also
indirectly influence ornament development and expression
through the breeding system. Examining regional, or seasonal,

differences in the expression of sexually selected traits is thus
important to understand sexual selection (Galván and Moreno
2009), because local environmental conditions are likely to
influence the trade-off between natural (costs of ornamenta-
tion) and sexual (benefits) selection (Hegyi et al. 2002, 2006).

Although secondary sexual characters are widespread in
females, research on sexual selection has focused almost ex-
clusively on selection on elaborate traits in males (Clutton-
Brock 2007). However, in order to obtain a full understanding
of how ornaments may evolve, geographic variation in sexual
dimorphism needs to be investigated (Amundsen 2000; Chui
and Doucet 2009). In recent years, a growing interest in trait
elaboration in females has emerged (Clutton-Brock 2007,
2009; Edward and Chapman 2011). Yet despite this, we do
not fully understand the role of female ornaments or the evo-
lutionary forces maintaining them (Hegyi et al. 2008). It is
unclear whether the same underlying principles and mecha-
nisms that commonly operate in males also apply to females
(Amundsen 2000; Rubenstein and Lovette 2009).

In birds, melanin-based ornamentation often plays an im-
portant role in both male-male competition and in inter-sexual
interactions (Kingma et al. 2008; Chaine et al. 2013; Da Silva
et al. 2013). An important characteristic of sexually selected
ornaments is that they should be costly to the bearer (Olson
et al. 2008; Jennions and Kokko 2010). The costs of melanin
ornaments may consist of the physiological costs of the orna-
ments, which are often related to circulating levels of andro-
gens (Bókony et al. 2008), costs in terms of time and energy
(including the risk of injuries) related to competitive interac-
tions over social status and costs associated with conspicuous-
ness towards potential predators (Jawor and Breitwisch 2003;
Ekanayake et al. 2015). However, the adaptive value of
melanin-based ornamentation in terms of mate choice remains
poorly understood. Although a number of studies have indi-
cated that melanin-based ornaments may be reliable signals of
good genes or of parental quality (Niecke et al. 2003; Bókony
and Liker 2005; Dunn et al. 2008), others have shown covari-
ation of melanin-based colouration with costly traits (e.g.
Fernandez and Morris 2008). Such costs may be maintained
by frequency- or condition-dependent selection, local adapta-
tion or pleiotropy. The expression of pleiotropic genes, which
may simultaneously regulate melanogenesis and, for example,
body condition, may vary depending on the environment
(Ducrest et al. 2008; Fernandez and Morris 2008; Dall et al.
2015; Roulin 2015).

Here, we investigate whether the elaboration of melanin-
based ornamentation is predicted by breeding systems and
environment, using data on ornament variability, breeding
system and environmental conditions from five geographical-
ly distinct populations of Kentish plover, Charadrius
alexandrinus. This precocial shorebird is particularly suitable
for this purpose, because of its uniquely diverse breeding sys-
tem. Firstly, Kentish plovers exhibit diverse mating systems
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and variable parental care both within and across populations:
after the eggs hatch, either the male or the female, or neither,
may desert the brood and find a new mate (Székely and
Lessells 1993; Fraga and Amat 1996; Kosztolányi et al.
2006; Vincze et al. 2013). Secondly, this species is sexually
dimorphic. Males tend to have distinctive black ear coverts, a
horizontal head bar, an incomplete breast band (i.e. one black
band on each side of their breast) and a rufous crown, while
the females tend to be more drab (Székely et al. 1999). Male
Kentish plovers display their breast feathers to females or to
other males during courtship and agonistic encounters (Perrins
1998; Kis and Székely 2003). Lendvai et al. (2004a, b)
showed that large-badged males may have an advantage in
aggressive male-male encounters and that the breast band size
of males is related to the volume of their clutches. Similar
findings have been published for various passerine birds,
showing that the size of the breast band is a reliable indicator
of genetic quality (e.g. Møller 1988; Norris 1993; Bouwman
et al. 2007). This suggests that breast bands signal mate attrac-
tiveness or dominance and are thus a candidate trait for sexual
selection to act upon.

Despite great interest in sexual selection, relatively little is
known about the different determinants of secondary sexual
characters in natural populations. The aim of this study was to
gather such information to determine how ornamentation and
sexual dimorphism within geographically distinct populations
of a species may respond to sexual and natural selection. We
investigate the extent to which sexual plumage dimorphism
differs across five populations. Because the variance of repro-
ductive success generally increases with increasing levels of
polygamy (Björklund 1990; Bedhomme et al. 2009), we pre-
dicted that in populations with higher levels of polygamy,
where sexual selection on males is more intense, males should
exhibit more elaborate ornamentation compared to monoga-
mous populations. Secondly, because sexual selection on
males is predicted to be higher in polygamous than in monog-
amous populations, we predicted that sexual dimorphism
should be more pronounced in polygamous populations.

Thirdly, we predict that the association of male and female
ornamentation with breeding system will be moderated by the
environment. Various pathways leading to the expression of
ornaments are expected to be influenced by the environment.
In addition, colouration may be affected by pleiotropic effects,
resulting in different phenotypes due to a change in the under-
lying genetic components (Gratten et al. 2008). This means
that selection onmelanin-based colouration may be condition-
al to the environment (Dall et al. 2015; Roulin 2015). Further-
more, because sexually selected ornaments are expected to be
costly to the bearer (Olson et al. 2008; Jennions and Kokko
2010), adverse environmental conditions should suppress the
expression of costly ornaments, because individuals will be
less able to produce, maintain or exhibit elaborate ornaments.
Kentish plovers often feed on the shoreline in invertebrate-

rich moist-soil areas which show lower prey abundance and
diversity in longer dry periods (Anderson and Smith 2000). If
food is sparsely available in populations with low levels of
rainfall, ornaments are predicted to be smaller and lighter than
in populations with high rainfall. However, the potentially
complex underlying quantitative genetics of ornamentation
make it difficult to pose clear predictions as to how ornamen-
tation is related to the environment and whether, for instance,
food availability or genetics mediate ornamentation through a
change in environment. Here, we aim to explore whether en-
vironment, i.e. rainfall during the breeding season, is associ-
ated with melanisation independent of or in concert with
breeding system.

Materials and methods

Study sites and general methods

We studied breeding adults in five geographically distinct
populations of Kentish plover for which detailed informa-
tion on breeding systems is available (Table 1). Adult
plovers were captured using funnel traps during incubation
and after the first 5 days of incubation. This was done
within 42.2±20.9 days (mean±SD, range 10–64 days) at
all populations. All birds were ringed with one numbered
metal ring and an individual combination of colour rings,
and tarsus length was measured (to the nearest 0.1 mm).
Additionally, we took at least one digital photograph of
the left and the right side of the plovers (Table 1). These
photographs were taken by different observers using
standardised methods (Fig. 1). In short, the camera was
mounted on a tripod or held by a second observer at a
height of approximately 50 cm. Individuals were
photographed, against a neutral grey background (Kodak
18 %) including a scale reference, using a Nikon Coolpix
4500 (Tuzla, Doñana and Al Wathba) or a Fuji Finepix
F40 (Maio and Farasan Island). The bird was positioned
touching the grey card while it was held with two hands
so that the neck was stretched in a horizontal and straight-
line position.

We obtained monthly rainfall data for a 5-km radius for
each population from Worldclim (http://www.worldclim.org)
at a 0.5′ resolution. These rainfall data were extracted from
Worldclim for each year and month in which the population
was studied, and monthly rainfall data were assigned to the
month in which individuals were captured in each population,
so that a given population may have multiple estimates of
rainfall if individuals were captured over more than
1 month. Spatial analyses were performed in ArcGIS. The
amount of rainfall was used as our proxy for availability of
food and humidity in our analyses.
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Ornament measurements

We measured colour and size of four melanin-based plumage
patches on the frontal body region of the Kentish plovers
(Bókony et al. 2003; Lendvai et al. 2004a): the dark, lateral
patches on either side of the breast (‘breast bands’) and the ear
coverts. All images were imported into Adobe Photoshop
(version 7.0 for Windows) and calibrated for white balance
and size using the grey card and ruler, respectively. The size
(in cm2) of the breast bands and the ear coverts was deter-
mined by counting the number of pixels in each patch, using
the ‘rectangular marquee’ and the ‘magic wand’ tool, the latter
set for a fixed tolerance level (20 %), and the selected area was
manually adjusted to contain the melanin patch of interest
only. Setting the limits of areas was facilitated by the abrupt
and regular transition between these plumage patches and the
differently coloured adjacent plumage tracts, although this
transition is less pronounced for lighter coloured ornaments
(Fig. 1). We then measured the median red, green, blue (RGB)
values for each patch selected, using the histogram command.
These RGB values were then used to calculate the brightness
of all patches (a value between 0 and 100; Pascale 2010).
Brightness is used here to refer to the achromatic notion of
intensity (Pascale 2010). Size and brightness scores of breast
bands and ear coverts were calculated by averaging the values
recorded for the left and right sides of all pictures available for
each individual taken on the same day at a single capture
event. The breeding plumage of Kentish plovers does not
show UV reflection (AAT, pers. obs.), while no support for
UV sensitivity in Charadriidae has been found (Ödeen et al.
2010). All photographs were analysed by one observer (AAT),
except for Cape Verde, where there was a second observer (R.

Smart). Due to the nature of the photographs (Fig. 1) and
organisation of the photographs and data, these observers
were not blind to the population of origin of the birds. These
observers were blind to the sex of the birds at the time of
analysis but not to the population of origin. Ornament size

Table 1 Sampling location and breeding system for populations of
Kentish plover, the year when the photographs were taken (median and
range of capture dates), the number of photographs (np), the number of

individuals (ni; number of males and females, respectively, in
parentheses) from each site included in the analyses and the average
monthly rainfall (mm)

Population Breeding system description Year np ni Rainfall

Polygamy

Tuzla (Turkey) Sequential polygamy with higher remating opportunity for
females than males (Székely et al. 1999). Uniparental care
by males is more common than uniparental care by females
(Kosztolányi et al. 2006)

2010 (4 Jun; 12
May–22 Jun)

164 41 (20, 21) 24.0

Doñana National Park
(Spain)

Sequential polygamy (average 32 % of individuals polygamous,
range 0–64 %). Higher remating opportunity for females
than males. Uniparental care by male and biparental care
(Amat et al. 1999)

2004 (1 Jun; 14
Apr–17 Jun)

188 94 (45, 49) 22.2

Al Wathba
(United Arab Emirates)

Sequential polygamy. Uniparental and biparental care by male
or female co-occur (Kosztolányi et al. 2009).

2005 (20 May; 1
May–9 Jun)

165 32 (15, 17) 0.0

Monogamy

Farasan Island
(Saudi Arabia)

Monogamy. Biparental care (Alrashidi et al. 2011) 2009 (29 Jun; 23
Jun–3 Jul)

104 26 (12, 14) 3.4

Maio (Cape Verde) Monogamy. Biparental care and resident life-history strategies
(Argüelles-Ticó 2011)

2008 and 2009 (16 Oct.
20 Sep–16 Nov)

858 143 (70, 73) 30.1

Fig. 1 Examples of photographs used for taking measurements of
ornament size and brightness. Displayed here are examples of male
Kentish plovers from Maio, Cape Verde, with a large, dark ornaments
and b small, pale ornaments
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and brightness were highly repeatable within observers (n=20
individuals, r>0.823, P<0.001) and between observers (n=
12 individuals, r>0.852, P<0.001; Harper 1994). Tarsus
length, a proxy variable for body size, was not associated with
any of our ornament measurements (P>0.180), but was in-
cluded as a covariate in all models to correct for body size
(Green 2001).

Statistical analyses

Populations were grouped in two categories of mating
system, monogamy or polygamy, based on published in-
formation from papers or theses (Table 1). For Farasan
Islands and Al Wathba, no information on mating system
was available and we therefore used parental care as a
proxy for mating system since there is a tight correlation
between mating and parental care system in shorebirds
(Székely et al. 2007). For Doñana, no data on parental
care or mating system are published although a detailed
study was conducted on a nearby Kentish plover popula-
tion (Fuente de Piedra, <150 km away; Amat et al. 1999)
which is well within the range of breeding dispersal of
polygamous plovers (median 145–180 km; Stenzel et al.
1994) and therefore mating system data were adopted
from this population for the nearby Doñana population.

Variables describing ornamentation were multi-colinear.
We therefore carried out a principal component analysis
(PCA) and reduced the number of variables describing orna-
mentation by extracting two principal components (PCs)
using varimax rotation with Kaiser normalisation (Table 2).
These PCs were subsequently used in all analyses. The two
principal components (PC1 and PC2) explained 76.6 % of the
total variation in ornamentation (47.8 and 28.8 %, respective-
ly). PC1 (henceforth ‘brightness’) primarily accounted for or-
nament brightness, such that low scores corresponded with
darker plumage and higher scores with lighter plumage. PC2
(henceforth ‘size’) described the size of the patches, with larg-
er values corresponding to larger ornaments (Table 2).

We used linear mixed models (LMMs) in the package nlme
for R (Pinheiro et al. 2010) to account for the statistical non-
independence of data originating from a given population.
Our LMMs to analyse ornamentation in response to breeding
system and monthly rainfall included the PCs for brightness
and size of ornaments as response variables, an interaction
between sex and breeding system, an interaction between
the date the picture was taken (henceforth ‘capture date’)
and the amount of rainfall and an interaction between sex
and rainfall as predictor variables, while sex and breeding
systemwere included as fixed factors, rainfall and capture date
as covariates and population as the random factor. The inter-
action between capture date and rainfall was included because
a change in ornamentation over the season may depend on the
amount of precipitation, which may influence wear, the

importance of protection against feather-degrading bacteria
(Gunderson et al. 2008) and food availability. The interac-
tion between sex and rainfall was included to assess
whether environmental conditions may limit ornament ex-
pression in one sex, but not in the other, which would be
expected if there is directional selection on ornamentation
in one of the sexes. However, we found that this interac-
tion did not contribute significantly to either the LMM for
analysis of ornament brightness (model effect estimate±
SE=0.010±0.007, t=1.475, P=0.141) or the LMM for
ornament size (0.006±0.006, t=1.064, P=0.288), and
was thus removed from our final model. Capture date
was calculated as the number of days since 1 March, after
which it was standardised for each population by
subtracting the mean capture date from each capture date
value and dividing that by the standard deviation for each
population (i.e. the standard deviate was calculated, Sokal
and Rohlf 1995). In order to assess the effect of lost data
variance in our analysis due to conducting a PCA, we
also performed an additional analysis on untransformed,
original data on breast band brightness only. This model
included the same variables as the mixed model above,
using breast band brightness as the response variable.
We chose breast band brightness, because the residuals
from the mixed models on ornament size were not nor-
mally distributed, while the breast bands are the largest
ornamental plumage patch of Kentish plovers (Fig. 1)
and brightness, not size, likely the best ornamental indica-
tor of the intensity of sexual selection in this species (see
‘Discussion’). All random effects were fitted as random
intercepts. For plovers that were captured several times
within the same season or between seasons (n=4), only
one randomly selected datum per individual was included
in all analyses to avoid pseudoreplication. Sample sizes
vary between analyses due to missing values. PCAs were
performed using SPSS version 16.0 for Windows, and all
other statistical analyses were done using R version 2.11.1.

Table 2 Factor loadings of each variable of ornamentation and
explained variances from a principal component analysis of brightness
and size of the breast bands and ear coverts in different Kentish plover
populations (n=336 individuals)

Brightness (PC1) Size (PC2)

Breast band brightness 0.930* −0.053
Ear covert brightness 0.923* −0.139
Breast band size 0.002 0.832*

Ear covert size −0.176 0.776*

Eigenvalue 1.911 1.152

% variance accounted for 47.78 28.81

Values of factor loadings >0.7 are in italics

*P<0.001
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Results

Ornaments and breeding system

We analysed 1479 photographs of 336 individuals (174 fe-
males and 162 males) from five geographically distinct pop-
ulations (Table 1). Breeding system was associated with orna-
mentation ofmales and females in different ways, indicated by
significant interactions between breeding system and sex for
both brightness and size of the ornaments (Table 3, Figs. 2 and
3). Males exhibited darker and smaller ornaments in polyga-
mous compared to monogamous populations (Figs. 2 and 3;
Table 4). Females, however, exhibited larger ornaments in
polygamous than in monogamous populations, while there
was no clear difference in brightness of female ornaments
between polygamous and monogamous populations (Fig. 2
and 3; Table 4). Ornamentation of males and females within
pairs was correlated across populations (brightness: S=127,
900, P<0.001, ρ=0.468, n=133; size: S=177,000, P=0.005,
ρ=0.264, n=133).

Ornaments and environment

We found that the interaction term of rainfall with capture date
was significantly associated with the size, and tended to pre-
dict brightness of ornaments (Table 3). When we analysed
these results for males and females separately, we found that
male ornaments appeared to get darker over the course of the
season in areas with high rainfall, but in particular got lighter
with the advance of the season in areas with low rainfall
(−0.012±0.005, df=138, t=−2.333, P=0.021, n=147).
Brightness of female ornaments was not predicted by the in-
teraction between time of the season and the amount of rainfall
(−0.001±0.005, df=148, t=−0.312, P=0.755, n=157).

The size of male ornaments tended to increase over the
course of the season in areas with high rainfall and to decrease
when rainfall was sparse (−0.007±0.004, df=138, t=−1.741,
P=0.084, n=147). The size of female ornaments depended on
the amount of rainfall and the advance of the breeding season
in a similar manner and also increased in size over the course
of the season in areas with high rainfall and decreased in size
in drier environments as the season advanced (−0.012±0.004,
df=148, t=−2.856, P=0.005, n=157). Crucially, considering
the effect of both rainfall and breeding system on male and
female ornamentation in one model showed that both the in-
teraction between breeding system and sex and the interaction
between the advancement of the breeding season and rainfall
are significant predictors of ornamentation (Table 3). We
found no evidence that rainfall was correlated with the breed-
ing system: average rainfall per month ranged from 3.4 to
30.1 mm (16.8±18.9 mm (mean±SD)) in the monogamous
populations and from 0.0 to 24.0 mm (15.4±13.4 mm;
Table 1) in the polygamous populations (Fig. 3).

We found qualitatively similar results when rainfall was
included as a binary factor in these models (i.e. ‘wet’ versus
‘dry’), with the interaction effects of sex*breeding system
(P<0.001) and rainfall*capture date both remaining signifi-
cant predictors in the model. Our results also remained qual-
itatively similar when we analysed breast band brightness on-
ly, i.e. using measured data instead of residuals from a PCA,
except that there was no trend for breast band brightness to be
predicted by an interaction between rainfall and capture date
(−0.030±0.029, df=293, t=−1.017, P=0.310). Sex (−5.785±
1.451, df=293, t=−3.987, P<0.001), capture date (2.470±
0.847, df=293, t=2.917, P=0.004) and the interaction be-
tween sex and breeding system (−6.923±2.053, t=−3.372,
P<0.001) were significant predictors of breast band bright-
ness, while breeding system, rainfall and tarsus length were
all non-significant variables in the model (P>0.218, n=304).

Table 3 Linear mixed models (LMM) of brightness and size of
ornaments as predicted by sex, breeding system and rainfall (n=304).
Model effect estimates±SE are given. Factor levels included in the

intercept of both models are ‘female’ for the factor ‘sex’ and
‘monogamous’ for the factor ‘breeding system’

Brightness Size

MEE±SE df t P MEE±SE df t P

Intercept 3.424±1.714 293 1.998 0.047 −1.179±1.433 293 −0.822 0.412

Sex −0.410±0.169 293 −2.430 0.016 −0.064±0.142 293 −0.447 0.655

Breeding system −0.428±0.904 3 −0.474 0.668 0.349±0.730 3 0.478 0.666

Rainfall −0.001±0.007 293 −0.076 0.939 −0.017±0.006 293 −2.797 0.006

Capture date 0.280±0.099 293 2.842 0.005 0.192±0.083 293 2.316 0.021

Tarsus length −0.081±0.055 293 −1.478 0.141 0.038±0.046 293 0.834 0.405

Sex*breeding system −1.163±0.239 293 −4.870 <0.001 −0.886±0.201 293 −4.406 <0.001

Rainfall*capture date −0.006±0.003 293 −1.819 0.070 −0.009±0.003 293 −3.150 0.002
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Discussion

Variation in the extent of sexual dimorphism is traditionally
attributed to differences in mating systems. However, this has
mainly been investigated across species (Jones and Avise
2001; Dunn et al. 2001; van Dijk et al. 2010b), while studies
addressing the question of how a mating system may shape
ornamentation within a species are exceedingly rare. The re-
sults from our study investigating geographically distinct pop-
ulations within one species provide support for patterns sim-
ilar to those found across species. The differences in bothmale
and female ornamentation in Kentish plovers were associated
with variation in mating system, so that populations with a
more polygamous breeding system exhibited stronger sexual
dimorphism than monogamous populations. These results are
consistent with the proposition that the intensity of sexual
selection differs across geographically distinct populations
with diverse breeding systems. As a result, although data from
additional populations are required to corroborate our tenta-
tive conclusion, the breeding system appears to have

important ramifications for the evolution of male and female
ornamentation and sexual dimorphism in Kentish plovers.

We found that the ornaments of males were smaller, but
darker, in polygamous compared to monogamous popula-
tions. This may be a consequence of the size of ornaments
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being traded off against their intensity (Hill 1993; Grether
1995). Additionally, the measured size of the ornaments is
likely to be influenced by how clearly the ornament can
be defined, i.e. lighter, less well-defined patches will be
measured as larger, whereas darker, well-defined orna-
ments may be measured as smaller (Fig. 1). Our results
thus suggest that brightness, not size, is the best ornamen-
tal indicator of the intensity of sexual selection in this
species, although the multiple components of a trait may
be evaluated independently and reflect different behaviour-
al or physiological properties of an individual. Moreover,
we cannot exclude the possibility that sexual selection
would favour smaller melanin-based plumage patches.
However, our result that polygamous males exhibited
darker ornaments than monogamous ones is consistent
with the proposition that, for males, the intensity of sexual
selection should be greater in polygamous than in monog-
amous populations.

We also found that females exhibited smaller ornaments in
monogamous compared to polygamous populations, whereas
there was no clear difference in brightness of female ornamen-
tation in relation to breeding system. Although sexual selec-
tion is expected to act on male traits under polygamy, mech-
anisms responsible for male ornamentation, such as mutual
mate choice, might also influence female ornamentation
(Clutton-Brock 2009). Polygamous populations were
characterised by a high proportion of female desertion and
harboured a significant number of sequentially polyandrous
females (Amat et al. 1999; Székely et al. 1999; Kosztolányi
et al. 2009). Female ornamentation might thus be under
sexual selection and, for example, be used in female-
female competition to mate with multiple males. Alternatively,
increased female ornamentation may be a result of selection on
male ornamentation following genetic correlation between
male and female ornamentation (Roulin et al. 2001; Potti and
Canal 2011; Kraaijeveld 2014), as reinforced through

mutual mate choice (Lande 1980; Amundsen 2000;
Kraaijeveld et al. 2007).

We used the social mating system to predict ornamentation.
However, the genetic mating system may differ from the so-
cial mating system (Birkhead and Møller 1998). Investiga-
tions of the genetic mating system of Kentish plovers have
been published for only one population (Tuzla), in which
extra-pair fertilisations were uncommon (3 % of chicks in
total, n=7/229 chicks; Küpper et al. 2004). Similar frequen-
cies have been obtained from other populations (K. Maher
et al., unpublished data). Therefore, this species appears pre-
dominantly genetically monogamous. It is thus unlikely that
the dimorphism observed in populations of Kentish plovers is
significantly confounded by extra-pair matings. Additionally,
we acknowledge that our analyses are restricted to breeding
individuals only and as such may be confounded by a bias in
population sampling procedures, because a higher proportion
of individuals is expected to breed in monogamous popula-
tions compared to polygamous populations. We note, howev-
er, that our results concerning breeding males, at least, are
consistent with predictions from sexual selection theory.

Male ornaments may play an important role as a badge of
status in territorial, aggressive encounters (Rohwer 1975;
McGraw et al. 2003; Lendvai et al. 2004a), influencing the
trade-off between the costs and benefits of ornamentation. For
males, darker (and larger) ornaments should thus be sexually
selected. Social status signalling is expected to be relatively
important compared to female choice-related signalling, be-
cause competition over non-sexual resources is more balanced
between the sexes than sexual competition (Kraaijeveld et al.
2007). Additionally, population density is often positively as-
sociated with levels of polygamy, because the number of po-
tential future mates, and thus polygamy, available is expected
to increase with population density (Kokko and Rankin 2006;
McGraw et al. 2010; van Dijk et al. 2010a). However, com-
petition for food and nesting resources may also vary between

Table 4 Descriptive statistics of
the brightness and size of male
and female ornaments per
population. Means±SDs (range)
are provided of the mean
ornament brightness and of the
total ornament size of ear coverts
and breast bands of Kentish
plovers

Brightness Size

Males

Tuzla (Turkey) 43.8±7.9 (27.3–58.2) 1.29±0.23 (0.90–1.71)

Doñana National Park (Spain) 33.6±6.9 (18.2–48.4) 1.89±0.53 (0.89–3.94)

Al Wathba (United Arab Emirates) 39.2±8.2 (20.6–54.3) 1.45±0.31 (0.83–1.95)

Farasan Island (Saudi Arabia) 57.1±7.6 (40.4–69.0) 1.43±0.39 (0.95–2.38)

Maio (Cape Verde) 43.9±9.3 (19.3–62.8) 1.96±0.44 (1.07–3.06)

Females

Tuzla (Turkey) 59.0±7.1 (43.9–72.7) 1.70±0.36 (1.04–2.32)

Doñana National Park (Spain) 42.8±5.8 (33.5–60.2) 2.43±0.71 (1.21–4.41)

Al Wathba (United Arab Emirates) 52.4±9.3 (32.4–67.1) 1.68±0.42 (0.98–2.54)

Farasan Island (Saudi Arabia) 64.6±7.2 (54.2–78.0) 1.59±0.27 (1.04–1.99)

Maio (Cape Verde) 46.9±8.8 (21.9–68.8) 1.92±0.50 (0.54–3.31)
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populations and such variation could mask the effects of sex-
ual selection (Kokko et al. 2004; Alonzo and Sheldon 2010).

Ornamentation and environment

In addition to breeding system, the evolution of sexually di-
morphic signals is known to be influenced by levels of preda-
tion, foraging strategies and the background sensory environ-
ment, all of which affect the balance between natural and
sexual selection (Endler 1978, 1988; Andersson 1994). The
fitness conferred by a given signal and the phenotype it sym-
bolises can vary by environment (Qvarnström 2001; Hale
2008; Missoweit et al. 2008), and the environment can influ-
ence the expression of colouration genes. This variation could
cause sexually selected signals to diverge across populations
due to varying local natural selection regimes (Dunn et al.
2008). Our results for breeding system alone may thus be
partly confounded by the environment having an important
influence on the cost/benefit ratio of ornamentation.We found
no evidence for environmental conditions limiting ornament
expression more strongly in one sex than in the other. How-
ever, we found that the ornamentation changes over the course
of the season to become brighter and larger, to an extent cor-
related with the amount of rainfall. Such change in ornamen-
tation is likely due to wear rather than moult. Nonetheless,
there may still be costs associated with such change in orna-
mentation, for example those generated by aggressive encoun-
ters with conspecifics (Jawor and Breitwisch 2003). Soil
moistness is associated with food availability (Anderson and
Smith 2000), so that with larger amounts of precipitation, food
is expected to be more abundant and as a result the costs of
ornamentation may be more easily met by the bearer of those
ornaments in more humid environments (Evans 1991). This
may drive a species to exhibit ornaments for prolonged pe-
riods by producing higher levels of melanisation. According-
ly, we found that male ornaments got darker over the course of
the season in populations with higher rainfall and lighter in
populations with low rainfall.

Additionally, female ornaments increased in size as the
season advanced in populations with high rainfall, whereas
in populations where rainfall was sparse the size of female
ornaments decreased. These results are consistent with
Gloger’s rule’, which states that feathers tend to be darker in
humid environments than in drier areas (Gloger 1833; Zink
and Remsen 1986; Burtt and Ichida 2004; Chui and Doucet
2009). One possible explanation for these patterns is that it
may be more important in humid areas to maintain melanin-
based ornamentation as it may protect against feather-
degrading bacteria (Gunderson et al. 2008). Melanin-based
plumage has been observed to change over time due to micro-
bial or ectoparasite activity degrading feather quality
(Gunderson et al. 2008). Gloger’s rule may thus mediate the
association of ornamentation with breeding system.

Moreover, accumulation of dirt, feather abrasion or exposure
to ultraviolet light may all be influenced by weather condi-
tions during the breeding season (Delhey et al. 2010) and the
extent to which these processes influence ornamentation is
thus likely to vary between environments.

The apparent change in ornamentation with the advance of
the season we found here may be confounded by differently
ornamented individuals breeding at different times of the sea-
son (Dreiss and Roulin 2010), which in turn might be influ-
enced by the amount of precipitation. Data on a change in
ornamentation from individuals recaptured throughout the
breeding season are needed to test this alternative explanation.
Yet, our results suggest that the association of male and female
ornamentation with climatic conditions may moderate the im-
pact of sexual selection as associated with breeding system.
Importantly, however, the association between rainfall and
male and female ornamentation was significant after account-
ing for the effect of breeding system. Indeed, our results sug-
gest that both rainfall and breeding system influence melanin-
based plumage ornamentation in Kentish plovers.

In addition to the direct impact the environment may have
on ornamentation, the environment may also affect the breed-
ing system, and as such indirectly influence ornamentation.
For instance, when food is abundant and competition is low,
one parent may be sufficient to raise the offspring, allowing
the other to desert and find a new partner to breed with, thus
promoting polygamy and an intensification of sexual selection
pressures (Székely and Cuthill 1999). However, we have no
evidence that rainfall was correlated with the breeding system,
which suggests that the effect we found of the interaction
between sex and breeding system on ornamentation of Kent-
ish plovers is not confounded by a potential collinearity with
rainfall. Other environmental factors, however, may also play
a role in determining the breeding system. In Kentish plovers,
high predation rates, for example, may constrain brood deser-
tion, leading to more frequent biparental care and lower levels
of polygamy (Amat et al. 1999). The length of the season
during which successful breeding may take place is also
known to influence the breeding system. A shorter breeding
season due to a brief peak in food availability, for example,
means that there are fewer opportunities to produce multiple
clutches with the same partner than in a population where
breeding is potentially spread out over several months. A short
breeding season may thus be expected to promote a polyga-
mous mating system, whereas prolonged breeding may be
associated with monogamy (García-Peña et al. 2009).

Finally, our dataset included both island and mainland pop-
ulations, with monogamous populations being restricted to
islands, whereas polygamous populations were found on the
mainland. Island and mainland populations may exhibit dif-
ferences in a number of fundamental biological processes,
including dispersal strategies, breeding densities, prevalence
of parasites and genetic differentiation (Petrie and
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Kempenaers 1998; Covas 2012; Küpper et al. 2012). Island
populations are, for example, expected to exhibit limited dis-
persal, which is associated with longer-term pairbonds and
thus increased levels of monogamy. Consequently, and con-
sistent with our results, island populations are predicted to
exhibit less sexual dimorphism (Badyaev and Hill 2003;
Roulin and Salamin 2010; but see Doucet et al. 2004). In this
study, we were unable to separate the effects of biogeography
and breeding system. Future research is therefore needed to
establish to what extent biogeographic settings, such as insu-
larity, influence breeding systems and ornamentation.
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