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‘Division of labour’ in response to host oxidative
burst drives a fatal Cryptococcus gattii outbreak
Kerstin Voelz1,2, Simon A. Johnston3,4, Leanne M. Smith1, Rebecca A. Hall1, Alexander Idnurm5 & Robin C. May1,2

Cryptococcus gattii is an emerging intracellular pathogen and the cause of the largest primary

outbreak of a life-threatening fungal disease in a healthy population. Outbreak strains share a

unique mitochondrial gene expression profile and an increased ability to tubularize their

mitochondria within host macrophages. However, the underlying mechanism that causes this

lineage of C. gattii to be virulent in immunocompetent individuals remains unexplained.

Here we show that a subpopulation of intracellular C. gattii adopts a tubular mitochondrial

morphology in response to host reactive oxygen species. These fungal cells then facilitate the

rapid growth of neighbouring C. gattii cells with non-tubular mitochondria, allowing for

effective establishment of the pathogen within a macrophage intracellular niche. Thus, host

reactive oxygen species, an essential component of the innate immune response, act as major

signalling molecules to trigger a ‘division of labour’ in the intracellular fungal population,

leading to increased pathogenesis within this outbreak lineage.
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F
ungal diseases are an emerging threat to human and animal
health1,2. The fungal pathogens Cryptococcus neoformans
and C. gattii are both causative agents of cryptococcosis, a

disease with an estimated annual global burden of nearly 1
million cases and 625,000 deaths3. C. neoformans primarily
infects immunocompromised patients (for example, patients with
HIV/AIDS), but has also been reported in apparently
immunocompetent individuals in the Far East4,5. In contrast,
C. gattii is a primary pathogen that causes cryptococcosis in
otherwise healthy individuals6,7, although rare cases in HIV/AIDS
patients in Malawi and the United States have also been
reported8,9.

In 1999, a C. gattii outbreak of fungal meningitis and
meningoencephalitis started on Vancouver Island, British
Columbia, Canada10–12. This outbreak has since spread to the
Canadian mainland and the North-West of the United
States13–16, and currently accounts for more than 400
cases17–20. C. gattii is divided into four separate molecular

types VGI–VGIV17,21,22. The original outbreak on Vancouver
Island was mainly caused by strains belonging to the major
outbreak lineage VGIIa12. A second lineage VGIIb was found in
the same area but shows significantly lower virulence12,21. In
contrast, a later outbreak expansion to Oregon, Northwest United
States, was attributed to the VGIIc outbreak lineage and exhibits
similar virulence to VGIIa14,22.

There has been intense interest in explaining the origin12,23,24

and expansion11,14 of C. gattii disease, as well as characterizing
features unique to the outbreak strains25,26. Our initial
investigations demonstrated that outbreak strains proliferate
rapidly within host macrophages, a trait that positively
correlates with virulence in a mouse model of cryptococcosis.
In addition, we have shown that this increased intracellular
proliferation is associated with an enhanced ability of the
outbreak strains to form tubular mitochondria25. However, the
underlying mechanism causing the outbreak lineage to be virulent
in immunocompetent individuals remains unexplained: a critical

Table 1 | Cryptococcus strains and details about serotype, genotype, AFLP type and source.

Species and strains Sero-
type

Geno-
type

AFLP Source

C. gattii CBS10089 B VGII 6 Clinical isolate from Greece
C. gattii CBS10090 B VGII 6 Clinical isolate from Greece
C. gattii CBS10101 C VGIV 7 Isolate from King Cheeta, South Africa
C. gattii CBS10485 B VGIIa 6 Clinical isolate from Danish tourist who had visited Vancouver Island
C. gattii CBS6955 C VGIII 5 Clinical isolate, California, USA
C. gattii CBS6993 B VGIII 5 Clinical isolate, cerebrospinal fluid, California, USA
C. gattii CDCF3016 B VGIIa 6 Isolate from dead wild Dall’s porpoise from the shores of an island close to Vancouver

Island, Canada
C. gattii NIH312xCBS10090
progeny 5

N/A N/A N/A Progeny from cross between C. gattii strains NIH312 and CBS10090

C. gattii EJB18 B VGIIc 6 Clinical isolate, Oregon, USA
C. gattii EJB52 B VGIIc 6 Clinical isolate, Oregon, USA
C. gattii ICB180 B VGII 6 Environmental isolate, Eucalyptus tree, Brazil
C. gattii ICB184 B VGII 6 Environmental isolate, tree, Brazil
C. gattii LA362 B VGII 6 Isolate from parrot litter, Jaboticabal, Brazil
C. gattii LMM265 B VGII 6 Clinical isolate, Brazil
C. gattii WM276 B VGI 4 Environmental isolate, Australia
C. gattii NIH312 C VGIII 5 Clinical isolate
C. gattii R265_GFP14 B VGIIa 6 GFP expressing C. gattii R265
C. gattii R265 B VGIIa 6 Clinical isolate from Duncan, British Columbia, Canada
C. gattii CDCR271 B VGIIa 6 Clinical isolate, immunocompetent patient, Kelowna, British Columbia, Canada
C. gattii CDCF2932 B VGIIa 6 Clinical isolate, immunocompetent male, British Columbia, Canada
C. gattii ENV152 B VGIIa 6 Environmental isolate, Alder tree, Vancouver Island, Canada
C. gattii CBS8684 B VGII 6 Environmental isolate, wasp nest, Uruguay
C. gattii CBS7750 B VGIIa 6 Environmental isolate, E. camaldulensis, USA
C. gattii CBS1930 B VGIIb 6 Sick goat, Aruba
C. gattii CBS7229 B VGI 4 Clinical isolate, meningitis, China
C. gattii AIg54 B VGIIa 6 HEM15-GFP tagged strain derived from R265
C. gattii AIg56 B VGII 6 HEM15-GFP tagged strain derived from CBS1930
C. neoformans ATCC90112 A VNI 1 Clinical isolate, cerebrospinal fluid, USA
C. neoformans CBS8336 A VNI 1 Environmental isolate, wood of Cassia tree, Brazil
C. neoformans H99 A VNI 1 Clinical isolate, USA
C. neoformans BD5 D VNIV 2 Clinical isolate, AIDS patient, France
C. neoformans CBS6995 D VNIV 2 Clinical isolate, USA
C. neoformans JEC21 D VNIV 2 Derived from a clinical isolate, AIDS patient, USA
C. neoformans A1-84-14 A VNI 1 Environmental isolate, pigeon guano, California, USA
C. neoformans A5-35-17 A VNI 1 Environmental isolate, pigeon guano, North Carolina, USA
C. neoformans Tu406-1 A VNII 1A Environmental isolate, Mopane tree bark, Botswana
C. neoformans A1-38-2 A VNI 1 Environmental isolate, pigeon guano, North Carolina, USA
C. neoformans Tu369-2 A VNII 1A Environmental isolate, Mopane tree bark, Botswana
C. neoformans A4-34-6 A VNI 1 Environmental isolate, pigeon guano, North Carolina, USA
C. neoformans A7-35-23 A VNI 1 Environmental isolate, soil, North Carolina, USA
C. neoformans A1-35-8 A VNI 1 Environmental isolate, pigeon guano, North Carolina, USA

AFLP, amplified fragment length polymorphism; GFP, green fluorescent protein.
Strain references can be found in Supplementary Table 1.
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question from both an infectious disease and a fundamental
microbiology perspective.

Here we show that reactive oxygen species (ROS), an essential
component of the host innate immune response, act as a major
signalling molecule to facilitate intracellular survival of this highly
pathogenic fungal lineage. We demonstrate that within macro-
phages host ROS induce a division of labour in C. gattii
populations, resulting in a subpopulation of intracellular fungal
cells with tubular mitochondria. These quiescent C. gattii cells
facilitate the rapid proliferation of the non-tubular pathogen
population, establishing a reservoir of pathogenic fungi within the
macrophage. This presents a rare example of social evolution in a

pathogen, in which the costly behaviour of some individuals
(entry into a non-proliferative state) confers a fitness benefit
to the whole community, resulting in an overall population
expansion.

Results
Mitochondrial tubularization is specific to outbreak strains.
We previously reported that outbreak strains have an increased
ability to proliferate within macrophages, a feature that correlates
with adoption of a tubular mitochondrial morphology25. As this
observation was based on a selected number of C. gattii outbreak
strains, we initially tested whether this correlation is a general
phenomenon of pathogenic cryptococci or whether this trait is
specific to C. gattii. We tested 24 C. gattii and 14 C. neoformans
clinical and environmental isolates from a range of molecular
types (VGI, VGII, VGIII, VGIV and VNI, VNII, VNIV,
respectively) (Table 1) for intracellular proliferative capacity
and mitochondrial tubularization after engulfment by
macrophages. The ability to switch mitochondrial morphology
in concert with increased proliferation in macrophages was
unique to C. gattii isolates (Pearson correlation: R2¼ 0.802,
Po0.0001, n¼ 24) (Fig. 1a, Table 2 and Supplementary Fig. 1)
and there was no association between tubularization and
proliferation rates across 14 isolates from the related
opportunistic pathogen C. neoformans (Pearson correlation:
R2¼ 0.109, P¼ 0.249, n¼ 14) (Fig. 1b and Table 2).
Intracellular proliferation has previously been shown to be a
good indicator of virulence25 and we could reproduce this
correlation with intracellular proliferation rate (IPR) values and
previously published ST50 survival data from both BALB/c
and A/Jcr murine models (Pearson correlation: R2¼ 0.356,
P¼ 0.015, n¼ 16)14,24 (Fig. 1c). Taken together, mitochondrial
tubularization correlates with intracellular proliferative potential
and is a specific feature of C. gattii outbreak strains.

Tubularization is initiated rapidly intracellularly. To explore
the mitochondrial tubularization phenomenon further, we gen-
erated C. gattii strains with genetically encoded green fluorescent
protein (GFP)-tagged mitochondria in either an outbreak back-
ground (AIg54) or in a closely related but non-outbreak back-
ground25,26 (AIg56), and verified that these transgenic strains
were unaltered in their ability to parasitize macrophages
(Supplementary Fig. 2a–d). These parental strains were chosen,
as they show intrinsically similar, yet significantly different,
abilities to proliferate intracellularly (outbreak strain R265 shows
an IPR of 1.8±0.1, while the IPR of non-outbreak strain
CBS1930 is 1.3±0.1, n¼ 8, P¼ 0.02 (unpaired t-test with
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Figure 1 | Mitochondrial tubularization is specific to outbreak strains.

(a) The formation of tubular mitochondria in response to encounter of the

intracellular niche positively correlates (linear regression) with the ability to

proliferate within macrophages (Pearson correlation: R2¼0.802;

Po0.0001, n¼ 24). Data were obtained for 24 C. gattii strains from at least

four independent experiments determining IPR and three independent

experiments examining mitochondrial morphology in 324–1,858

intracellular yeasts. (b) No correlation between yeast ability to proliferate

within macrophages and formation of tubular mitochondria was observed in

the opportunistic pathogen sister species C. neoformans (Pearson

correlation: R2¼0.109, P¼0.249, n¼ 14). Data were obtained for 14

C. neoformans strains from at least three individual experiments determining

IPR and three individual experiments examining mitochondrial morphology

in 1,410–3,589 intracellular yeasts (Supplementary Table 2). (c) Intracellular

proliferation rate data significantly correlate (linear regression) with

published ST50 survival data from the murine BALB/c and A/Jcr models

(Pearson correlation, R2¼0.356, P¼0.015, n¼ 16)14,24.
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Welch’s correction); mitochondrial tubularization rates are 47%
for R265 and 22% for CBS1930, n¼ 3, Po0.0001, Fisher’s exact
test). Using these strains, we were able to accurately follow the
kinetics of mitochondrial tubularization in individual yeast cells
(Fig. 2a and Supplementary Movie 1). On encounter of the
macrophage environment, yeast cells from the outbreak strain
AIg54 rapidly adapted a tubular mitochondrial morphology,
whereas the non-outbreak strain AIg56 was much slower to adapt
and far fewer yeast cells exhibited tubular mitochondria (Fig. 2b).
The same difference in adaptation was shown using an
independent approach (MitoTracker CMXRos)14,25 to stain
mitochondria in the AIg54 and AIg56 strains, as well as a
second pair of outbreak (CDCF2932) and non-outbreak
(CBS8684) strains (Fig. 2c and Supplementary Fig. 2e),
confirming that tubularization was not a result of the genetic

manipulation. Therefore, mitochondrial tubularization in
outbreak strains is initiated rapidly after encounter of the
intracellular environment.

Tubularization has previously been reported to be a protective
mechanism from autophagic degradation27 and thus we
investigated the possibility that tubular mitochondria offer
protection from host autophagy. However, immunolabelling of
the autophagy marker LC3 in C. gattii-infected macrophages
revealed low numbers of LC3-positive phagosomes, averaging
2.3% (0.07–12.3%), suggesting no obvious role for autophagy in
cryptococcal mitochondrial tubularization.

Tubular yeasts are resistant and non-proliferative. Mitochon-
drial tubularization has been implicated in increasing the life span
and fitness of cells from the fungal species Podospora anserina
and Saccharomyces cerevisiae28, and enhancing cell viability in
numerous mammalian cell types27,29. To determine any
relationship between mitochondrial tubularization in C. gattii
and intracellular fungal cell fate, we tracked individual
cryptococci with GFP-tagged mitochondria within phagocytes
using time-lapse microscopy. In the outbreak strain, AIg54, cells
that adopted a tubular mitochondrial morphology, were killed
significantly less often (Fisher’s exact test, Po0.0001; 288 cells,
n¼ 4) (Table 3). However, intracellular AIg54 yeast with tubular
mitochondria proliferated significantly more slowly than those
not exhibiting tubular mitochondria (Fisher’s exact test,
P¼ 0.0006; 288 cells, n¼ 4) (Table 3). Such intracellular yeast,
with tubular mitochondria and low proliferation rates, were
significantly more abundant in the outbreak strain AIg54 than in
the non-outbreak strain AIg56 (Fisher’s exact test, Po0.0001; 178
cells, n¼ 4) (Table 3).

This observation represented a paradox: the overall number of
intracellular yeast is higher at peak time post infection in the
outbreak strains compared with that in the non-outbreak strains,
yet outbreak strains have a higher proportion of tubular, non-
proliferative cells within the population. We hypothesized that
the difference may lie in the fecundity of the other (non-tubular)
cryptococci within the outbreak population. Indeed, further
analysis of budding behaviour of intracellular cryptococci showed
that replicative non-outbreak cells typically divide only once
(Fisher’s exact test, Po0.0001; n¼ 7), whereas replicative
outbreak cells (which do not adopt a tubular mitochondrial
morphology) more commonly divide two or more times over the
course of our time-lapse recording (Fisher’s exact test, P¼ 0.0195
and P¼ 0.0131, respectively; n¼ 7) (Fig. 3a). Thus, within
macrophages, the rapidly proliferating outbreak population of
cryptococci actually represents a ‘division of labour’ between a
proportion of quiescent yeasts, which are essentially resistant to
killing by the host cell, and a small minority of ‘vulnerable’ but
rapidly budding yeast (Fig. 3b)30–32.

Co-infection increases non-outbreak strain proliferation.
As quiescent C. gattii cells do not themselves proliferate within
the host phagocyte, we wondered whether they may confer a
fitness benefit to co-infecting proliferative cells that are otherwise
vulnerable to host killing. To test this hypothesis, we conducted
co-infections of non-outbreak strains with the GFP-labelled
outbreak strain R265_GFP14. Between 8.2% and 21.9% of
phagocytes engulfed yeast cells from both strains (Table 4).
Remarkably, for three non-outbreak strains tested, co-infection
dramatically increased their intracellular proliferation (Fig. 4 and
Supplementary Fig. 3a), while retaining the proliferative ability of
the R265_GFP14 strain (Supplementary Fig. 3b,c). Thus, the
presence of an outbreak strain can rescue the ability of non-
outbreak strains to proliferate intracellularly. C. gattii virulence

Table 2 | Proliferation rates (IPR) and percentage of yeast
with tubular mitochondria (tubularization) after encounter
of the intracellular macrophage niche for C. gattii and
C. neoformans strains with different genotypes.

Strain IPR Tubularization (%) Genotype

C. gattii
ICB180 0.7±0.1 9.2±1.0 VGII
CBS10089 0.8±0.1 13.8±5.4 VGII
ICB184 0.8±0.1 20.5±7.4 VGII
CBS6955 0.9±0.1 7.5±3.5 VGIII
NIH312 0.9±0.1 8.6±3.6 VGIII
CBS8684 1.0±0.2 6.2±1.8 VGII
CBS7229 1.0±0.1 20.7±1.0 VGI
WM276 1.0±0.1 13.8±2.0 VGI
NIH312xCBS10090
Progeny 5

1.1±0.2 6.7±1.3 VGIII x VGII

CBS1930 1.1±0.1 23.9±9.4 VGIIb
CBS10101 1.2±0.1 20.4±7.7 VGIV
EJB52 1.4±0.1 17.5±7.4 VGIIc
CBS6993 1.6±0.2 29.4±12.3 VGIII
LA362 1.6±0.3 30.7±4.0 VGII
CDCF3016 1.7±0.1 31.1±6.3 VGIIa
EJB18 1.7±0.1 43.5±19.5 VGIIc
R265 1.8±0.1 58.4±17.6 VGIIa
CBS10090 1.9±0.2 46.9±10.4 VGII
CBS10485 1.9±0.1 37.9±8.9 VGIIa
R265_GFP14 2.0±0.1 51.2±8.1 VGIIa
CDCR271 2.1±0.4 48.4±5.7 VGIIa
CDCF2932 2.2±0.1 52.8±13.4 VGIIa
ENV152 2.3±0.2 44.5±6.1 VGIIa
LMM265 2.3±0.2 34.6±14.1 VGII

C. neoformans
CBS8336* 1.2±0.4 53.3±7.1 VNI
A5_35_17 1.3±0.1 65.1±10.4 VNI
CBS6995* 1.3±0.3 55.2±5.3 VNIV
H99* 1.4±0.2 37.5±4.9 VNI
A4_34_6 1.8±0.2 69.0±10.6 VNI
Tu_369_1 1.9±0.1 23.2±12.3 VNII
BD5* 1.9±0.3 31.0±5.9 VNIV
A1_38_2 2.0±0.2 54.5±13.0 VNI
JEC21* 2.1±0.2 39.9±7.5 VNIV
A1_35_8 2.2±0.2 61.1±3.8 VNI
A7_35_23 2.2±0.1 13.8±12.4 VNI
Tu_406_1 2.6±0.3 37.0±10.0 VNII
ATCC90112* 2.9±0.2 32.3±9.2 VNI
A1_84_14 3.4±0.2 44.8±5.6 VNI

IPR, intracellular proliferation rate.
IPR and tubularization data is presented as mean averages with s.e.m. (values indicated by
* were taken from ref. 57). Categorical tubularization data was obtained from three independent
experimental repeats examining between 325 and 3,598 yeast. Outbreak strains are highlighted
in red.
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therefore represents a rare example of social evolution in a
eukaryotic microorganism, in which the costly behaviour of a
quiescent subpopulation offers a fitness benefit to the whole

community30 and is analogous to bacterial persistence
phenotypes in the context of antibiotic resistance during
infection with Staphylococcus aureus31 or Escherichia coli32.
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Figure 2 | Tubularization is initiated rapidly in the intracellular niche. (a,b) The outbreak strain AIg54 (C. gattii R265 background) and the non-outbreak

strain AIg56 (C. gattii CBS1930 background) were both engineered to express HEM15-GFP to visualize mitochondria. (a) Mitochondrial tubularization

within the outbreak strain AIg54 was observed by confocal live-cell imaging. Images were generated by projecting 73 z-planes in a single plane with each

z-plane given an individual colour. The globular morphology therefore gives a multi-colour unsaturated object due to the combination of many different

colours and intensities over the z-planes, while tubular mitochondria in either the x- or y-plane give a more uniform, saturated colour. Scale bar, 1 mm.

(b) Time-lapse analysis of AIg54 (n¼ 288) and AIg56 (n¼ 171) revealed fast initiation of tubularization in the outbreak strain AIg54 but a delayed and

much lower tubularization response in the non-outbreak strain. Note that for both strains, absolute tubularization levels appear lower when scored by live

imaging in this way than when fixed and stained with MitoTracker (Supplementary Fig. 2e), which probably reflects the higher sensitivity of the latter

approach. (c) These results were corroborated by mitochondrial staining with MitoTracker CMXRos of the outbreak strain CDCF2932 and non-outbreak

strain CBS8684 in a macrophage infection time-course experiment. Data are presented as mean average with s.e.m. Pooled categorical data (tubular

versus non-tubular mitochondria) from at least three independent experiments observing between 814 and 4,114 yeasts (Supplementary Table 3)

were analysed by Fisher’s exact test (**Po0.001 and ***Po0.0001). Outbreak strains are indicated by red-coloured symbols, non-outbreak strains

by black-coloured symbols.
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Oxidative stress initiates mitochondrial tubularization.
Phagocytosed pathogens are exposed to a variety of host stresses
on encountering of the intracellular niche (for example, oxidative,
nitrosative and hypoxic stress). Analysis of survival and growth of
four representative outbreak strains and four representative non-
outbreak strains under a range of stress conditions in vitro did
not reveal any significant correlation with virulence at 2 h
(Supplementary Fig. 4) or 24 h (Supplementary Fig. 5) post
exposure. We therefore tested whether any of these stresses act as
the stimulus to induce mitochondrial tubularization and sub-
population differentiation in outbreak strains of C. gattii. As
previously demonstrated, there was a strong correlation between
increased tubular mitochondria and increased intracellular
proliferation (Fig. 5a). We hence exposed outbreak strains to
individual phagocyte stresses in vitro, quantified mitochondrial
tubularization and then tested for any association with IPR within
macrophages. There was no correlation between IPR and intra-
cellular mitochondrial tubularization imposed by environmental
stresses such as low pH, cell wall stress or DNA damage
(Fig. 5f–j). Several conditions such as oxidative, nitrosative and
hypoxic stress that mimic the environment of phagosomes/
phagolysosomes induced the formation of tubular mitochondria
(Fig. 5b–e,j). Strikingly, however, exposure to a sub-lethal con-
centration of H2O2 (0.7 mM), which mimics the oxidative stress
conditions within an early phagosome33, induced a mitochondrial
tubularization response indistinguishable from that which occurs
within phagocytic cells (Fig. 5b,j). Thus, outbreak strains of
C. gattii probably respond to host ROS to induce mitochondrial
tubularization.

The yeast p38 mitogen-activated protein kinase Hog1 is
important for fungal pathogen responses to oxidative and osmotic
stress within the phagosome34. As the regulation of Hog1
activation is dependent on the cryptococcal species35, we
reasoned that Hog1 activation might vary between clinical and
environmental C. gattii isolates. Therefore, Hog1 activation in
response to oxidative and osmotic stress was determined for two
outbreak and two non-outbreak isolates. However, the dynamics
of Hog1 activation in C. gattii were similar to those previously
published for C. neoformans, with no observable differences
detected between outbreak and non-outbreak isolates
(Supplementary Fig. 6). Therefore, differences in activated Hog1
levels are not responsible for the observed increase in C. gattii
mitochondrial tubularization.

Reducing host ROS decreases outbreak strain proliferation.
Given the probable role of ROS in inducing mitochondrial
tubularization, we hypothesized that reducing host ROS pro-
duction may cause outbreak strains to be unable to respond
appropriately to the intracellular niche. By using a low dose
(0.5 mM) of the NADPH oxidase inhibitor apocynin, we were
able to significantly reduce ROS production by macrophages
without affecting phagocyte survival (Mann–Whitney U-test,
P¼ 0.006 and P¼ 0.862, respectively; n¼ 4) (Fig. 6a,b). Under
these conditions, both mitochondrial tubularization and intra-
cellular proliferation were significantly reduced in outbreak
strains, but remained unaltered in non-outbreak strains (Fig. 6c,d
and Supplementary Fig. 7a–c). To understand how apocynin was
modulating the behaviour of C. gattii outbreak strains during
macrophage infection, we followed individual intracellular fungal
cell fates with time-lapse microscopy, as described above, in the
presence and absence of apocynin. This demonstrated that the
number of proliferating cells dropped by 20.4% in the outbreak
strain AIg54 (Fisher’s exact test, P¼ 0.041, n¼ 3) but was not
significantly changed in the non-outbreak strain AIg56 (increase
of 7.5%, fisher’s exact test, P¼ 0.570, n¼ 3). There was a
corresponding increase in quiescent cells (Fisher’s exact test,
P¼ 0.030, n¼ 3) but no change in the proportion of the
population that was killed (Fisher’s exact test, P¼ 0.517, n¼ 3),
suggesting that the reduction in the size of the tubular sub-
population reduces the ‘division of labour’ in outbreak strains and
limits the ability of the population as a whole to proliferate
intracellularly. Interestingly, this effect was not seen in co-cultures
grown in vitro in the presence of 0.7 mM H202 (Supplementary
Fig. 7d,e), suggesting that ROS-induced mitochondrial tubular-
ization induces a pathogen response that protects cryptococci
from their macrophage host rather than directly conferring
resistance to oxidative damage.

Discussion
We here present findings that describe how a fungal outbreak
lineage of C. gattii uses host antimicrobial mechanisms, that is,
the generation of ROS, as a signal to induce an intracellular
survival and proliferation programme within macrophages. This
programme induces a proportion of the fungal cell population to
adopt a quiescent state that is characterized by tubular
mitochondria and resists killing in the intracellular niche, while
the remaining population is vulnerable to killing, but proliferates

Table 3 | Intracellular yeast fate analysis identifies yeast with tubular mitochondria as resistant and non-proliferative cells.

Mitochondrial morphology Fisher’s exact test

Tubular Non-tubular

Count % Count %

AIg54
Total 69 24.0 219 76.0
Killed 0 0 49 22.4 Po0.0001
Proliferating 1 1.4 35 16.0 P¼0.0006
Quiescent 68 98.6 134 61.2 Po0.0001

AIg56
Total 17 9.9 154 90.1
Killed 0 0 2 1.3 P¼ 1.0
Proliferating 10 58.8 80 51.9 P¼0.62
Quiescent 7 41.2 74 48.1 P¼0.62

The fate of individual intracellular yeasts and their respective mitochondrial phenotype was scored from time-lapse images over 12 h (730 min). Fewer intracellular yeast were killed when tubular
mitochondrial morphology has developed (Fisher’s exact test, Po0.0001). Intracellular yeast proliferation was more often observed in yeasts from the outbreak strain AIg54 not presenting with tubular
mitochondria (Fisher’s exact test, P¼0.0006). Intracellular AIg54 cells with tubular mitochondrial morphology were more often quiescent than intracellular AIg56 cells with tubular mitochondria
(Fisher’s exact test, Po0.0001). Data were obtained from the outbreak strain AIg54 and non-outbreak strain AIg56 with HEM15-GFP-tagged mitochondria in four independent experimental repeats
examining 288 and 173 yeasts, respectively, and data analysed using Fisher’s exact test.
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more rapidly, leading to an overall population expansion that
overwhelms the host.

Mitochondria are involved in a wide range of processes
encompassing cellular stability, energy production, stress resis-
tance and regulation of life span, and hence are key in
determining the fitness of microorganisms. In fact, mitochondria
have been associated with virulence in several pathogens.
Olson and Stenlid36 described the control of virulence by
the mitochondrial genome in the fungal plant pathogen
Heterobasidion annosum. In addition, mutants with
dysfunctional mitochondria in the human fungal pathogens
Candida glabrata (which also proliferates intracellularly in
macrophages), C. albicans, C. neoformans and Aspergillus
fumigatus all show attenuated virulence in mouse model
systems of disease37–42. However, to date, the direct molecular
mechanisms regulating mitochondrial involvement in virulence
are not understood.

Several studies have shown the importance of numerous
mitochondrial functions in conferring virulence by activating
genes involved in metabolic pathways37,43, mitochondrial
respiration44 and survival response to oxidative stress40,41,45,46.
This is suggestive of a global stress response to the harsh
environment within the host, and hence it is likely to be that
mitochondrial tubularization might be a marker of global
stress responses rather than the protective mechanism itself.
In support of this, we have recently shown that transfer of a
mitochondrial ‘outbreak’ genotype is necessary, but not sufficient,
to confer outbreak virulence phenotypes between lineages26,
indicative of the complex, multigenic nature of the outbreak
phenotype.

In summary, here we introduce a new model for virulence in
outbreak strains of C. gattii, driven by a division of labour
between an intracellular yeast subpopulation that adapts a
quiescent and resistant tubular mitochondrial phenotype and a
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s.e.m. (b) A model describing the ‘division of labour’, between a proportion of quiescent yeasts, which are essentially entirely resistant to killing by the

host cell, and a small minority of ‘vulnerable’ but rapidly budding yeasts.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6194 ARTICLE

NATURE COMMUNICATIONS | 5:5194 | DOI: 10.1038/ncomms6194 | www.nature.com/naturecommunications 7

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


susceptible, but highly proliferative, non-tubular mitochondrial
yeast subpopulation. The phenomenon of persister cells has been
described for bacterial pathogens to explain latent bacterial
infections and antibacterial resistance47. In addition, very recent
data have shown that bistable expression of virulence genes in
Salmonella typhimurium creates phenotypically heterogeneous
virulent and avirulent subpopulations48. There is an ongoing
debate about latency and recurrence in cryptococcosis49, and in
this context a quiescent subpopulation might argue for
cryptococcal latency and the risk of developing antifungal
resistance50. In addition, the ability of outbreak strains to
facilitate the proliferation of non-outbreak strains within
phagocytes poses important questions regarding the impact of
C. gattii infections on altering susceptibility to other bacterial,
viral or fungal pathogens.

Methods
Cryptococcus strains, yeast and cell line culture. Cryptococcus strains (Table 1)
were cultured in liquid culture containing 1% peptone, 1% yeast extract and 2%
D-(þ )-glucose (YPD) at 25 �C rotating at 20 r.p.m. 24 h before use in
experiments51.

The semi-adherent macrophage-like cell line J774 (European Cell Culture
Collection) was used for macrophage experiments52. The cells were used between
passage 5 and 15 after thawing and cultured in low glucose DMEM medium
(Sigma) supplemented with 10% heat-inactivated fetal bovine serum (FBS), 2 mM
glutamine, 100 mg ml� 1 streptomycin and 100 units ml� 1 penicillin (culture
media) at 37 �C and 5% CO2 (refs 8,14,51,53,54). Human primary peripheral blood
monocytes were obtained from independent healthy volunteers. Consent was
obtained from all subjects under ethical approval granted by the University of
Birmingham Research Ethics Committee. Mononuclear cells were isolated over a
Ficoll-Plaque PLUS (GE Healthcare) gradient. Blood samples were diluted twofold
with PBS (pH 7.2) and 30 ml was centrifuged over a 20-ml Ficoll-Paque PLUS
cushion at 400g for 30 min without braking. The mononuclear layer was collected
and washed with PBS to remove platelets. Monocytes were isolated by adherence to
plastic at a concentration of 4–6� 106 cells per ml in RPMI 1640 media
supplemented with 2% heat-inactivated FBS, 2 mM glutamine, 100 mg ml� 1

streptomycin, 100 units ml� 1 penicillin at 37 �C and 5% CO2 for 1 h. Non-
adherent lymphocytes were removed with warm PBS and adherent cells
differentiated into macrophages in RPMI 1640 supplemented with 10% heat-
inactivated FBS, 2 mM glutamine, 100mg ml� 1 streptomycin, 100 units ml� 1

penicillin (culture media) containing 100 units ml� 1 granulocyte macrophage
colony-stimulating factor. After incubation overnight, the cells were washed with
warm PBS and detached with ice-cold PBS on ice for 30 min. The macrophages
were collected, resuspended and plated into 96-, 48- or 24-well plates at a
concentration of 105, 5� 105, or 106 cells per well, respectively, in RPMI 1640
culture media containing 100 units ml� 1 granulocyte macrophage colony-
stimulating factor, and macrophages were further matured for 6 days52.

Macrophage infection assay. Cryptococcus strains were cultured in liquid YPD
media for 24 h at 25 �C rotating at 20 r.p.m. One millilitre of J774 cells (105 cells per
ml) in culture media was plated into each well of a 24-well tissue-culture-treated
plate 24 h before infection and kept at 37 �C and 5% CO2 humidified atmosphere.
One hour before infection, J774 cells and human primary macrophages were
switched to DMEM or RPMI 1640, respectively, containing 2 mM glutamine,
100 mg ml� 1 streptomycin and 100 units ml� 1 penicillin (assay media), and
activated with 150 ng ml� 1 phorbol 12-myristate 13-acetate. At the same time,
Cryptococcus cells from 24-h-old liquid cultures were washed three times with PBS,
counted in a haemocytometer and 106 yeast cells per 100ml were opsonized with
the monoclonal antibody 18B7 to cryptococcal capsule (0.99 mg ml� 1, a kind gift
from Arturo Casadevall). After pre-incubation, the opsonized yeast cells were
directly added to J774 cells or human primary macrophages in fresh assay medium
at a ratio of ten yeast cells per macrophage and phagocytosis was allowed to
proceed for 2 h at 37 �C and 5% CO2 humidified atmosphere. Non-internalized
yeast cells were removed by extensive washes with pre-warmed PBS and effec-
tiveness of washing was checked by microscopy53,54. Infected macrophages were

Table 4 | Outbreak and non-outbreak strains can co-infect macrophages.

a

Strains Total (%)

Average s.e.m.

Percentage phagocytosis
R265_GFP14þCBS8684, n¼4 36.4 1.4
R265_GFP14þCBS7750, n¼ 3 38.6 3.4
R265_GFP14þCBS7229, n¼4 35.9 3.4
R265_GFP14þCBS1930, n¼4 28.1 2.6

b

Strain R265_GFP14 Non-outbreak strain Co-infected

Average s.e.m. Average s.e.m. Average s.e.m.

Co-infection percentage phagocytosis (% of total above)
CBS8684 92.2 2.0 14.2 1.3 8.2 0.5
CBS7750 86.6 4.3 22.7 4.2 9.4 0.8
CBS7229 74.9 2.5 46.0 1.7 21.9 3.0
CBS1930 91.2 2.5 18.7 1.4 9.7 1.2

Phagocytosis of outbreak strain R265_GFP14 and non-outbreak strains during co-infection was analysed and percentage phagocytosis of yeast cells after 2 h of co-infection by J774 macrophages are
presented (n43). The total uptake (a) and contribution of single and co-infection to total uptake (b) are shown. Data for assessment of phagocytosis were obtained from at least three independent
experimental repeats.
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further cultivated at 37 �C in a 5% CO2 humidified atmosphere in fresh assay
medium until needed8,14,25,51,53.

Determination of IPR. For time point T¼ 0, 1 ml of DMEM was removed and
200ml of sterile distilled H2O was added into wells to lyse macrophage cells
immediately after 2 h infection. After 30 min, the released intracellular yeast were
collected. Another 200 ml distilled H2O was added to each well to collect the
remaining yeast cells. Intracellular yeast were counted using a haemocytometer.
For the subsequent time points (T¼ 18 h, T¼ 24 h and T¼ 48 h), intracellular
cryptococcal cells were collected and independently counted with a haemocyt-
ometer. For each strain tested, the time course was repeated at least three
independent times, using different batches of macrophages. The IPR value was
calculated by dividing the maximum intracellular yeast number by the initial
intracellular yeast number at T¼ 0.

For co-infection studies, the fluorescently labelled R265 strain R265_GFP14
(ref. 51) was used to distinguish between low and high proliferating strains. Yeast
cells (106 ml� 1) at a ratio of 1:1 were opsonized with 18B7 for infection of J774
cells and human primary macrophages. For in vitro co-incubation, 105 yeast per ml
in single or co-cultures with R265_GFP14 at a ratio of 1:1 were incubated in
DMEM assay media at 37 �C in a 5% CO2 humidified atmosphere for 24 h. Yeast
cell numbers were counted on a Nikon Eclipse Ti using a haemocytometer under
fluorescence and bright field.

We confirmed that Trypan Blue stains 100% of the cryptococcal cells in a
heat-killed culture, but only B5% of cells from a standard overnight culture.
Compared with a conventional colony counting method, this method was shown
to be more sensitive in detecting the clustered yeast population or yeast cells
undergoing budding8,14,25,51,53.

Mitochondrial staining. C. gattii cells were grown overnight at 37 �C in DMEM
untreated or under a stress condition (0.7 mM H2O2, 5 mM NaNO2, 0.1 mM CoCl2,
3% O2, 0.005% SDS, 0.05 mM NaCl, 0.03 J cm� 2 ultraviolet light, pH 5.7) in a 5%
CO2 incubator without shaking for 24 h, or isolated from macrophages 24 h after
infection. After ultraviolet treatment, yeasts were recovered for 30 min at 37 �C.
Growth in YPD media at 25 �C rotating at 20 r.p.m., in YPD media at 37 �C not
rotating and assay medium at 37 �C not rotating were also included as controls.
For time-course experiments, cells were recovered from macrophages and stained
after 0, 2, 6, 12, 18 and 24 h. The cells were harvested, washed with PBS twice and
re-suspended in PBS containing the Mito-Tracker Red CMXRos (Invitrogen) at a
final concentration of 20 nM. Cells were incubated for 15 min at 37 �C. After
staining, cells were washed in triplicate and re-suspended in PBS. For each
condition, more than 100 yeast cells per replicate for each of the strains tested were
chosen randomly and analysed. For quantifying different mitochondrial
morphologies, images were collected using a Zeiss Axiovert 135 TV microscope
with a � 100 oil immersion Plan-Neofluar objective. Both fluorescence images and
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phase-contrast images were collected. Images were captured with identical settings
on a QIcam Fast 1394 camera using the QCapture Pro51 version 5.1.1 software. All
images were processed identically in ImageJ, and mitochondrial morphologies were
analysed and counted blind14,25.

Stress treatments. To test C. gattii strains for their susceptibility towards a
number of stress conditions, several conditions were created to mimic different
degrees of hypoxia (0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.3 and 0.6 mM CoCl2 and 3%
O2), oxidative (0, 0.088, 0.175, 0.35, 0.7, 2.1, 4.2 and 9.3 mM H2O2), nitrosative
(0, 0.25, 0.5, 2.5, 5, 10, 15 and 20 mM NaNO2), cell membrane (0, 0.005, 0.01,
0.025, 0.05, 0.1, 0.25 and 0.5% SDS), osmotic (0.0001, 0.001, 0.01, 0.025, 0.05, 0.1
and 0.3 mM NaCl), radiation (ultraviolet 254 nm; 0, 0.005, 0.01, 0.02, 0.03, 0.04,
0.06, 0.08 and 0.1 J cm� 2) and pH (3.6, 4.4, 4.55, 4.56, 4.74, 5.17, 5.28, 5.58, 5.7, 6.5
and 7.5) stress. Cryptococcus cells from 24-h-old YPD liquid cultures were washed
three times with PBS, counted in a haemocytometer and adjusted to 105 cells per
ml in assay media. One millilitre of the yeast suspension was added into each well
of a 48-well plate and the stress factor was transferred accordingly. The yeasts were
then incubated at 37 �C and 5% CO2. To assess the influence of the stresses on
cryptococcal survival, serial dilutions were plated after 0 and 24 h, and colony-
forming units counted. For ultraviolet treatments, yeasts were recovered for 30 min
at 37 �C before plating. Colony-forming units relative to time point 0 and relative
to an untreated control were calculated to enable comparison between several
Cryptococcus strains with different growth rates50.

ROS staining. J774 macrophages, previously prepared according to the infection
protocol and treated with 0.5 mM of the ROS inhibitor Apocynin (Sigma) where
applicable, were detached and separated by Accutase (PAA) treatment. The cells
were incubated with the undiluted proteolytic and collagenolytic enzyme mix for
15 min at 37 �C and then gently dissociated by pipetting to ensure a single cell
suspension; cell separation was checked by microscopy. Harvested cells were
washed in warm PBS and stained with 20 ,70-dichlorodihydrofluorescein diacetate
(Invitrogen) at a concentration of 5 mM in PBS for 37 �C for 45 min. After labelling,
macrophages were analysed by flow cytometry (FACSCaliber and CellQuestPro
software, BD Biosciences). For analysis, the macrophage population was gated by
forward and side scatter, and the percentage of macrophages generating a ROS
response measured by negatively gating for dye fluorescence against a population
of unlabelled macrophages.

Live imaging of cryptococcal mitochondria. Time-lapse images for fungal fate
analysis were captured on a TE2000 (Nikon) with Digital Sight DS-Qi1MC camera
(Nikon), � 60 objective (DIC PLAN APO), using NIS elements AR software
(Nikon). Transmitted light images were captured every 2 min and fluorescence
images were captured every 10 min for 12 h. Two hundred and eighty-eight and
177 cells for AIg54 and AIg56, respectively, were analysed over four separate
experiments. Time-lapse images for fungal fate analysis in the presence of apocynin
were captured on a Ti (Nikon) with Neo (Andor), � 60 objective (DIC PLAN
APO), using NIS elements AR software (Nikon). Transmitted light images were
captured every 2 min and fluorescence images were captured every 10 min for 12 h.
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After completing the infection protocol, macrophages were treated with either
0.5 mM apocynin or 0.5% dimethyl sulphoxide (control). For strain AIg54 191
control and 129 apocynin-treated macrophages, and for strain AIg56 164 control
and 148 apocynin-treated macrophages were analysed over three separate experi-
ments. Three-dimensional imaging of mitochondrial tubularization was acquired
with Nikon A1R confocal microscope (Nikon) in resonant scanning mode and with
a piezo stage (MadCity Labs) for fast z-sectioning. C. gattii AIg54 was imaged in
PBS containing 0.7 mM H2O2 to induce tubularization. Seventy-four z-sections
were captured every 60 s for 40 min.

Agrobacterium-mediated transformation. Strains CBS1930 and R265 were
cultured overnight in YPD liquid medium. An Agrobacterium tumefaciens strain
that carries a plasmid with the HEM15 gene from C. neoformans strain JEC21 fused
at its carboxy terminus to GFP was cultured overnight in Luria–Bertani medium
supplemented with kanamycin55. The fusion protein is under the regulation
of a constitutive histone H3 promoter. HEM15 encodes ferrochelatase, a
mitochondrially localized protein that catalyses the final step in the biosynthesis of
haem. Each culture was diluted to an optical density of 0.5 at 600 nm. Cultures
were mixed, plated onto induction medium agar56 and co-cultured for 2 days at
room temperature. The cells were then transferred from induction medium to YPD
agar containing nourseothicin (100 mg ml� 1), to select for integration of the
T-DNA into the C. gattii genome, and cefotaxime (100 mg ml� 1), to select against
the Agrobacterium cells. Transformed cells were streaked to isolate single colonies
and their fluorescence tested using a Nikon Eclipse 90i fluorescence microscope.

Immunofluorescence of autophagy marker LC3. J774 macrophage-like cells were
seeded onto 13 mm glass coverslips at a density of 1� 105 cells. Macrophages were
then incubated at 37 �C and 5% CO2 24 h before infection. C. gattii strains
(CDCF2932, ENV152, CBS8684, CBS7750, CBS1930, CBS7229, CDCR271 and
R265) were cultured and J774 cells infected as previously described for the
macrophage infection assay. After 2 h of co-incubation, extracellular yeast were
removed by extensive PBS washes and, if appropriate, cells were further incubated
in assay media at 37 �C and 5% CO2. Cells were fixed with 4% PFA for 10 min at
either 2 h (T¼ 0) or 20 h (T¼ 18) after infection. Coverslips were washed with PBS
before treatment with 50 mM NH4Cl for 10 min and cells were permeabilized in
0.1% Triton X-100 for 4 min. Coverslips were blocked with 5% goat serum and 1%
BSA in PBS for 1 h and incubated with 0.25 mg ml� 1 rabbit polyclonal anti-LC3A/
B antibody (Cell Signaling) for 30 min, followed by 20 min incubation with
3 mg ml� 1 goat anti-Rabbit IgG-TRITC (Sigma). Coverslips were then mounted in
Mowiol (Calbiochem) with p-phenylenediamine antifade agent. Images were
captured using a Nikon eclipse Ti-inverted epifluorescence microscope and NIS
elements AR 3.2 software (Nikon) with a � 60 objective (Plan Apo VC 1.4 NA DIC
N2) and camera (Qimaging QICAM-B Mono). Images were analysed using ImageJ
software (National Institutes of Health).

Hog1 regulation in C. gattii. C. gattii was grown at 25 �C in YPD media for 24 h.
Cells were diluted 1:100 in fresh media and grown to exponential phase at 25 �C.
Cultures were diluted 1:1 with YPD, YPD supplemented with 2 M NaCl (final
concentration 1 M) or YPD supplemented with 2 mM hydrogen peroxide (final
concentration 1 mM) and incubated for an additional 30 min. Cells were harvested
by centrifugation and immediately flash-frozen in liquid nitrogen. Pellets were
washed in protein extraction buffer (50 mM HEPES pH 7.5, 150 mM NaCl, 5 mM
EDTA, 1% NP40) supplemented with Roche complete proteinase cocktail. Samples
were lysed by vortexing with glass beads (20� 30 s). Lysates were cleared by
centrifugation (13,000 r.p.m., 1 min) and protein concentration estimated by
Bradford assay with a BSA standard curve. Proteins (15 mg) were separated by
SDS–PAGE on 15% SDS gels. Proteins were transferred onto polyvinylidene
difluoride membranes at 30 V for 2 h and the membrane blocked with 5% BSA in
PBS-T for 1 h. Hog1 phosphorylation was detected with a 1:2,000 dilution of
phospho-P38 (Thr180/Tyr182) rabbit monoclonal antibody (Cell Signaling) in
PBS-T with 5% BSA. Membranes were incubated overnight at 4 �C. For detection,
an anti-rabbit IgG-HRP-conjugated antibody was used at a 1:2,000 dilution in
PBS-T, 5% BSA for 1 h at room temperature. To detect total Hog1 levels,
membrane were stripped, blocked in 10% milk in PBS-T and re-probed with the
Sc-9079 Hog1 antibody (Santa Cruz) in a 1:2,000 dilution in 5% milk in PBS-T
for 2 h at room temperature. For detection, an anti-rabbit IgG-HRP-conjugated
antibody was used in a 1:2,000 dilution in PBS-T for 1 h at room temperature.
Membranes were washed in PBS-T and signals detected using an enhanced
chemiluminescence western blotting kit as per the manufacturer’s instructions35.

Statistical analysis. Data were analysed using SPSS version 17 and GraphPad
Prism 6. Continuous data sets were tested for normal distribution using the
Shapiro–Wilks test and for homogeneity of variance using the Levene Statistics,
and if data sets fit the requirements, subjected to parametric analysis by t-test
or analysis of variance with post-hoc Tukey test. If data sets were not normally
distributed or failed to show homogeneity of variance, the non-parametric Mann-
Whitney U-test or Kruskal–Wallis test was applied to test for statistically significant
differences. Categorical data was pooled and analysed by Fisher’s exact test for low
number of data points and w2-test for larger data sets. P-values o0.05 after

adjusting for multiplicity were considered statistically significant. Experiments were
performed at least three times. Exact details on experimental repeats and number
of yeast scored can be found in Supplementary Tables 2–6. Data were not excluded
from analysis unless obvious operator error occurred (for example, failure to stain
and contamination). Scoring experiments were performed in a blind manner. For
in vitro studies and infection studies, fungal strains were randomly distributed in
different culture well plate positions.
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