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Abstract

Approximate Bayesian Computation (ABC) has become a popular technique in evolutionary genetics for elucidating
population structure and history due to its flexibility. The statistical inference framework has benefited from significant
progress in recent years. In population genetics, however, its outcome depends heavily on the amount of information in the
dataset, whether that be the level of genetic variation or the number of samples and loci. Here we look at the power to
reject a simple constant population size coalescent model in favor of a bottleneck model in datasets of varying quality. Not
only is this power dependent on the number of samples and loci, but it also depends strongly on the level of nucleotide
diversity in the observed dataset. Whilst overall model choice in an ABC setting is fairly powerful and quite conservative
with regard to false positives, detecting weaker bottlenecks is problematic in smaller or less genetically diverse datasets and
limits the inferences possible in non-model organism where the amount of information regarding the two models is often
limited. Our results show it is important to consider these limitations when performing an ABC analysis and that studies
should perform simulations based on the size and nature of the dataset in order to fully assess the power of the study.
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Introduction

Central to evolutionary biology and science in general is the

need to quantitatively compare models and hypotheses. In

population genetics estimating parameters from more complex,

biologically realistic models often involves a likelihood function

that is difficult to compute. This has led to the development of

methods, such as Approximate Bayesian Computation (ABC; [1]),

that aim to approximate the likelihood function by simulating

under a given model and using summary statistics to capture key

aspects of the data in the most informative way (see [2] for an

historical overview). Due to the flexibility and efficiency of ABC it

is now possible to compare and estimate parameters from a

number of complex models, and this has led to the widespread

adoption of the method within the population genetics community

for assessing and fitting demographic models to molecular data.

Understanding the evolutionary history of a population is an

important aspect of studies on natural populations. Aside from

giving information about the evolutionary past of organisms,

inferring the demographic history and structure of a population is

also necessary to understanding the effect of other population

genetic processes. For instance, studies aiming to infer signatures

of selection at candidate loci or across the genome depend on first

knowing the background patterns of genetic variation produced by

historical demographic events [3,4]. Methods for estimating

demographic histories have therefore become increasingly impor-

tant, and have fuelled the proliferation of studies using ABC to

infer a suitable demographic model.

A typical ABC workflow would consist of a number of steps: i)

choose a set of summary statistics describing a given dataset; ii)

perform a large number of simulations sampling a pre-supposed

distribution of models and model parameters; iii) compute the

summary statistics for the simulations; iv) apply a rejection

threshold to focus on a region of the parameter space where the

relationship between the summary statistics and parameters is

assumed to be linear; v) perform either a regression to evaluate

model parameters or perform a logistic regression to compare

models. There are alternatives to this workflow, but this is the

approach most commonly implemented in ABC analyses. The

great strength of ABC lies in its flexibility, allowing the user to

address a very large set of demographic models.

There are, however, a number of caveats associated with the

approximation quality of ABC. These have been well-documented

in the literature, but perhaps the most important consideration,

and which is inherent to the ABC procedure, is in choosing

informative summary statistics [5–7]. The field of population

genetics has a long history of summarizing patterns of genetic

variation in a way that is sensitive to departures from the standard

neutral model. However, the extent to which summary statistics

accurately represent the data is hard to evaluate and might be a

major limitation to model inference, and particularly model choice

[8]. This process has been relatively overlooked in the literature
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compared with advances in statistical methods that all somehow

assume that data are properly summarized. Furthermore, even if a

certain set of summary statistics is informative in accurately

estimating parameters from two different demographic models

separately, the same set of summary statistics may be uninforma-

tive when it comes to comparing these two models with each other

[8].

Besides estimating demographic parameters such as population

divergence times or migration parameters, model choice is central

to many questions in population genetics. The problem of

appropriately summarizing the data could be more important

for datasets containing low levels of information, either because of

an insufficient sampling effort or low levels of variation. Using

population genetic simulations, we try to identify what happens

when limitations are placed on the amount of information in the

data, such as sample size, number of loci and level of genetic

diversity. Firstly, this mimics many studies of natural populations

where constraints are placed on the amount of data that can be

collected. As the use of ABC has increased, so too has it been

embraced in non-model organisms where the number of loci and

samples are often limited. It is therefore of great interest to

understand how a limited dataset impacts the use of ABC model

choice. Secondly, it highlights which aspects of an ABC analysis,

including the choice of summary statistics, are important in

determining the power to reject a null demographic model in favor

of a more complex alternative. Placing constraints on the data

limits the amount of information available for comparing models,

and by doing this we look to tease apart the factors contributing to

the power of model choice in ABC.

Here, we use simulations to explore the power of model choice

in ABC. In particular, we concentrate on two simple coalescent

models commonly used in population genetic studies. The first is a

null model of constant effective population size (Standard Neutral

Model - SNM), and the second is a simple bottleneck model

(BNM) that acts as our alternative model. Bottlenecks are known

to occur frequently in natural populations (e.g. [9–12]) and are one

of the most commonly investigated demographic models. There is

considerable interest in understanding the patterns that bottle-

necks leave in genetic data and a lot of work has gone into

correctly inferring the parameters of bottleneck models in model

species such as Homo sapiens and Drosophila melanogaster (reviewed in

[13]). The model also contains a parameter controlling the severity

of the bottleneck, and varying this parameter allows us to

investigate the performance of model choice in ABC in more

detail. We begin by exploring the relationship between the

parameters of the models and a number of summary statistics

commonly used in population genetics. Using a subset of these

summary statistics, we assess the power to reject the SNM in favor

of the BNM whilst varying: 1) the quality of the dataset; 2) the

severity of the bottleneck; and 3) the tolerance of the rejection step.

Results

Choice of summary statistics
Figure 1 shows correlation coefficients between different

summary statistics and the parameters of the SNM and BNM

for the largest dataset with high genetic variance (n~20, l~30,

h~0:005). The parameter h is strongly positively correlated with

the means of many statistics, such as hW , p, hH , He and S, as well

as their quantiles and standard deviations. One exception is the

standard deviation of He which is strongly negatively correlated

with h. This is in sharp contrast with p which responds positively

to an increase in segregating sites. The standard deviation of

Tajima’s D is negatively correlated with h, showing that its

precision increases with increasing variation. The average value of

Fay and Wu’s H is independent of h in the SNM and is slightly

positively correlated with h in the BNM. The variance of H is

strongly positively correlated with h, but the width of the interval

between the 5% and 95% quantiles of H increases markedly with

increasing h, although this is due to the use of the non-

standardized version of H . Finally, the site frequency spectrum

is little affected by the mutation rate, save for a small positive

correlation of s1 with the SNM, possibly due to an increased

power of detection of rare variants with large values of h. In

contrast, r does not have any strong correlation with the means of

the statistics. Its effect, however, is visible on the standard

deviation, as recombination reduces the variance of the coalescent

process. The mean of some statistics, such as Tajima’s D, Fay &

Wu’s H and the site frequency spectrum appear independent of h,

whereas the mean of He shows a strong correlation, reflecting an

increase in the number of haplotypes with an increase in

recombination. Parameters specific to the BNM (NB and T ) are

both weakly correlated with most statistics, with the direction of

the correlation consistent for both parameters. Both NB and T are

most strongly correlated with Tajima’s D (rD,T~0:299,

rD,NB
~0:373), Fay & Wu’s H (rH,T~{0:059, rH,NB

~{0:369)

and the low frequency class of the site frequency spectrum

(rs1,T~{0:239, rs1,NB
~{0:337). Among the three classes of the

SFS (s1, s2 and s3) the proportion of low frequency variants (s1) is

negatively correlated with both NB and T . Interestingly, more

recent and stronger bottlenecks (that is, low values for NB and T )

both result in negative D and an excess of rare variants with a

corresponding depletion of high frequency classes. H and its

variance also respond to the bottleneck parameters, particularly its

severity.

We performed a Principal Component Analysis (PCA) in order

to quantify the main features that can be extracted from summary

statistics. PCA reduces the dimensions of a set of potentially

correlated variables into a smaller set of uncorrelated variables

that best explain the variance in the data. Figure S1 shows a PCA

of the SNM (NB~N0, n~20, l~30, h~0:005) and the BNM

(NB~0:1N0, n~20, l~30, h~0:005) contrasted against the

complete parameter space of the BNM (n~20, l~30). The two

models are clearly separated on the first principal component (PC)

Figure 1. Correlation between parameters and summary
statistics. Correlation coefficients between parameters and summary
statistics for a SNM (top) and a BNM (bottom) for the larger dataset
(n~20, l~30). The parameters are given by theta and rho in the SNM
and by theta, botEnd, botNe and rho in the BNM. The summary
statistics give the average, standard deviation (_sd) and the 5 and 95%
quantiles (_q5 and _q95) for three common estimates of h (thetaW,
thetaPi, thetaH), haplotypic diversity (He), the number of segregating
sites (S) and two tests of neutrality (Tajima’s D and Fay & Wu’s H). The
site frequency spectrum is binned into 3 frequency classes (s1, s2, s3),
ranging from low frequency (s1) to high frequency (s3) variants, that
represent the proportion of segregating sites that occur in each class.
doi:10.1371/journal.pone.0099581.g001
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indicating that there is enough information in the summary

statistics to distinguish between the models. There is still a

separation between the models on the second and third PCs, but

they cannot be distinguished on the fourth PC. Figure 2 shows the

first four PCs (PC1, PC2, PC3 and PC4) for the summary statistics

calculated under a BNM. Each of the (independent) principal

components can be linked to a feature of the genetic polymor-

phism patterns, and these features can be measured by one or

more statistics. For example, PC1 represents the parameter h as

many of the h estimators cluster together and there is the same

pattern of correlation with statistics as observed in Figure 1. The

first PC captures most of the signal (94.1%), showing that h, which

controls the amount of genetic variation, is the major parameter

shaping the patterns of polymorphism. The second PC captures

far less of the signal (3.6%) and likely represents the shape of the

site frequency spectrum, as there is differentiation among statistics

known to be influenced by the shape of the site frequency

spectrum. It is essentially independent from the first PC, and

correlated with the three site frequency spectrum categories, the

neutrality tests D and H and the quantiles and standard deviation

of D (those of H are strongly correlated with h). The low-

frequency variants and Tajima’s D contribute most to this PC,

although in opposite directions. The third and fourth PCs capture

less of the variation (1.3% and 0.4% respectively) but there are still

interpretable patterns in the data. In particular, D05, H and H05

are clustered separately from the rest of the summary statistics on

the third PC and are then separated on the fourth PC. It is possible

that these represent derived alleles and that this could be

informative for model choice.

Comparison amongst sets of summary statistics
We looked at the effect that a 90% reduction in the effective

population size (NB~0:1N) has on the power to reject the SNM

for different sets of summary statistics (Table 1). All sets of

summary statistics give good power for large datasets with high

nucleotide diversity (n~20, l~30, h~0:005), with the proportion

of Bayes factors exceeding 3 all being greater than 0.99

(YTPH~0:985; YSFS3~0:991; YTzSFS3~0:999; YSFS5~0:997;

YTPHzDH~1). For a large dataset with low genetic diversity

(n~20, l~30, h~0:0015), three sets of summary statistics are able

to reject the SNM with a power greater than 0.9 (YSFS3~0:901;

YTzSFS3~0:907; YTPHzDH~0:95), with TPH, in contrast,

having very low power (YTPH~0:019). Smaller datasets afford

less power to reject the SNM, except when using the TPH+DH set

of summary statistics with high nucleotide diversity (n~10, l~15,

h~0:005), which still allows for a high degree of power in rejecting

the SNM (YTPHzDH~0:95).

Table 1 also shows the proportion of times that the SNM is

falsely rejected (a). For three of the statistics (TPH, SFS3 and

SFS5), the false positive rate is marginally higher in larger datasets,

whereas for the TPH+DH set of statistics the pattern is the

opposite. In small datasets, false positives are very rare (v0:01)

with a larger h tending to decrease the rate of false positives.

Different sets of summary statistics also result in different a: in

particular, SFS3 tends to cause slightly more false positives than

other sets of summary statistics. The number of false positives are

small so any patterns may be influenced by the underlying

variance. However, in none of the categories does the false positive

rate reach 5%. While this is encouraging, it is important to note

that the false positive rate increases as the Bayes factor used to

determine significance is reduced. For large datasets with low

genetic variation and the TPH+DH set of summary statistics the

false positive rate is 0.166 and 0.397 for Bayes factor cutoffs of 1.5

and 1 respectively. Similarily, for small datasets with high genetic

variation the rate is 0.110 and 0.411 for cutoffs of 1.5 and 1

respectively.

In general, the inclusion of statistics that summarize elements of

the site frequency spectrum give greater power, which is most

clearly reflected in smaller, low diversity datasets (n~10, l~15,

h~0:0015) by the power difference between TPH and the other

three sets of summary statistics (YTPH~0; YSFS3~0:306;

YTzSFS3~0:214; YSFS5~0:339; YTPHzDH~0:373). The distri-

Figure 2. Principal Component Analysis of summary statistics under a bottleneck model. The first four principal components (PCs) of a
PCA for summary statistics calculated for 10,000 simulations of a BNM in a large, genetically diverse sample (n~20, l~30, h~0:005).
doi:10.1371/journal.pone.0099581.g002
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butions of model probabilities (Figure S2) under the SNM and

BNM overlap for TPH, even for larger datasets where an increase

in samples and loci leads only to a shift in the mean of the

distribution so that the models are difficult to separate. However,

for sets of summary statistics that incorporate the site frequency

spectrum (TPH, SFS5 and TPH+DH) a larger dataset increases

the power to distinguish between the two models, and the

distribution of model probabilities is skewed.

Somewhat surprisingly, including hW with SFS3 decreases the

power for datasets with low genetic diversity (n~10, l~15:

YSFS3~0:306, YTzSFS3~0:214; n~20, l~30: YSFS3~0:901,

YTzSFS3~0:738). To investigate the performance of T+SFS3 in

datasets with low and high levels of nucleotide diversity, we

extended our analysis to include scenarios with more severe

(NB~0:01N) and less severe (NB~0:2N) bottlenecks. In genet-

ically diverse datasets there is a clear difference between the value

of hW in BNMs and SNMs (Figure 3), suggesting that the statistic is

informative in choosing between the models. In contrast, the

distributions of hW for datasets of low nucleotide diversity overlap

to some extent, implying that in this case the statistic is not as

informative for distinguishing between the two models.

In all scenarios considered, an increase in the severity of the

bottleneck increases the power to correctly reject the SNM

(Table 2). For all sets of summary statistics, there is excellent power

to detect a 90% (0:1N) or 99% (0:01N) reduction in the effective

population size with a large, genetically diverse sample (n~20,

l~30, h~0:005). The choice of summary statistic becomes

increasingly important for a smaller reduction in the population

size of 80% as, even for large, genetically diverse samples (n~20,

l~30, h~0:005), only the TPH+DH set of statistics performs well

(0.968). The TPH set of statistics performs poorly with smaller or

genetically less diverse datasets, even for strong bottlenecks

(0:01N), and seems to perform particularly badly in samples with

low diversity.

The TPH+DH set of statistics performs better than all other sets

of statistics for all dataset types and bottleneck strengths tested.

The power to detect population size reductions of 90% or more is

greater than or equal to 0.95 for all but the worst datasets, whether

that be a smaller dataset with higher genetic diversity

(YTPHzDH~0:95; n~10, l~15, h~0:005), or a larger dataset

with lower genetic diversity (YTPHzDH~0:95; n~20, l~30,

h~0:0015). For smaller datasets with low genetic diversity,

however, the power is still low to reject the SNM

(Y0:2N~0:205; Y0:1N~0:373; Y0:01N~0:546). To dissect the

performance of TPH+DH, we looked at the value of Tajima’s D

and Fay & Wu’s H as a function of the model probabilities for

bottlenecks of varying severity. The value of Tajima’s D (Figure 4

and Figure S3) decreases with an increase in the severity of the

bottleneck. For small datasets with low genetic variation (n~10,

l~15, h~0:0015), the overlap in values of Tajima’s D is

considerable, even between the SNM (NB~N) and the most

severe bottleneck model (NB~0:01N), and this is in line with the

low levels of power for this type of dataset (Y0:2N~0:205;

Y0:1N~0:373; Y0:01N~0:546). Larger datasets (n~20, l~30)

reduce the variation, whilst higher levels of genetic variation

produce more negative mean values of Tajima’s D (large dataset/

low genetic variation: D0:2N~{0:40, D0:1N~{0:55,

D0:01N~{0:68; large dataset/high genetic variation:

D0:2N~{0:55, D0:1N~{0:75, D0:01N~{0:91). An increase in

the severity of the bottleneck causes an overall increase in Fay &

Wu’s H (Figure S4). There is considerable difference between

datasets of low and high nucleotide diversity in the variance of H.

There is just a small shift in the mean of H in datasets with low

nucleotide diversity (h~0:0015) as the severity increases, suggest-
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ing that H is uninformative. However, in datasets with high

nucleotide diversity (h~0:005) there is a larger increase in H with

increasing bottleneck severity.

For the most informative set of statistics (TPH+DH) we

performed additional analyses for bottlenecks of different levels

of severity (NB~0:5N and NB~0:3N ) to better understand the

relationship between bottleneck severity and the power to reject

the SNM (Figure 5A). The power to detect weak bottlenecks

(NB~0:5N) is low for each of the datasets tested. Contrastingly,

for severe bottlenecks with a 99% reduction in the effective

population size, all but the most limited datasets have very high

power (Y§0:997). For a small dataset with low genetic diversity

(n~10, l~15, h~0:0015), there is low power to reject the SNM

for even the most severe bottlenecks (Y0:01N~0:546).

Varying the tolerance
We investigated the power of model choice in ABC when the

tolerance was varied (Table S1 and Figure S5). Generally, a

stricter tolerance leads to a higher level of power, especially for the

TPH set of statistics, where the choice of tolerance is very

important. For larger datasets with high nucleotide diversity

(n~20, l~30, h~0:005), choosing a tolerance of 0.001 gives a

power of 0.985 to reject the SNM, whereas using a tolerance level

of 0.005 would result in a much lower power value of 0.525.

Similarly, for large datasets with low nucleotide diversity (n~20,

l~30, h~0:0015) there is virtually no power to correctly reject the

SNM, except when a tolerance of 0.0001 is used, which gives a

power value of 0.688. However, a stricter tolerance leads to a

higher rate of false positives, with rates reaching a maximum of

1.7% (n~20, l~30, h~0:005, tol = 0.0001) and 3.2% (n~20,

l~30, h~0:0015, tol = 0.0001) for the TPH and SFS5 set of

statistics respectively. The choice of tolerance appears to decrease

in importance as the summary statistics capture more features of

the site frequency spectrum. Tolerance levels of 0.01, 0.005 or

0.001 all give similar levels of power for the SFS5 set of summary

statistics, with notable decreases being observed only with the most

extreme tolerances (0.1 and 0.0001). It is worth noting however

Figure 3. The impact of bottleneck severity and dataset quality on model probabilities and summary statistics. The effect of
bottleneck strength on the value of summary statistics and model probabilities for larger datasets (n = 20, l = 30) with low (h~0:0015) or high
(h~0:005) levels of genetic variation. Each point represents the rejection step of an ABC analysis when the T+SFS3 set of statistics is used with a
tolerance of 0.001. The y-axis of the top two panels show the values of the first bin of the relative site frequency spectrum s1 (representing rare
alleles) and the bottom panels display the value of Watterson’s Theta (hW ). The effective population size during the bottleneck (NB) is defined
relative to the recovered effective population size (N).
doi:10.1371/journal.pone.0099581.g003
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that these patterns might just represent random deviations caused

by the low number of false positives and higher variance.

Finding the optimal dataset size
In population genetic studies of natural populations there may

be limitations on the quality of the dataset available for sampling.

It is therefore of interest to ask how many samples or loci need to

be obtained in order to have a 95% power to detect a bottleneck.

We therefore extended our analyses, using the most informative set

of summary statistics (TPH+DH), to include datasets with samples

of between 5 and 40 individuals, where the number of loci varied

between 1 and 60 and the level of genetic variation was low

(h~0:0015). Figure 5B shows the power as a function of the

product of the number of samples (n) and loci (l) as this can be seen

as being proportional to the sequencing cost of a study. The

relationship between Y and nl is sigmoidal, with the addition of

loci and samples increasing the power above 95% when nl§600.

However, the contributions of the number of samples and loci to

the power is not equal, with datasets having more power when

lwn.

Figure 5 also shows the power to reject the SNM in favor of a

BNM for a different number of samples when the number of loci

are limited (l~15 or 30; Figure 5C) and for a different number of

loci when the number of samples is limited (n~10 or 20;

Figure 5D). When the number of loci are limited to 15 the power

to reject the SNM remains well below 95%, even for large sample

sizes (Yn~40~0:762), and the relationship appears to be

asymptotic. Increasing the number of loci to 30 greatly increases

the power such that sampling more than 20 individuals means that

the power is greater than 95%. When the number of samples are

limited 95% power is reached when *50 and 30 loci are used for

sample sizes of 10 and 20 individuals respectively.

Parameter estimation
To assess the ability of ABC to estimate parameters of a BNM in

limited datasets, we performed parameter estimation using the

local linear regression method described in [1]. Figure 6 and

Table 3 summarize the distribution of the means of the posterior

distributions for each replicate under a BNM for large datasets

(n~20, l~30). The parameter h is estimated well by three of the

four sets of summary statistics. SFS3, however, gives a very poor

estimate of h (0.00413) in low diversity samples, whilst the estimate

is far better in high diversity samples (0.00475). The time of the

bottleneck (T ) was estimated better in the high diversity samples

than in the low diversity samples, with an increase in nucleotide

diversity also decreasing the variance of the posterior means. The

effective population size during the bottleneck (NB) is estimated

well for TPH+DH in both the low and high diversity datasets. For

the rest of the sets of summary statistics, samples with high

nucleotide diversity give better results. Table S2 shows the

proportion of replicates where the true value lies within the

90%, 50% and 10% credible intervals of the parameter posterior

distributions. One notable observation is that, for SFS3, the

proportion of replicates in which the true value lies within the

credible intervals is surprisingly high. This is particularly striking

for high levels of variation and 10% credible intervals where a

proportion of 0.578 was found for SFS3, compared to much

smaller values for the other summary statistics [7]. It is also

interesting to note that, for each parameter for TPH+DH, the

proportion of replicates where the true value lies within the

credible intervals is better for low nucleotide diversity (h~0:0015)

than for high nucleotide diversity (h~0:005).

Discussion

In this study we chose to address the power of ABC model

choice when the amount of data is the limiting factor. In ABC we

are challenged with the task of summarizing the data such that

these contrasting patterns are captured and there is enough

information to distinguish between the two competing models.

However, summary statistics that are capable of separating, for

example, a population genetic model of constant effective

population size from a population expansion model will not be

the same as those capable of separating a structured population

from an unstructured population [14]. Therefore, the way in

which the data can be summarized most informatively will be

highly context-dependent [15]. We began by first exploring the

behaviour of summary statistics in a bottleneck model, and

proceeded by investigating the power that different sets of

summary statistics have in separating a bottleneck model from a

simple model of constant effective population size.

Choosing summary statistics
A number of studies (e.g. [16,17]) have used correlation

coefficients and PCA to guide their choice of summary statistics.

We find that when using PCA it was possible to identify categories

of summary statistics that are informative for separating the SNM

and BNM. On the first PC, statistics strongly correlated with h are

separated from those based on the shape of the site frequency

spectrum. This is in agreement with the finding that the inclusion

Table 2. The effect of bottleneck severity on power.

h~0:0015 h~0:005

0:2N 0:1N 0:01N 0:2N 0:1N 0:01N

n~10, l~15 TPH 0 0 0 0.112 0.287 0.395

SFS5 0.154 0.339 0.497 0.132 0.447 0.745

T+SFS3 0.097 0.214 0.33 0.227 0.482 0.732

TPH+DH 0.205 0.373 0.546 0.614 0.95 0.999

n~20, l~30 TPH 0.002 0.019 0.031 0.707 0.985 0.999

SFS5 0.602 0.907 0.973 0.789 0.997 1

T+SFS3 0.434 0.738 0.881 0.835 0.999 0.999

TPH+DH 0.71 0.95 0.997 0.968 1 1

The power to correctly reject the SNM in favor of BNMs of different strengths, expressed as the relative effective population size during the bottleneck.
doi:10.1371/journal.pone.0099581.t002
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of SFS-based statistics increases the power to reject the SNM in

favor of a BNM. This is in line with population genetic

expectations, a population bottleneck affects the average number

of nucleotide differences more strongly than the number of

segregating sites [18], and is the basis for Tajima’s D. Tajima’s D

proved to be an effective and informative summary of the site

frequency spectrum, becoming more negative with an increase in

the severity. There may also be great benefit in using the unfolded

site frequency spectrum. Only the folded site frequency was tested

here, but any additional information given by knowing the derived

allele could boost the power.

Additional signals in the third and fourth PCs indicate that

derived alleles describe some of the variation, even if these PCs

accounted for a small fraction of the overall variation (about 1.7%

combined). Combining the signals from both low frequency and

high frequency variants proved successful in increasing the power

to reject the SNM. For example, of all the summary statistics

tested, TPH+DH gave the highest power, and it may be that the

combination of Tajima’s D and Fay & Wu’s H summarizes the site

frequency spectrum in an informative way. Fay & Wu’s H is often

neglected as inferring the derived allele depends on there being a

suitable outgroup available, which is not always the case in non-

model organisms. In contrast, haplotypic information didn’t

appear to be overally informative, although this could simply be

due to the size of the fragments simulated (750 bp). For the power

analysis we assessed only the means of the statistics, but there may

be information in the standard deviation and the quantiles of some

of the summary statistics. In particular, the standard deviation of

Figure 4. The impact of bottleneck severity and dataset quality on Tajima’s D. The effect of bottleneck strength on the value of Tajima’s D
and model probabilities for both small (n~10, l~15) and large (n~20, l~30) datasets with low (h~0:0015) and high (h~0:005) genetic variation.
Each point represents the rejection step of an ABC analysis when the TPH+DH set of statistics is used with a tolerance of 0.001. The effective
population size during the bottleneck (NB) is defined relative to the recovered effective population size (N).
doi:10.1371/journal.pone.0099581.g004
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the haplotypic diversity showed a negative correlation with

parameters of the BNM model.

One of the key considerations when choosing summary statistics

has been in avoiding the curse of dimensionality [1]. As the

number of summary statistics increases, so too does the variability

in the parameter estimates in the regression step of ABC, leading

to poorer parameter estimates. It has been suggested that model

choice may be affected less by this problem [19]. While our results

generally support this, we do find some limited evidence to the

contrary in datasets with low genetic diversity where the power is

lower for T+SFS3 compared to the SFS3 set of summary statistics.

Accordingly, a number of methods have been established for

identifying informative summary statistics in relation to estimating

parameters. For example, [20] weight statistics according to the

information they give for a parameter of interest, whilst [21]

implement a partial least-squares transformation of the summary

statistics and [22] apply a machine learning technique (boosting) to

find the most informative summary statistics. More recently,

research has moved towards identifying summary statistics for

model choice. [19] use logistic discriminant analysis to process

summary statistics before model choice, [23] weight the summary

statistics for model choice after a preliminary regression step and

[24] derive conditions under which summary statistics are

sufficient for selecting the true model.

While we find PCA to be a highly informative way of

summarizing the data, it may not be enough to simply perform

PCA and look for patterns in the summary statistics. Some results

of our analyses were counter-intuitive, such as the finding that the

T+SFS3 set of summary statistics performed worse than SFS3 in

datasets with low genetic diversity. This suggests that there can be

a complex relationship between some summary statistics and the

parameters of the model. This may be the case in the above

example where Watterson’s h only adds noise rather than any

additional information to the low diversity datasets and could, as

discussed above, be due to the curse of dimensionality. However,

the SFS3 set of statistics estimates the parameter h poorly. This

may be due to the use of the relative instead of the absolute site

frequency spectrum, as information in the absolute SFS regarding

h is lost when it is re-scaled. This draws to attention an interesting

problem concerning the choice of summary statistics in ABC. A set

Figure 5. The effect of sample size and the number of loci on power. The power to reject the SNM, for the TPH+DH set of summary statistics,
as a function of (A) the bottleneck severity (expressed as the relative effective population size NB), (B) the product of the number of loci and the
number of samples (NB~0:1N , h~0:0015), (C) the number of samples (NB~0:1N , h~0:0015), and (D) the number of loci (NB~0:1N , h~0:0015). In
B, C and D the dotted line corresponds to a power of 0.95.
doi:10.1371/journal.pone.0099581.g005
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Figure 6. Parameter estimation for different sets of summary statistics. Boxplots showing the distribution of mean values of the 1000
posterior distributions for the replicates for the population scaled mutation rate (h), the time of the bottleneck (T ) and the strength of the bottleneck
(NB) for datasets with low (h~0:0015) and high (h~0:005) genetic variation. Thick lines denote the median, the boxes extend to the first (25%) and
third quartiles (75%) and the whiskers give the minimum and maximum values. The dotted red lines show the true values for the BNM (n~20, l~30).
doi:10.1371/journal.pone.0099581.g006
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of summary statistics that is informative in distinguishing between

two competing models may not be the set of statistics most suitable

for estimating parameters under the most probable model. In

some cases it may be more suitable to perform model choice using

a set of summary statistics known to be informative in separating a

class of models, and then to use a second set of summary statistics

for estimating parameters known to be informative for the most

probable model. Foremost, this emphasizes the importance of

performing preliminary analyses of the power afforded by a given

set of summary statistics.

Whilst an important aspect to consider, our results suggest that

the choice of tolerance is not of overriding importance, although

this is dependent on how informative the summary statistics are.

This has also been observed in other studies looking at parameter

estimation in an ABC framework. [20], for example, found that

the tolerance has a relatively minor effect on the estimation of

migration rate when they weight summary statistics according to

how informative they are. However, [25] noted that, in general a

low tolerance was more beneficial for estimating parameters if the

number of accepted replicates was sufficiently high. Of more

importance is the choice of Bayes factor cutoff. In this study we

used a Bayes factor of 3 as the threshold but note that the false

positive rate increases with a decreasing Bayes factor cutoff. This

suggests that drawing conclusions from analyses where Bayes

factors are less than 3 may lead to the inference of an incorrect

model.

ABC in non-model organisms
The amount of data available for genetic studies of non-model

organisms is often limited, and so it is important that sequencing

and sampling efforts are directed towards maximizing the amount

of information available for ABC. Specifically, we find that there

are a number of factors that govern the power to distinguish

between two competing models. In particular, the level of genetic

variation is important and this inevitably has consequences on the

number of loci and samples required. Here, we considered the

power afforded to sequence data, but other types of markers, such

as microsatellites, are more variable and would give more

information. For our low variation datasets (h~0:0015), around

20 individuals and 30 loci would be required in order to have a

95% power to detect a strong bottleneck (NB~0:1N). In the more

variable dataset (h~0:005), around 10 individuals and 15 loci

would give the same power. In general, and in agreement with

expectations of the coalescent [26], we find that sampling more

loci rather than individuals is of greater benefit in increasing the

power.

It is also important to acknowledge that there is a limit to what

one can say with a limited dataset. Our analyses dealt with

relatively strong bottlenecks, and these represent quite drastic

demographic events. Weaker events will undoubtedly affect

genetic data in a subtler way that is harder to detect and therefore

requires more data, whether that be more loci, individuals or more

variable markers. However, in general we find that the power to

detect a bottleneck increases with the severity of the bottleneck.

Large samples of loci and individuals are required to detect mild

bottlenecks and this is likely to generalize to parameters in other

models. Similarly, [27] found that there is lower power to detect a

weaker migration rate in an isolation-with-migration model.

However, even if bottlenecks with a reduction in the population

size of 99% or more can de detected with the correct summary

statistics, it is unclear how often bottlenecks of this magnitude

occur in natural populations. There are examples (e.g. [9]: *3%
of current size; [28]: *1:5% of current size), especially in

domesticated species (e.g. [29]: *0:5% of current size), where

drastic reductions in the effective population size have been

inferred. However, it may be the case that weaker bottlenecks, or

more subtle temporal variation in the effective population size, are

more frequent but that we simply do not have enough power to

detect them with the datasets at hand.

In general, the approach of ABC in summarizing the data into

summary statistics is relatively reliable for estimating parameters

[8]. Although this seems to be true in most cases, we find that this

does not hold in cases where the summary statistics are less

informative. This is exemplified by the poor estimate of h by the

SFS3 set of summary statistics. This appears to be resulting from

the priors, that are uniformly distributed between 0 and 0.01.

When the summary statistics offer no information on the

parameters of interest then the expected value of the parameter

will be the mean of the prior distribution. In this case, the

parameter estimate of h would approach 0.005 as the summary

statistics become less informative, and would explain the poor

estimate of h in low diversity samples (0.00413). A sensitivity

analysis might therefore be an important step in determining the

influence of the prior over the posterior distribution. This may also

be influencing the other parameters. T and NB appear to be

overestimated when the data or summary statistics are insufficient,

and so these parameters could tend to the mean of the prior

distribution if the dataset or summary statistics are insufficient.

There are a number of ways that the estimation of parameters and

model choice can be improved. The euclidean distance metric is

most commonly used for assessment of the fit of the simulated data

to the observed data, but other metrics may provide a better

measure. Another common step is to even out the contribution of

each of the summary statistics through a normalization step that

conforms them to the same standard deviation, and this could lead

to improvements in parameter estimation.

To assess the amount of information that the analysis brings, it

is strongly advised that the prior and posterior distributions are

compared, and this can identify situations where the prior has too

Table 3. Parameter estimation under a bottleneck model.

h~0:0015 h~0:005

h (0.0015) T (0.2) NB (0.1) h (0.005) T (0.2) NB (0.1)

TPH 0.00173 0.34206 0.19495 0.00512 0.24841 0.11152

SFS3 0.00413 0.3143 0.18854 0.00475 0.27097 0.15404

T+SFS3 0.00166 0.38112 0.23845 0.00518 0.21601 0.12387

TPH+DH 0.00159 0.28889 0.11915 0.00507 0.21907 0.08665

Mean parameter estimates averaged over all replicates (true values in parentheses). n~20, l~30.
doi:10.1371/journal.pone.0099581.t003
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much influence over the analysis. In the present study we have

considered two simple models (SNM and BNM) and estimated our

power to distinguish those. For both models the data were

generated by the models under comparison. In real life, however,

we may, for instance, sample individuals from different demes in a

structured population. This can have a confounding effect and

may lead to the false detection of bottlenecks or effective

population size changes [30,31].

Conclusions

Our analysis of the power of ABC model choice in limited

datasets suggests that careful consideration of the number of loci

and samples is critical when designing a study. Even in scenarios as

simplistic as the one examined here, under some conditions, there

is simply not enough information contained in the data to

confidently separate two distinct models. While ABC in principle

allows testing for very complex demographic histories, the amount

of information that can be extracted from a given dataset is likely

to limit power to make more subtle inferences. However, certain

parameters, such as the number of samples, the number of loci and

the level of genetic variation, can be used fairly reliably to predict

the power of a study to separate different models. What’s more, if

suitably informative summary statistics are used together with an

appropriately large dataset then, in general, ABC model choice is

relatively powerful and quite conservative with regard to the false

positive rate. Fortunately, with the widespread availability of

simulation tools, it is possible to test the probability of detecting a

model with a dataset of any given size and level of diversity.

Furthermore, the efficiency and flexibility of ABC means that

assessing the power of any given dataset is realistic for most studies

in non-model organsisms.

Materials and Methods

Demographic models and simulated datasets
We test the power of ABC by comparing two simple

population genetic models, each simulated under a coalescent

model. The coalescent is a backward in time simulator of a

population of gametes that can be subjected to a number of

evolutionary forces. The genetic variation in a population of

gametes is determined by the mutation rate per generation (m),

and the effective population size (N). The level of genetic

variation in a population is then defined as the product of these

two parameters: h~4Nm. Two coalescent models were consid-

ered, the first of which consisted of a population of effective size

N (haploid individuals) that remain constant through time

(SNM). For the second scenario, a bottleneck model (BNM)

was considered where an instantaneous reduction in the

population size occurs at 0.2 coalescent time units (t) in the past

(measured in 4N generations), and persists for a period of 0:2t
before returning to its original size. For each demographic model,

1000 datasets were simulated whereby the levels of nucleotide

diversity (assuming an infinite sites model) and number of samples

and loci were varied. For the majority of analyses, we considered

a sample size (n) of 10 or 20 individuals (where a population

consists of 2N gametes), with 15 or 30 loci sequenced (750 bp

each in length) and two levels of genetic variation with per base

pair scaled mutation rates of h~0:0015 or h~0:005 (where

h~4Nm). For the majority of simulations in the BNM, the

relative population size during the bottleneck (NB) was 0:1N,

although we also varied this parameter (0:5N, 0:3N, 0:2N , 0:1N

and 0:01N) to assess the performance of ABC in detecting

bottlenecks of varying severity. The population scaled recombi-

nation rate, r~4Nr, was set to 0.01/bp in each model.

For each of these simulated datasets the mean, standard

deviation and 5% and 95% quantiles across loci were calculated

for Watterson’s h (hW , hsd
W , h05

W , h95
W ; [32]), nucleotide diversity (p,

psd , p05, p95; [33]), Fay & Wu’s estimate of h (hH , hsd
H , h05

H , h95
H ;

[34]), haplotype diversity (He, Hsd
e , H05

e , H95
e ; [35]), Tajima’s D

(D, Dsd , D05, D95; [36]), Fay & Wu’s non-standardized H (H,

Hsd , H05, H95; [34]) and the number of segregating sites (S, Ssd ,

S05, S95). The relative site frequency spectrum (SFS) was also

summarized by the average proportion of segregating sites that

occur within each of three or five evenly sized frequency classes

(s1, s2, s3, s4, s5). These represent population genetic statistics

that are thought to summarize population sequence data in the

most informative way (see for example, [17,25,26]). For the

analysis of the power and false positive rate of ABC we combined

a number of summary statistics: TPH (hW , p, He), SFS3 (folded

site frequency spectrum in 3 bins), T+SFS3 (hW , folded site

frequency spectrum in 3 bins), SFS5 (folded site frequency

spectrum in 5 bins) and TPH+DH (hW , p, He, D, H ). When

analyzing the relationships among summary statistics, the

calculation of correlation coefficients and the performance of

Principal Component Analysis (PCA) was implemented using the

python library NUMPY.

Model choice, power and parameter estimation
Joint posterior densities were simulated for each of the two ABC

models using 106 draws from uniformly distributed priors. The

prior bounds for the SNM and BNM were (0, 0.01) and (0, 0.02)

for h and r, respectively. Time was measured on a scale of 4N

generation. For the BNM, the time (T ) of the bottleneck (looking

backwards in time) was sampled from a prior with bounds (0, 1.5),

with the relative population size during the bottleneck (NB) having

bounds of (0, 1). The relative ancestral population size and the

duration of the bottleneck were fixed as 1 and 0:2t respectively.

ABC was performed using the python library EGGLIB [37], which

implements the Euclidean distance-based, local linear regression

method described in [1]. Model choice was performed using the

rejection-based method implemented in EGGLIB, with model

probabilities being defined as the proportion of simulations

belonging to each model after the ABC rejection step. Bayes

factors were calculated as the ratio of the model probabilities, with

a Bayes factor § 3 (unless stated otherwise) being considered an

acceptable level of significance [38]. Power (Y) was defined as the

probability of correctly rejecting the SNM and was assessed by

calculating the proportion of replicates with a Bayes factor §3
when the true model was the BNM. False positives were

considered as instances where the SNM was falsely rejected and

was given by the proportion of replicates with Bayes factors §3
when the SNM was the correct model. Parameter estimation was

carried out using the local linear regression method of [1]. The

accuracy of parameter estimation was assessed by comparing the

true parameter value with that estimated in ABC using the relative

bias, (x̂x{x)=x, and the relative mean square error, (x̂x{x)2=x2.

The tolerance level ( E ) for both model choice and parameter

estimation was fixed at 0.001 unless otherwise stated. Coalescent

simulations, ABC analyses and calculation of summary statistics

were performed using EGGLIB. Any additional custom code is

provided in the Github repository: https://github.com/

mspopgen/Stocks2014a.
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Supporting Information

Figure S1 Principal Component Analysis under the
SNM and BNM models. The first four principal components

(PCs) for summary statistics calculated under the SNM and a

BNM (NB~N, NB~0:1N) and the entire prior parameter space

of the BNM. n~20, l~30.

(PDF)

Figure S2 Model probability distributions for different
summary statistics. Distribution of model probabilities for the

TPH (hW , p, He), SFS5 (5 bin relative site frequency spectrum)

and TPH+DH (hW , p, He, D, H ) sets of summary statistics.

h~0:0015, NB~0:1N .

(PDF)

Figure S3 Impact of bottleneck severity on Tajima’s D.
The effect of bottleneck strength on the value of Tajima’s D for

both small (n~10, l~15) and large (n~20, l~30) datasets with

low (h~0:0015) and high (h~0:005) genetic variation. Each point

represents the rejection step of an ABC analysis when the TPH+
DH set of statistics is used with a tolerance of 0.001. The effective

population size during the bottleneck (NB) is defined relative to the

recovered effective population size (N).

(PDF)

Figure S4 Impact of bottleneck severity on Fay and
Wu’s H. The effect of bottleneck strength on the value of Fay &

Wu’s H and model probability for both small (n~10, l~15) and

large (n~20, l~30) datasets with low (h~0:0015) and high

(h~0:005) genetic variation. Each point represents the rejection

step of an ABC analysis when the TPH+DH set of statistics is used

with a tolerance of 0.001. The effective population size during the

bottleneck (NB) is defined relative to the recovered effective

population size (N).

(PDF)

Figure S5 Impact of tolerance. The effect of the tolerance

level on model comparison in ABC for datasets with different

numbers of samples (n), loci (l) and levels of genetic variation.

Different colored lines refer to different sets of summary statistics:

TPH and SFS5. NB~0:1N.

(PDF)

Table S1 Impact of tolerance. The power (Y) and false

positive rate (a) for different tolerances and sets of summary

statistics. NB~0:1N.

(PDF)

Table S2 Parameter estimates. Proportion of replicates

where the true value lies within the 10%, 50% and 90%

confidence intervals of the posterior distribution. NB~0:1N,

n~20, l~30.

(PDF)
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