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Abstract

It is estimated that a large proportion of amino acid substitutions in Drosophila have been fixed by natural selection, and as
organisms are faced with an ever-changing array of pathogens and parasites to which they must adapt, we have
investigated the role of parasite-mediated selection as a likely cause. To quantify the effect, and to identify which genes and
pathways are most likely to be involved in the host–parasite arms race, we have re-sequenced population samples of 136
immunity and 287 position-matched non-immunity genes in two species of Drosophila. Using these data, and a new
extension of the McDonald-Kreitman approach, we estimate that natural selection fixes advantageous amino acid changes
in immunity genes at nearly double the rate of other genes. We find the rate of adaptive evolution in immunity genes is also
more variable than other genes, with a small subset of immune genes evolving under intense selection. These genes, which
are likely to represent hotspots of host–parasite coevolution, tend to share similar functions or belong to the same
pathways, such as the antiviral RNAi pathway and the IMD signalling pathway. These patterns appear to be general features
of immune system evolution in both species, as rates of adaptive evolution are correlated between the D. melanogaster and
D. simulans lineages. In summary, our data provide quantitative estimates of the elevated rate of adaptive evolution in
immune system genes relative to the rest of the genome, and they suggest that adaptation to parasites is an important
force driving molecular evolution.
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Introduction

Hosts face an ever-changing array of parasites to which they

must adapt, and parasites are widely believed to be one of the most

important and universal selection pressures in natural populations.

Consistent with this view, immune genes in several taxa are known

to evolve faster than other genes, and sometimes significantly faster

than the neutral rate – a signature of adaptive evolution [1,2,3].

Indeed, many studies of one or a few immune genes have

identified the action of positive selection in Drosophila, including

Relish [4], the Scavenger Receptors [5] RNAi genes [6], TEPs [7],

Persephone [8] and others [2]. More recently, complete genome

sequencing of multiple Drosophila species found that immune-

related genes have high rates of amino-acid substitution, and are

more likely to show evidence of adaptive evolution than other

genes [1,9]. Here we go beyond the yes/no detection of selection,

to quantify the additional adaptation that occurs in proteins of the

immune system over and above that which occurs in the rest of the

genome.

The rate at which natural selection fixes new mutations can be

estimated by comparing the amount of polymorphism within

populations to divergence between species at synonymous and

nonsynonymous sites [10,11,12,13,14]. Approaches of this kind

have been used to estimate the genome-wide rate of adaptive

evolution, and found that it is often surprisingly high

[10,13,15,16,17]. However, the nature of the selection pressures

underlying this evolution remains unknown.

One approach to answering this question is to compare

estimated rates of adaptive evolution between proteins with

different functions. Moreover, focussing on genes where we have

a strong expectation of elevated positive selection also has a further

benefit; there is an ongoing debate about the extent to which the

high genomic estimates represent artefacts of processes such as

population demography [15,18,19], and testing the a priori

hypothesis that immunity genes will have increased adaptive rates

can address this issue.

To assess the role of pathogens and other parasites as a cause of

molecular evolution we have resequenced population samples of

most of the best-characterised immunity genes in the Drosophila

melanogaster genome, together with position-matched ‘control’

genes with no known immune function. This provides a

quantitative estimate of the impact of parasite-mediated selection

on the rate of adaptive evolution, and suggests that immunity

genes have double the genome-average rate (Figure 1). We found

that this was not caused by a generally elevated rate in immunity

genes. Instead, most immunity genes show similar rates of adaptive

evolution to the rest of the genome, with only a small subset

evolving under very intense selection (Figure 2). These genes tend

to be concentrated in a few pathways, which we argue are likely to

be hotspots of host-parasite coevolution (Figure 3). Interestingly,
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these pathways are known to be suppressed by pathogens, and this

suggests that active parasite-suppression of the immune system is

an important cause of this adaptive evolution. Furthermore, when

independent lineages are compared, similar genes show acceler-

ated rates of adaptation (Figure 4). This suggests that despite their

dynamic nature, host-parasite interactions may create similar

selective pressures in related species, leading to replicable

signatures at the molecular level.

Results

We have resequenced 136 of the best characterised immunity

genes in Drosophila melanogaster and D. simulans. To get an unbiased

estimate of the background rate of adaptive evolution, we also

sampled position-matched ‘control’ genes with no known immune

function. We sampled flies from six D. melanogaster populations and

two D. simulans populations, and pooled genomic DNA from four

outcrossed flies (eight alleles of each gene) from each population.

We then amplified the target genes by PCR, and sequenced them

using the Solexa-Illumina platform. After excluding sites with less

than 20-fold coverage (Figure S1) and genes represented by less

than 100 bp of sequence, there remained a total of 462.7 kbp of

protein coding sequence from D. melanogaster representing 415

genes, and 335.6 kbp from D. simulans representing 309 genes. In

Author Summary

All organisms are attacked by an ever-changing array of
pathogens and parasites, and it is widely supposed that
the ensuing host–parasite ‘‘arms race’’ must drive exten-
sive adaptive evolution in genes of the immune system.
Here we have taken advantage of new sequencing
technologies and analytical approaches to quantify the
amount of adaptation that is occurring in immunity genes
relative to the rest of the genome. We sampled two
species of fruit fly (D. melanogaster and D. simulans) from
eight different populations around the world, and
sequenced 136 immunity and 287 non-immunity genes
from these samples. Based on the differences in the
sequences between the two species, and the genetic
diversity within each species, we have estimated that
natural selection drives twice as much change in immune-
related proteins as in proteins with no immune function.
Interestingly, the rate of adaptation is also more variable
among immunity genes than among other genes in the
genome, with a small subset of immunity genes evolving
under intense natural selection. We suggest that these
genes may represent hotspots of host–parasite coevolu-
tion within the genome.

Figure 1. The estimated rate of adaptive substitution in different classes of gene. Estimates from a single Kenyan population sample from
each of D. melanogaster and D. simulans, and the divergence between them. (A) estimates of the proportion of non-synonymous substitutions that
were adaptive (a). (B) estimates of the number of adaptive non-synonymous substitutions per non-synonymous site (a). P-values are with respect to
the control genes, and were determined by bootstrapping. Error bars are 95% bootstrap intervals around the mean, calculated across loci.
doi:10.1371/journal.pgen.1000698.g001
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this coding sequence we identified 12,974 putative SNPs in D.

melanogaster and 10,759 in D. simulans. Raw data are available from

the NCBI Short Read Archive under accession number

SRA009020, or on request from the authors, and data for

individual genes is given in Table S1.

Short-read sequencing of long PCR products provides a cost-

efficient approach to identifying polymorphic sites and to

estimating levels of genetic diversity, and has been shown to be

as, or more, accurate than traditional Sanger sequencing [20]. By

pooling template DNA between multiple individuals, cost-

efficiency can be improved even further, though this may come

at the cost of reduced accuracy. To assess the quality of our

pooled-template short-read data, we re-sequenced 11 loci in two

populations from diploid genomic DNA of the same individuals,

using traditional Sanger sequencing (a total of 12,415 bp; see Text

S1 and Figures S2, S3, S4, S5, S6, S7, S8, S9 for a detailed

analysis of data quality and a comparison of the methods). We

found that our pooled-template short-read approach successfully

recovered ,90% of the polymorphisms identified by Sanger

sequencing, and more than 94% of short-read polymorphisms

were verified by the Sanger data. Assuming the Sanger sequences

are correct, on a per-site basis, this is an accuracy of 99.8%.

Although estimates of allele-frequency are relatively poor (the

correlation between Sanger and short-read estimates was Pear-

son’s r= 0.71), our estimates of genetic diversity are highly

correlated between the two methods (Pearson’s r= 0.94 and 0.90

for per locus estimates of hw and hp respectively). Our approach

compares favourably with automated Sanger-sequencing of

diploid genomic DNA, which is reported to have an error rate

of ,7% of SNPs [reviewed in 20]. However, as with related

methods [21], the majority of our sequencing errors appear to

result from PCR (allelic dropout and misincorporation of bases) or

unequal mixing of template DNA. Because of this, future mixed-

template studies may be improved by the use of direct DNA-

capture in place of PCR, and/or mixing larger numbers of

individuals, so that read-frequency better-reflects population allele-

frequency.

For the following analyses of adaptive rates we focus on Kenyan

populations of each species, as these are thought to be

representative their ancestral range [22], and should minimise

demographic artefacts associated with recent colonisation

[14,15,18]. However, analyses of combined data, which give very

similar results, are presented in Figures S10, S11, S12, S13, S14,

S15.

Immunity genes show higher rates of adaptive evolution
than other genes

The proportion of amino acid substitutions that were fixed by

natural selection (denoted a) can be estimated using extensions of

the McDonald-Kreitman test [16], which compares non-synony-

mous and synonymous changes, and contrasts within-species

polymorphism to fixed differences between species. We have

extended existing maximum likelihood approaches [15,23,24] to

estimate separate a values for immunity and non-immunity genes,

and for different classes of immunity genes (see Materials and

Methods).

We found that the proportion of substitutions attributable to

positive selection in immune genes is approximately 50% greater

than the genome average. Based on the divergence between D.

simulans and D. melanogaster and polymorphism in Kenyan

populations of both species, we estimated that 65% of amino acid

substitutions in immunity genes have been fixed by selection (95%

bounds bootstrapping across genes within categories: 55–72%,

Figure 1A). This is significantly higher than our estimate for non-

immunity genes, which is very close to previous genome-wide

Figure 2. Immune genes have a greater variance than other genes in the estimated rate of adaptive substitution. The estimated
number of adaptive substitutions per non-synonymous site between D. melanogaster and D. simulans, for 131 immune genes (A; red) and 265 control
genes (B; blue). The mean and variance is higher for immune genes than control genes: 0.011 vs. 0.006 (p = 0.022) and 0.00054 vs. 0.00026 (p = 0.018)
respectively, though the modes are extremely similar (the modal class in both (B) and (C) is centred on zero [20.003,0.003]). (C) shows number of
adaptive substitutions per non-synonymous site, plotted against gene length. We used a in place of a for this analysis because a is poorly estimated
for single genes (see Materials and Methods).
doi:10.1371/journal.pgen.1000698.g002
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estimates (reviewed in [10]) (a= 41%; 95% bounds are 31–50%;

difference from immunity genes: p = 0.004, inferred by boot-

strapping).

The effect remained highly significant when data from all

populations were combined, though absolute estimates of a were

slightly lower (immune: a= 58%; non-immune: a= 33%;

p = 0.004; Figure S10). Since the exclusion of rare variants led to

slightly higher estimates of a (Figure S16), this effect is probably

caused by the enlarged sample size containing a higher proportion

of (low-frequency) mildly-deleterious non-synonymous variants,

which can cause a to be underestimated [23]. Estimates of a in the

Greek (Athens) populations had greater variance and failed to

detect a significant difference between immunity and non-

immunity genes (Figure S10B), as might be expected because the

relatively low genetic diversity of this population means we have

little statistical power to accurately infer a [14].

The proportion of amino acid substitutions fixed by selection (a)

will clearly be affected by the number of substitutions not fixed by

selection, i.e., the number of effectively neutral substitutions fixed

through genetic drift. Therefore, it is possible that the higher a of

immunity genes does not reflect any increase in the absolute

number of adaptive substitutions per non-synonymous site

(denoted a [16]). This possibility has been little explored, because

a, unlike a, is difficult to estimate as a multi-gene average, and

because single-gene estimates of either statistic tend to be

imprecise. Here we use an approach that allows us to obtain

relatively stable estimates of a for individual genes (see Materials

and Methods), which can then be averaged across immune and

non-immune genes. Using Kenyan populations of D. melanogaster

and D. simulans, we estimated that since their common ancestor,

selection has fixed an average of 10.661023 adaptive substitutions

per non-synonymous site in immunity genes, but only 5.761023 in

other genes (difference between immunity and control genes:

p = 0.02; Figure 1B). This difference in the absolute number of

adaptive substitutions corresponds to 50% increase in the

proportion (a) described above, and suggests that natural selection

is fixing adaptive substitutions in immunity genes at nearly double

the genome average rate.

Figure 3. Immunity pathways and genes coloured according to their estimated rate of adaptive evolution. Well-characterised immune-
related genes arranged by pathway and cellular location, coloured according to the inferred rate of adaptive substitution (a: adaptive substitutions
per non-synonymous site between D. melanogaster and D. simulans). Red indicates high rates of adaptive substitution, blue indicates an excess of
weakly-deleterious polymorphism. Asterisks indicate those genes that individually display a significant deviation from neutrality in a classical single-
locus MK test using the data presented here. In addition to effect size, single-gene significance also strongly reflects the power of the test and will be
affected by (e.g.) gene length. To achieve maximum coverage of the immune system, the analysis presented in this figure uses all the sampled
populations of D. melanogaster and D. simulans.
doi:10.1371/journal.pgen.1000698.g003
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Immune genes show more variation in rates of adaptive
evolution than other genes

The high rate of adaptive evolution that we found in immunity

genes could be driven either by a general elevation in the strength

of selection across all immunity genes, or by a few key genes

experiencing intense selection pressures. To investigate this, we

examined the distribution of a across genes. Although mean a is

higher for immunity genes than other genes (Figure 1B), the modal

class is the same, i.e., centred on zero in both cases (Figure 2A

versus Figure 2B), and the difference in mean is driven by a subset

of immune genes with unusually high a (Figure 2C; this results in a

significantly higher variance for immunity genes). The wider

distribution of a across immunity genes suggests that most of these

genes experience similar selection pressures to the rest of the

genome, while a small subset are under substantially stronger

selection. This is consistent with the analyses of D. simulans genome

sequences that found little evidence that immunity genes as a

group are outliers in terms of recurrent adaptive evolution [17].

Thus it appears that host-parasite arms races may involve a

relatively small subset of the immune system.

This analysis could be confounded if our estimates were less

accurate for immune genes than control genes, but this is unlikely

for two reasons. First, the immunity genes tend to be longer than

control genes, which will reduce the variance of a estimates and

make our analysis conservative (Figure 2C). Second, the pattern

remains significant and quantitatively almost identical if the

analysis is restricted to genes with more than 500 non-synonymous

sites (Figure S17, S18).

Immune genes with different functions show different
rates of adaptive evolution

Clues as to the nature of the selection pressures acting on

immune genes can be gained from looking at which functional

classes of immune gene are experiencing the strongest selection

[1,2]. To examine how selection pressures differ between immune

genes with different functions, we classified the genes in two

different ways.

First, we classified genes according to the branch of the immune

system in which they function: the humoral, cellular, melanisation

and antiviral RNAi responses. We found little variation between

the first three categories (a= 51%, 62% and 63%; per-site

a = 0.009, 0.010 and 0.012, respectively), and individually no

category was significantly different from non-immunity genes

(Figure 1A and Figure 1B). However, RNAi genes were an

exception to this, showing approximately twice the proportion of

adaptive substitutions as compared to non-immune genes

(a= 88% vs. 41%; p,0.001), and seven times the number of

adaptive substitutions per site (a = 0.042 vs. 0.0057; p,0.001;

Figure 1). This is consistent with previous results, which found that

some RNAi genes evolve rapidly under positive selection [6,25].

Figure 4. The estimated rate of adaptive substitution is correlated between the D. melanogaster and D. simulans lineages. The
estimated number of adaptive substitutions per non-synonymous site, a, estimated independently along the D. melanogaster and D. simulans
lineages (immune genes in red, control genes in blue). Spearman’s rank correlation coefficient is significantly positive, indicating that genes with high
rates of adaptive substitution in one lineage tend also to have high rates in the other (r= 0.36, p = 2610210). The correlation does not differ between
immune genes and other genes (r= 0.47 vs. 0.29, p = 0.14 by bootstrapping), and the result is the same when using all populations (r= 0.51 vs. 0.35,
p = 0.16).
doi:10.1371/journal.pgen.1000698.g004
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Second, we classified immune genes (excluding those involved in

RNAi) according to their mode of action: pathogen recognition,

signalling cascade, and antimicrobial peptides (AMPs). This

categorisation gave a superior fit to the data according to model

selection techniques (see Materials and Methods, and Table S2)

and was also a significantly better fit than randomly assigning

genes to categories of the same size (randomization test: p,1023).

Using this alternative categorisation, no group was significantly

higher than non-immune genes, although signalling molecules did

have a marginally higher a but not a (estimated a= 57% vs. 41%;

p = 0.085). Consistent with previous results [26,27], AMPs showed

no evidence of adaptive evolution (were not detectably different

from a= 0; Figure 1A), undergo significantly less adaptive

evolution than RNAi, signalling and cellular recognition genes

(p,0.014 in each case), and undergo marginally less adaptive

evolution than non-immune genes (estimated a= 213% vs. 41%;

p = 0.082). Alternative analyses using other populations and

outgroups resulted in a qualitatively identical pattern (Figures

S10, S11, S12, S13, S14, S15), except that the use of D. yakuba as

an outgroup resulted in the signalling molecules having a

significantly higher a than the controls (p,0.031; Figure S14A

and S14B).

Some genes and pathways are under exceptionally
strong selection

Because the high rate of adaptive evolution in immune system

genes is caused mainly by a subset of genes under very strong

selection (Figure 1 and Figure 2), we investigated how these genes

are distributed across the immune system (Figure 3). The two main

signalling pathways in the immune system are the Toll and IMD

pathways, and of these the IMD pathway has a much higher rate

of adaptive evolution than the Toll pathway (IMD: mean

estimated a = 0.023; Toll: mean a = 0.009; difference between

Toll and IMD p = 0.039 by bootstrapping within classes). Within

the Toll pathway, the extracellular molecules are under stronger

selection than the cytoplasmic ones (extracellular: mean a = 0.015,

cytoplasmic: mean a = 0.005, p = 0.033). The antiviral RNAi genes

again show strong adaptive evolution [6] (mean estimated

a = 0.032). Elsewhere, TEP I and PGRP-LD are also under

exceptionally strong selection [1,7]. It has been suggested that the

phagocytosis receptor Dscam, which can produce up to 18,000

differently spliced isoforms, may allow Drosophila to mount specific

immune responses [28,29]. However, despite having over 22 kbp

of coding sequence from Dscam, we were unable to find any

evidence of adaptive evolution in this gene, indicating that this

gene is not subject to arms-race selection.

Genes experience correlated selection pressures in
different species

If the immune system adapts to parasites in similar ways in

related species, then we would expect to see the same genes

experiencing positive selection in different lineages [30]. Alterna-

tively, each species could respond differently, resulting in different

genes being positively selected in different lineages [30].

To address this question, we estimated the rate of adaptive

evolution separately for each of the lineages leading to D. simulans

and D. melanogaster from the common ancestor of the two species.

The pattern of a (and a) across different pathways and functional

categories of genes was very similar between the two lineages

(Figures S12, S13), suggesting that the broad distribution of selection

pressures between immune functions is the same. For example, in

both lineages antiviral RNAi genes have the highest rates of

adaptive evolution and antimicrobial peptides have the lowest rates.

Estimates of a along these individual lineages are associated with

high levels of noise due to the short length of the branches;

furthermore, the measurement error will be negatively correlated

across the two lineages. Despite these sources of error, however,

the data show a significant positive correlation in immunity gene a

estimates between the two lineages (Figure 4), and this suggests

that individual genes, and not just categories of gene, are under

similar selection pressures in both lineages. This correlation was

not significantly different to that that found in the non-immunity

genes, indicating that there is no greater tendency for parasites to

cause lineage specific selection than other selective agents

(Figure 4).

Immunity genes have similar levels of polymorphism and
population structure to other genes

The analyses presented above can identify selection that has

occurred over millions of years, but recent selective sweeps can

also be detected though reductions in genetic diversity. In both D.

melanogaster and D. simulans there was no significant difference in

the diversity of synonymous sites (ps) between immunity and non-

immunity genes (Kenyan D. melanogaster: ps = 1.60% vs. 1.55%;

Kenyan D. simulans: 2.46% vs. 2.62%; Figure S19, Figure S20,

Table S3). Furthermore, if the immune genes are split into

functional categories, only the diversity of the antiviral RNAi

genes is significantly lower than the control genes (D. melanogaster

ps = 0.80%, p,0.001; D. simulans ps = 1.01%, p,0.001. Figure

S19, Figure S20, Table S3). This is consistent with RNAi genes

having the highest rates of adaptive substitution in the immune

system, and suggests a high proportion of them may have recently

experienced selective sweeps in both species. Furthermore, none of

the immune genes had unusually high levels of polymorphism,

suggesting host-parasite coevolution in Drosophila has not resulted

in the ancient polymorphisms like those seen in vertebrate MHC

genes and some plant resistance genes [31,32].

It is known that flies are infected by different parasites in

different populations, and this could lead to local adaptation where

different alleles of a gene are favoured in different populations

[33,34,35,36,37]. However, we could not detect any differences

between immune genes and the controls in the amount of

population structure in either D. melanogaster or D. simulans (Figure

S21) providing no evidence to suggest that local adaptation of

immune genes is common. However, it should be noted that our

statistical power to detect genetic structure may be extremely low,

and the effects of local adaptation on patterns of nucleotide

variation may be small [38].

We also compared the amino acid diversity (pa) of the immunity

and control genes, as this may reflect differences in selective

constraint or the effects of balancing selection. In all eight

populations pa was slightly higher in the immune genes, and in

three populations the difference was significant (Figure S22, Figure

S23, Table S3). Compared to the control genes, immune signalling

molecules tend to have lower amino acid diversity, while

antimicrobial peptides and recognition molecules in the cellular

immune system have significantly higher amino acid diversity

(Figures S22, S23). These differences correspond to the estimated

number of substitutions occurring by genetic drift (Figure S24), but

not to differences in ps, implying that they are caused by

differences in selective constraint, rather than long-term balancing

selection maintaining amino acid polymorphisms.

Discussion

We have found that the rate of adaptive substitution in

immunity genes is nearly double the genome average. This is

Quantifying Adaptive Evolution in Immune Genes
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the first quantitative estimate of the rate at which natural selection

drives protein evolution in genes of the immune system relative to

the genome as a whole, and confirms that adaptation to parasites is

an important force driving evolution. There are several reasons

why parasites may be a powerful selection pressure. Firstly,

parasites can cause high rates of mortality and morbidity, and

therefore have a large impact on the fitness of their hosts.

Secondly, the direction of parasite-mediated selection continually

changes, due to coevolutionary arms races between hosts and

parasites [39], and ecological factors altering the composition of

the parasite community. Finally, parasites generally have shorter

generation times, and (in the case of viruses) elevated mutation

rates, potentially giving them an edge in the ‘arms-race’. This

means that hosts may often be maladapted to their current set of

parasites, and therefore under strong selection to evolve resistance.

We have also found that the high rate of adaptive substitution of

immunity genes is driven by a small subset of immune genes under

strong selection, while the majority of immunity genes have similar

rates of adaptive evolution to the rest of the genome. This suggests

that rapid ‘arms-race’ coevolution may only involve a small subset

of molecules in the immune system. Since there is a tendency for

these strongly-selected genes to cluster by pathway or protein-

family, these clusters may reflect hotspots for coevolutionary

interaction with parasites.

By examining the function of these groups of strongly-selected

genes, we can gain clues regarding the underlying molecular

processes that drive this coevolution. It is striking that almost all of

these genes fall within the IMD signalling pathway and the

antiviral RNAi pathway (Figure 3). It is known that both signalling

pathways and RNAi are targeted by parasite molecules that

suppress the immune response, and it has been suggested that this

suppression may cause much of the adaptive evolution seen in

immunity molecules [1,2,4,25,40]. The Toll pathway tends to

have lower rates of adaptive evolution. It is unclear why this is,

although it may reflect the pathogens with which it interacts, or

constraint from its other functions in development [41]. In

contrast to the signalling pathways, the PGRPs and GNBPs that

act as receptors for the Toll and IMD pathways are not positively

selected, possibly reflecting their role in binding to highly

conserved pathogen molecules [7]. Unlike many other organisms

(especially vertebrates [42]), AMPs in Drosophila show less adaptive

evolution than most genes. This contrasts with the high rate of

AMP gain and loss in the Drosophila phylogeny [1], and suggests

that whatever process favours the duplication of AMPs does not

result in strong selection on their protein sequence. Our results

also imply that AMPs may be weakly constrained, with genetic

drift fixing amino acid substitutions at a relatively high rate. This

may be a consequence of gene duplication, as duplicated genes

often have elevated rates of amino acid substitution [43].

It is interesting to note that components of the antiviral RNAi

pathway also mediate defence against transposable elements

[44,45,46], and these ‘genomic parasites’ may be an important

selective force on these genes [25]. Indeed, several RNAi genes

with no reported anti-viral function [25,47,48], and other genes

involved in chromatin function [17], show evidence of rapid

adaptive evolution in Drosophila.

At the phenotypic level, many organisms show evidence of

convergent evolution, with different species evolving similar

adaptations in response to similar selection pressures. However, it

is unclear whether convergence is also common in molecular

evolution, or whether molecular evolution is idiosyncratic, with each

species following a unique evolutionary pathway [30]. One way to

address this question is to test whether the same genes are evolving

adaptively in different species [30]. At a broad level, we found that

similar functional classes of immunity genes tend to have elevated

rates of adaptive evolution in both the D. melanogaster lineage and the

D. simulans lineage. At a finer scale, the rate of adaptive evolution of

individual genes is correlated in the two lineages (despite the very

high levels of noise associated with these single-lineage estimates).

Because this correlation was not significantly different in immunity

genes and our control genes, this suggests the fluctuating selection

pressures associated with host-parasite coevolution do not result in

unusually high rates of lineage-specific selection. Together these

results suggest that the immune system of these two closely related

species experience similar selection pressures, and adapt to those

selection pressures in similar ways.

Previous studies on immunity genes have applied various tests of

adaptive evolution, and found that a higher than average fraction

of immunity genes test ‘positive’ (e.g., [1,2]). However, the

statistical power of these tests will depend on factors such as

selective constraint and gene length, and these could differ

between immunity and non-immunity genes, even if their rates

of adaptive substitution were identical. Furthermore, such

confounding factors will be even more important if adaptive

substitution is frequent across the genome, meaning that a large

proportion of all genes evolve under some degree of positive

selection [10]. Therefore a particular strength of the current

approach, which can compare the estimated rates of adaptive

evolution across different groups of genes, is that it provides

quantitative estimates of the effect size rather than simply counting

the number of ‘significant’ tests.

Estimates of the rate of adaptive substitution based on the

McDonald-Kreitman test have been subject to some recent criticism

as they can be influenced by factors such as population demography

[18,19]. However, it seems unlikely the differences observed here

are artefacts. First, we compared loci where we have a strong a priori

expectation of adaptive substitution to position-matched control

loci. Second, we found no significant differences in the rate at which

genetic drift causes non-adaptive evolution at these loci, such as

could mislead the tests (Figure S24). Finally, false signatures of

adaptive substitution can occur in populations that have experi-

enced bottlenecks or recent expansions, and yet the signal we

observed was much stronger in the ancestral Kenyan populations

(Figure S10A), and weakest in the more derived populations (Figure

S10B), while quantitative estimates of a differed surprisingly little

between datasets. As new sequencing technologies result in ever

larger datasets, this approach promises to be a powerful way to

identify the selection pressures driving molecular evolution.

Our data not only confirm that parasites are an important

driving force in molecular evolution [1,2], they quantify the

magnitude of this effect, and show that the rate of adaptive protein

evolution in immunity genes is nearly twice the genome average.

This elevated rate in the immune system is due to a subset of genes

evolving under intense positive selection, and many of these genes

are strongly selected in both D. melanogaster and D. simulans,

suggesting that our results may reveal general principles of

immune system evolution. In particular, some of the most strongly

selected genes may be targeted by parasite suppressors the

immune response, and this may be a key battlefield in coevolution.

These data add to the growing evidence that much adaptive

protein sequence evolution is driven by co-evolutionary conflicts

within or between genomes [49,50].

Materials and Methods

Sequencing and sequence analysis
Flies were sampled from six populations of D. melanogaster and

two populations of D. simulans, covering both their original range
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in Africa and more recent global expansion. In each population we

extracted genomic DNA from four female flies that were either

collected from the wild or were the progeny of crosses between pairs

of isofemale lines (i.e. we sampled eight chromosomes from each

population). Targeted genes were amplified by PCR in ,5 kbp

products, and the PCR products from each population were then

mixed together, purified on a gel, and sequenced using the Solexa-

Illumina sequencing platform to high coverage (mean .130-fold;

Figure S1). The 36 bp sequencing reads were aligned to the D.

melanogaster or D. simulans genome using MAQ [51] allowing for up

to 2 mismatches per read, which resulted in 5–16 million mapped

reads in each population. The sites were then assigned to coding or

non-coding sequence using the genome annotation, and coding sites

were classified as synonymous or non-synonymous. Positions with

less than 20-fold coverage were excluded, as were genes represented

by less than 100 bp; however, our results were not strongly affected

by the exclusion of sites with less than 50-fold or 100-fold coverage

(Figure S25). Full details of the Solexa-Illumina sequencing,

together with a detailed comparison with traditional Sanger

sequencing, are given in Text S1. A full listing of loci, their

positions and polymorphism counts are given in Table S1.

Adaptive substitutions
To estimate the rate of adaptive substitution, we used a multi-

locus, maximum likelihood extension of the McDonald-Kreitman

test. This method is based on Welch 2006 (ref. [15], see also

[23,24]), but contains several new features and models. Software

that implements the new methods is available on request from the

authors, or from http://tree.bio.ed.ac.uk/software/.

We compared non-synonymous and synonymous divergence

between D. melanogaster and D. simulans with polymorphism from

both species. For each locus, the six observations (dN, dS, and pN

and pS for each species), were assumed to have the following

expected values:

E pS,i½ �~lShi

Xni{1

j~1

1=j

E pN,i½ �~lNf hi

Xni{1

j~1

1=j

E dS½ �~lS lzh1=n1zh2=n2½ �

E dN½ �~lN
f

1{a
lzh1=n1zh2=n2½ �, or E dN½ �~lN f lzh1=n1zh2=n2½ �zlN a

where lS and lN are the number of synonymous and non-

synonymous sites, l= mt is the expected neutral divergence

between the species, hi = 4Nem is the expected neutral polymor-

phism for species i, ni is the number of alleles sampled for species i

(taken here to be 8 per sampled population), and f is the fraction of

non-synonymous mutants that are effectively neutral [15].

The parameters of greatest interest here, a or a, quantify the

multiplicative or additive deviation of the observed dN from its

expectation under neutrality and purifying selection. Positive

estimates of either a or a are consistent with adaptive protein

evolution, while negative values result either from sampling error, or

from the presence of mildly deleterious mutations (which violate the

assumptions of the test, contributing to pN but rarely reaching

fixation [16,52]). This violation can be mitigated by excluding low

frequency synonymous and non-synonymous polymorphisms, as

this is expected to remove the great majority of mildly deleterious

mutations while leaving the neutral pN/pS ratio unaltered [52,53].

To explore this phenomenon, we repeated our analyses excluding

all putative polymorphisms with an estimated minor-allele frequen-

cy below a range of threshold frequencies (Figure S3). Our results

were qualitatively unaltered, and so in the main text we report only

results with all sampled polymorphisms included in the counts.

To estimate the model parameters it was assumed that

observed quantities were Poisson distributed around their

expected values [15,23,24]. This distribution is derived under

the assumption that substitutions and polymorphisms occur as

independent events, but this assumption can be violated, e.g., by

linked selection causing the clustering of substitution events in

time. We used three approaches to reduce the impact of such

violations. First, for some parameter types (selective constraint f

and/or adaptive substitution a), we assigned separate parameters

to each locus, making the extent of stochastic variation irrelevant

to the parameter estimates obtained. Second, we obtained

confidence intervals by bootstrapping across loci, rather than

using the curvature of the likelihood surface. Third, we used

model-selection criteria that allow for un-modeled over-disper-

sion (such as that arising from the clustering of events in time). To

avoid over-parameterization associated with assigning large

numbers of locus-specific parameters, we assumed that l (the

neutral mutation rate multiplied by divergence time) took a single

value across all loci.

To model neutral polymorphism, we exploited the correlation

between h at a locus, and its local recombination rate [54], by

fitting the model h= mr+b, where r is the local D. melanogaster

recombination rate [55]. Maximum likelihood estimates of m and b

were then obtained for each of the two species. This model has the

advantage of providing appropriate estimates of h for loci where

the synonymous polymorphism is not at equilibrium, such as after

a recent selective sweep. Model selection techniques (see below)

also showed that it was significantly preferred to models in which h
did not vary between loci, and in which each locus had a separate

parameter. Importantly, however, estimates of a were very similar

under all three parameterizations (Figure S26). Given our chosen

model, a data set of k loci was used to fit k+5 nuisance parameters,

plus the a or a values of interest.

To choose between different parameterizations of the likelihood

model (see Table S2) we used the Akaike Information Criterion,

corrected for finite sample size and over-dispersion in the count

data [56]. This criterion is given by QAICc = 22lnL/

c+2K+K(K+1)/(n-K-1) where lnL is the maximized likelihood for

the model, K is the number of parameters it contains, and n is the

number of data points (taken to be 6 times the number of loci).

The factor c is the correction for overdispersion, and was estimated

by c = (2lnLfull-2lnLsat)/nfull, where ‘‘full’’ denotes the largest model

in the set of models being compared, and ‘‘sat’’ denotes the

saturated model, in which the expected values of all data points

were set to their observed values. The conditional likelihood of

each model was obtained by converting the QAICc values into

Akaike weights [56].

To compare estimates of adaptive substitution along two

independent lineages, we used a variant of the method above,

including polymorphism from a single species, and polarizing

substitutions on to the D. melanogaster or D. simulans branch based

on the inferred ancestral sequence. Ancestral sequences were

inferred using maximum likelihood under a codon-based model

and the tree (((Dmel,Dmel), (Dsim,Dsim)), ((Dyak), (Dere))) using

PAML [57].
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Genetic diversity and differentiation statistics
Genetic diversity was quantified in two ways. First, an estimate

of h derived from the number of polymorphic sites, calculated

exactly as Watterson’s hw under the assumption that all eight

chromosomes in each population were sampled [58]. Although

sites with low read depth may not sample all chromosomes, even

at 20-fold coverage (our minimum threshold for inclusion) given

equal representation of the chromosomes there is .90% chance

that at least 7 of the 8 chromosomes have been sampled. Given the

observed read depths this effect would lead us to underestimate

Watterson’s h by less than 0.5% of its correct value for most loci

(Figure S9). Second, an estimate of h based on p (the average

number of pairwise differences per site) was calculated from read

frequencies (rather than allelic frequencies) at each site based on

the assumption that read frequencies should reflect underlying

allele frequencies. In fact, although significantly correlated, read

frequencies do not provided a good estimate of allele frequencies

in our data (Pearson’s r= 71; Figure S4, see Text S1 for a full

discussion). However, when averaged over multiple sites, p based

on read-depth is extremely highly correlated with that based on

true allele frequencies from Sanger sequence data, suggesting that

this is an excellent measure of diversity (Pearson’s r= 0.90; Figure

S26).

The degree of population structure was quantified using a

sequence-based estimate of FST derived from ps calculated within

and between populations: FST = (ptotal–psub)/ptotal [e.g. 59] where

psub is the average genetic diversity of a gene within a population

and ptotal is diversity across all populations. Averages across genes

were calculated as the ratio between the mean of the numerator

and the mean of the denominator for those genes, rather than the

mean of the ratios. The significance of differences between classes

of genes in FST and genetic diversity was assessed by boot-

strapping. Genes were re-sampled with replacement within each

category, and the statistic was recalculated 1000 times to produce

a null distribution.

Supporting Information

Figure S1 The distribution of read depths. Histograms show the

distribution of absolute read depths for every site analysed,

separated into those inferred to be monomorphic (black) or

polymorphic (blue; y-axis is relative frequency). Note that

putatively polymorphic sites have a lower read depth, most likely

because short-reads that differ from the reference are less likely to

be successfully mapped to the genome. The x-axis shows the right

hand limit of each bin, and read depths .499 are lumped at 500.

The p-values report the probability that the two distributions are

the same, based on a Kolmogorov-Smirnov test, as implemented

in the R statistical language. The similarity between the two

distributions suggests that the effect of polymorphisms on

successful read-mapping is very small, and unlikely to qualitatively

impact upon our conclusions.

Found at: doi:10.1371/journal.pgen.1000698.s001 (0.30 MB TIF)

Figure S2 Relative read depth as a function of position. Relative

read depth by position (standardised to the population mean),

plotted as the trimmed mean across 174 of the 5 kbp PCR

products (this analysis excludes overlapping PCR products). To

clearly illustrate end-effects, position is plotted from the centre of

the fragment, and fragment lengths are standardised to 5 kbp by

deleting sequences from the centre. Note that, on average, all

samples show greater read depths at the ends of the fragment, and

short regions of very low coverage ,100 bp from the ends. This is

likely to reflect poor fragmentation near PCR product ends and

illustrates differences in fragmentation efficiency between samples.

Found at: doi:10.1371/journal.pgen.1000698.s002 (0.25 MB TIF)

Figure S3 Relative read depth as a function of polymorphic site

density. Relative read depth for analysed sites (standardised to the

mean for that population) is plotted against the number of inferred

polymorphic sites in a surrounding 30 bp window, illustrating the

reduced read depth in highly polymorphic regions. For clarity,

only subsamples of the data are plotted, but the red lines show

linear regressions calculated using all loci, with loci weighted

equally. Read depths of ,20-fold are set to zero. Because

polymorphism and read depth are each positionally autocorre-

lated, simple regressions of read depth on the number of

polymorphisms cannot be used to infer significance. Instead, p-

values are derived from the distribution of per-gene point estimates

of the correlation coefficient. In the absence of any underlying

correlation, 50% of point-estimates for the ,400 genes would be

positive, and 50% negative. P-values report the probability of a

deviation from 50:50 that is as (or more) extreme than that

observed, under a binomial distribution.

Found at: doi:10.1371/journal.pgen.1000698.s003 (0.23 MB TIF)

Figure S4 The relationship between Sanger and Solexa-

Illumina estimates of allele-frequency. To assess the impact of

short-read sequencing errors on estimates of minor allele

frequency we re-sequenced 11 loci in the Greek (Athens)

populations of D. melanogaster and D. simulans (see Text S1,

Supplementary Methods). The relationship between minor allele

frequencies estimated from Sanger sequences and from Solexa-

Illumina sequences is shown for all polymorphic sites appearing in

both datasets. Points are coloured according to read depth at that

site; the solid line depicts a 1:1 relationship, and the dashed line a

linear regression of Solexa-Illumina on Sanger estimates. Note that

because 8 chromosomes were sampled, the true minor allele

frequency can only take values 1/8, 2/8, 3/8, 4/8. Although the

correlation is relatively low (Pearson’s rho = 0.71) this has

surprisingly little impact of measures of diversity estimated using

multiple sites (see Figure S9).

Found at: doi:10.1371/journal.pgen.1000698.s004 (0.18 MB TIF)

Figure S5 Relative read depth as a function of local GC

content—all sites. Relative read depth for all sites are plotted

against the GC content of a surrounding 200 bp window,

illustrating how read depth is affected by local base composition.

Data are derived from 174 ,5 kbp long PCR fragments,

excluding the 1,250 bp at each end to avoid end-based

fragmentation effects (see Figure S9). Read depths are standard-

ised to the sample mean, and subsamples of the data are plotted

for clarity, but the red lines show linear regressions calculated

across all 174 PCR amplicons weighted equally. Consistent with

the analyses, read depths of ,20-fold are set to zero. Because GC

content and read depth are each positionally autocorrelated, p-

values were calculated as in Figure S3. Note that the sign of the

correlation changes between low read depth populations (Japan to

Kenya) and higher read depth (French Polynesia and Florida)

populations.

Found at: doi:10.1371/journal.pgen.1000698.s005 (0.40 MB TIF)

Figure S6 Relative read depth as a function of local GC content—

analysed coding sites. Graphs are exactly as Figure S5, but include only

the analysed (protein-coding) sequences (which have a higher average

GC content). Relative read depth for analysed sites (standardised to the

sample mean) is plotted against the GC content to illustrate how read

depth is affected by local base composition. Because GC content and

read depth are each positionally autocorrelated, simple regressions of

read depth on local GC cannot be used to infer significance, therefore

p-values were calculated as in Figure S3.
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Found at: doi:10.1371/journal.pgen.1000698.s006 (0.36 MB TIF)

Figure S7 Base composition at variable sites. Bars show the

base-composition of inferred polymorphisms (variants with a

minor call-frequency of $5%; A, C, and E) and putative

sequencing errors (variants with minor-call frequency ,1%; B,

D, and F) for all of the variable sites identified in the coding

sequences. The y-axis is expressed as a proportion, and the x-axis

denotes the major alleleRminor allele change, i.e. ARC, GRC,

etc. Note the large number of ARG and TRC amongst the

inferred errors (B, D and F) relative to inferred polymorphisms (A,

C, and E), which may be symptomatic of PCR-induced mutation.

The effect is shown for Japan (A and B) which had lowest read-

depth, Florida (C and D) which had highest read depth, and for all

populations combined (E and F).

Found at: doi:10.1371/journal.pgen.1000698.s007 (0.39 MB TIF)

Figure S8 The relationship between Sanger and Solexa-

Illumina estimates of diversity. To assess the impact of short-read

sequencing errors on estimates of diversity we re-sequenced 11 loci

in the Greek (Athens) populations of D. melanogaster and D. simulans

(see Text S1 supplementary methods). (A) shows the relationship

between hw estimated from Sanger sequences and from hw

estimated from short-read sequences, (B) shows the same for

average pairwise diversity (hp). Triangles are loci re-sequenced in

D. simulans and squares are loci re-sequenced in D. melanogaster; the

solid lines depict a 1:1 relationship, and dashed lines a linear

regression of short-read estimates on Sanger estimates. Much of

the difference between the two estimates is due to allelic dropout in

D. simulans TepII, caused by a segregating indel at the site of the

Solexa Long-PCR primer.

Found at: doi:10.1371/journal.pgen.1000698.s008 (0.17 MB TIF)

Figure S9 Underestimates of Watterson’s hw due to un-sampled

genomes. In calculating hw we assumed that all 8 chromosomes

were sampled. However, at low coverage sites (,50-fold) it is

unlikely that this is the case, and this could potentially lead to

underestimates of hw. We have calculated the effect of this on our

estimates under the assumption that all the chromosomes are

equally represented in the template pool and are sampled at

random in the short reads. We find that the effect is small (A–E,

below). Given our read depths for each locus in each population,

we underestimate hw by ,3% of the correct value at very low

coverage and ,0.5% at most loci. This is because (F) even at 20-

fold coverage there is .90% chance of sampling 7 or 8

chromosomes, and the denominator of Wattersons’s estimator

(Sn-1
i = 1(1/i)) differs little between n = 7 and n = 8.

Found at: doi:10.1371/journal.pgen.1000698.s009 (0.35 MB TIF)

Figure S10 The estimated proportion of adaptive substitutions

inferred by using polymorphism data from different populations.

Graphs show the estimated proportion of amino acid substitutions

fixed by selection (a) between D. melanogaster and D. simulans using

data from different populations. (A) Kenyan populations only,

based on 8 chromosomes of each (reproduced from the main text

for comparison); (B) Greek populations only, based on 8

chromosomes of each; (C) All 8 populations (6 D. melanogaster

and 2 D. simulans), based on 48 chromosomes of D. melanogaster and

16 chromosomes of D. simulans. Note that absolute estimates are

smaller when all populations are used in the analysis, probably due

to more rare variants. Error bars are 95% bootstrap intervals from

re-sampling genes within classes; p-values are relative to the

‘‘control’’ genes, assessed by bootstrapping.

Found at: doi:10.1371/journal.pgen.1000698.s010 (0.27 MB TIF)

Figure S11 The correlation between estimates of a from

different sample populations. The estimated number of adaptive

substitutions per non-synonymous site (a) was little affected by the

choice of population to provide polymorphism data. (A) shows the

correlation in a between estimates using single Greek populations

of D. melanogaster and D. simulans, and estimates using single Africa

populations of D. melanogaster and D. simulans (both using D.

melanogaster-D. simulans divergence) (Pearson’s product-moment

correlation = 0.87, p,2610216). (B) shows the correlation

between a single African population and all combined populations

of both species (Pearson’s product-moment correlation = 0.95,

p,2610216). Thus estimates of a are similar when using African

and non-African populations, and small African samples (8

chromosomes per species) provide almost the same information

as global samples (48 D. melanogaster chromosomes and 16 D.

simulans chromosomes). Immune genes are shown in red, and other

genes in blue. Visually identified outliers are labelled.

Found at: doi:10.1371/journal.pgen.1000698.s011 (0.20 MB TIF)

Figure S12 The estimated proportion of adaptive substitutions

inferred separately along the D. melanogaster and D. simulans lineages

using Kenyan populations. By using D. yakuba and D. erecta to infer

the state of the D. melanogaster-D. simulans common ancestor,

substitutions can be assigned to the D. melanogaster or D. simulans

lineage alone, and a inferred for each species separately. (A) D.

melanogaster using a single Kenyan population only; (B) D. simulans

using a single Kenyan population only. Note that immunity and

control genes do not differ significantly, but this is probably due to

the low power associated with the very small divergence.

Interestingly, although the pattern across gene classes is qualita-

tively identical between species, absolute estimates of a are

consistently higher in D. simulans. Error bars are 95% bootstrap

intervals from re-sampling genes within classes, and p-values are

relative to the control genes, assessed by bootstrapping.

Found at: doi:10.1371/journal.pgen.1000698.s012 (0.17 MB TIF)

Figure S13 The estimated proportion of adaptive substitutions

inferred separately along the D. melanogaster and D. simulans lineages

using all sampled populations. By using D. yakuba and D. erecta to

infer the ancestral state of the D. melanogaster–D. simulans common

ancestor, a was inferred separately for each species (see Figure S12

above). (A) D. melanogaster using polymorphism data from all six D.

melanogaster populations; (B) D. simulans using both Kenyan and

Athens populations. As in Figure S12, the immunity-control

comparison is not significant for D. melanogaster, and estimates of a
are consistently much higher in D. simulans. However, unlike

Figure S12, here the effect of species is conflated with the number

of sampled populations, and thus the presence of rarer alleles in D.

melanogaster. Error bars are 95% bootstrap intervals from re-

sampling genes within classes, and p-values are relative to the

control genes, assessed by bootstrapping.

Found at: doi:10.1371/journal.pgen.1000698.s013 (0.17 MB TIF)

Figure S14 The estimated proportion of adaptive substitutions

between D. yakuba and D. melanogaster/simulans using Kenyan

populations. (A) D. melanogaster vs D. yakuba, using a single Kenyan

population of D. melanogaster; (B) D. simulans vs. D. yakuba using a

single Kenyan population D. simulans. Although the pattern across

gene classes is qualitatively identical between species, absolute

estimates of a are consistently higher in D. simulans (see also Figures

S12, S13). Error bars are 95% bootstrap intervals from re-

sampling genes within classes, and p-values are relative to the

control genes, assessed by bootstrapping.

Found at: doi:10.1371/journal.pgen.1000698.s014 (0.17 MB TIF)

Figure S15 The estimated proportion of adaptive substitutions

between D. yakuba and D. melanogaster/simulans using all sampled

populations. (A) D. melanogaster vs D. yakuba, using all sampled D.
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melanogaster populations; (B) D. simulans vs. D. yakuba using both D.

simulans populations. As in Figures S12, S13, S14, absolute

estimates of a are consistently much higher in D. simulans,

however, unlike Figure S14, here the effect of species is conflated

with the number of sampled populations, and thus the presence of

rarer alleles in D. melanogaster. Error bars are 95% bootstrap

intervals from re-sampling genes within classes, and p-values are

relative to the control genes, assessed by bootstrapping.

Found at: doi:10.1371/journal.pgen.1000698.s015 (0.20 MB TIF)

Figure S16 The estimated proportion of adaptive substitutions

inferred by using polymorphism data from alleles that appear at

different frequencies. Graphs show the estimated amount of

adaptive substitution between D. melanogaster and D. simulans, based

on polymorphism data from both species, for Kenyan populations

only (A and B) and for all populations (C and D). (A and C) show

the effect of excluding low-frequency alleles on a (the estimated

proportion of adaptive substitutions) for classes of immune (red)

and non-immune (blue) genes. Note there is a 5% frequency

threshold per-population for inclusion in any of the analyses (See

main text). (B and D) show the effect of excluding low-frequency

alleles on a (the estimated number of adaptive substitutions per

non-synonymous site) for immune (red) and non-immune (blue)

genes individually. The solid grey line represents a 1:1 correspon-

dence, the dashed line a linear regression. The effect of excluding

rare variants is both small, and consistent with theoretical

expectations. This suggests that the presence of weakly-deleterious

alleles that slightly depress estimates of a, but do not have a

substantial impact upon our conclusions. It also suggests that our

sequencing errors and inclusion-threshold have a minimal impact

upon our conclusions.

Found at: doi:10.1371/journal.pgen.1000698.s016 (0.28 MB TIF)

Figure S17 The distribution of the number of adaptive

substitutions (a) between genes, excluding short genes. Although

mean a (the number of adaptive substitutions per non-synonymous

site) is significantly higher for immune genes than for other genes,

the modal class is similar and the variance larger (see main text).

The greater variance in non-immunity genes could be attributed

to shorter sampled gene length giving rise to greater sampling

error. However, the exclusion of short genes from both classes does

not alter the effect, as variance in immunity genes is still greater

than that in non immunity genes (A–C); Var(a)61024 = 3.2 vs. 1.3,

p = 0.0017. Immune genes are shown in red, and other genes in

blue. Note that we used a in place of a for this per-gene analysis

because a is poorly estimated for single genes (see Methods).

Found at: doi:10.1371/journal.pgen.1000698.s017 (0.12 MB TIF)

Figure S18 The distribution of the number of adaptive

substitutions (a) between genes, using only genes intentionally

targeted by PCR. The greater variance in non-immunity genes

(see Figure S17) might also be attributed to shorter gene length

giving rise to greater sampling error. In our primary dataset there

are a large number of short gene fragments from non-immunity

genes that appear in our sample merely because they happened to

occur within the amplicons of a ‘‘targeted’’ gene. However, the

exclusion of these ‘‘un-targeted’’ genes does not alter the effect.

Variance in immunity genes is still greater than non immunity

genes (A–C); Var(a)61024 = 4.8 vs. 2.3, p = 0.0177. Immune genes

are shown in red, and other genes in blue.

Found at: doi:10.1371/journal.pgen.1000698.s018 (0.12 MB TIF)

Figure S19 Neutral diversity in D. melanogaster. Genetic diversity

at synonymous sites in immunity and non-immunity genes (ps).

Note that we do not have direct estimates of allele frequency (see

Methods), and instead we use read frequency as a surrogate to

calculate p. However, results based on Watterson’s h were very

similar, and our estimates of ps and hw were very highly correlated

(r2.0.95 in each population). (A) Kenya; (B) Athens; (C) All D.

melanogaster populations combined. Error bars are 95% bootstrap

intervals of the mean from re-sampling genes within classes, and p-

values are relative to the control genes, assessed by bootstrapping.

Found at: doi:10.1371/journal.pgen.1000698.s019 (0.22 MB TIF)

Figure S20 Neutral diversity in D. simulans. Genetic diversity at

synonymous sites in immunity and non-immunity genes (ps). (see

Figure S19 for details). Again, results based on Watterson’s h were

very similar, as our estimates of ps and hw were very highly

correlated (r2.0.93 in each population). (A) Kenya; (B) Athens; (C)

Both populations combined. Error bars are 95% bootstrap

intervals of the mean from re-sampling genes within classes, and

p-values are relative to the control genes, assessed by boot-

strapping.

Found at: doi:10.1371/journal.pgen.1000698.s020 (0.24 MB TIF)

Figure S21 Genetic differentiation (FST) between populations.

Genetic differentiation between populations (FST) at synonymous-

sites in immunity and non-immunity genes. Error bars are 95%

bootstrap intervals of the mean from re-sampling genes within

classes, and p-values are relative to the control genes, assessed by

bootstrapping.

Found at: doi:10.1371/journal.pgen.1000698.s021 (0.18 MB TIF)

Figure S22 Non-synonymous diversity in D. melanogaster. Genetic

diversity at non-synonymous-sites in immunity and non-immunity

genes (pa). (A) Kenya; (B) Athens; (C) All D. melanogaster populations

combined. Error bars are 95% bootstrap intervals of the mean

from re-sampling genes within classes, and p-values are relative to

the control genes, assessed by bootstrapping.

Found at: doi:10.1371/journal.pgen.1000698.s022 (0.22 MB TIF)

Figure S23 Non-synonymous diversity in D. simulans. Genetic

diversity at non-synonymous-sites in immunity and non-immunity

genes (pa). (A) Kenya; (B) Athens; (C) Both populations combined.

Error bars are 95% bootstrap intervals from re-sampling genes

within classes, and p-values are relative to the control genes,

assessed by bootstrapping.

Found at: doi:10.1371/journal.pgen.1000698.s023 (0.23 MB TIF)

Figure S24 The estimated number of non-adaptive substitutions

per site between D. melanogaster and D. simulans. The estimated

number of substitutions per non-synonymous site that were driven

by genetic drift is shown. This number was estimated from (Dn/

Ln)-a, where a is the estimated number of adaptively-driven

substitutions; note that when a is separately parameterized at each

locus, this removes from the estimates any dependency on the

observed Dn values. The estimates of drift-mediated substitutions

are less variable within categories of locus than are estimates of

adaptive substitution (although this must be partly due to the lack

of dependence on the observed Dn decreasing error variance).

There are also fewer significant differences between classes of

locus, notably a lack of difference between immunity and control

genes. (A) Kenyan populations only; (B) All 8 populations (6 D.

melanogaster and 2 D. simulans). Error bars are 95% bootstrap

intervals from re-sampling genes within classes, and p-values are

relative to the control genes, assessed by bootstrapping.

Found at: doi:10.1371/journal.pgen.1000698.s024 (0.18 MB TIF)

Figure S25 The estimated proportion of adaptive substitutions

(a) between D. melanogaster (Kenya population) and D. yakuba

according to read depth. Limiting the analysis to sites of high

depth of coverage (.50-fold, .100-fold) has little impact on

inferred rates of adaptive evolution.
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Found at: doi:10.1371/journal.pgen.1000698.s025 (0.28 MB TIF)

Figure S26 Single-gene estimates of a using different models. To

estimate single-gene a-values we fitted a model in which the

parameter h= 4Nm was shared between loci as a linear function of

recombination rate (see Methods). To explore the effect of this

constraint, we compared our estimates of a to estimates derived

using a single h shared between all loci. (A) Pearson’s correlation

coefficient = 0.99, p,10–15), and separate estimates of h for each

locus. (B) Pearson’s correlation coefficient = 0.75, p,10–15. In (B),

the conspicuous outliers are almost all control genes that fell within

the 5 Kbp amplicons, but which were not targets of primer design

(see Text S1, detailed methods), and lack polymorphism data for

D. simulans. This leads to over fitting at these loci when h is a locus-

specific parameter, and therefore poor estimation of a. In any case,

use of the smaller model will tend to make our analyses

conservative.

Found at: doi:10.1371/journal.pgen.1000698.s026 (0.22 MB TIF)

Table S1 Locations, classification, and genetic summary statis-

tics for individual loci. Legend:- FBgn: FlyBase gene identifier.

Locus: Locus name. Immune: Immune or Non-immune related.

Class: Classified as Humoral, Cellular, RNAi, Melanisation, other

immune, or Control. Cell_Hum: Classified as AMP, Humoral

recognition, Cellular Recognition, Signalling, RNAi, other

immune or Control. a: The estimated number of adaptive

substitutions per site (method of Welch 2006). non-a: The

estimated number of non-adaptive substitutions fixed by drift,

per site. r: Local recombination rate in D. melanogaster. Ls: The

number of synonymous sites. Ln: The number of non-synonymous

sites. Dn: The number of non-synonymous fixed differences. Ds:

The number of synonymous fixed differences. Mel_Pn: The

number of non-synonymous polymorphisms in D. melanogaster.

Sim_Pn: The number of non-synonymous polymorphisms in D

simulans Mel_Ps: The number of synonymous polymorphisms in D.

melanogaster. Sim_Ps: The number of synonymous polymorphisms

in D. simulans. Position: Genomic position in the D. melanogaster

genome release 5.7 Chromosome p-value: Fisher’s Exact test p-

value for a classical one-locus McDonald-Kreitman test FDR q-

value: False-Discovery rate q-value, based on the distribution of p-

values.

Found at: doi:10.1371/journal.pgen.1000698.s027 (0.26 MB

XLS)

Table S2 Model selection. The table gives parameters relevant

to model-selection between different parameterizations of be-

tween-locus variation in a (the estimated proportion of amino-acid

substitutions driven by positive natural selection).

Found at: doi:10.1371/journal.pgen.1000698.s028 (2.70 MB PDF)

Table S3 Synonymous and non-synonymous diversity. Synon-

ymous and non-synonymous diversity for different categories of

gene in all populations, with those categories that were individually

significantly different (p,0.05) from the control genes highlighted.

Found at: doi:10.1371/journal.pgen.1000698.s029 (2.41 MB PDF)

Text S1 Detailed supplementary methods.

Found at: doi:10.1371/journal.pgen.1000698.s030 (0.06 MB

DOC)
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