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The effect of component variations on the gate fidelity in linear optical networks.

Jonathan Crickmore,1, 2 Jonathan Frazer,1 Scott Shaw,1 and Pieter Kok1, ∗

1Department of Physics & Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
2Department of Physics, Heriot-Watt University, Edinburgh, United Kingdom

(Dated: August 2, 2016)

We investigate the effect of variations in beam splitter transmissions and path length differences
in the nonlinear sign gate that is used for linear optical quantum computing. We identify two im-
plementations of the gate, and show that the sensitivity to variations in their components differs
significantly between them. Therefore, circuits that require a precision implementation will generally
benefit from additional circuit analysis of component variations to identify the most practical imple-
mentation. We suggest possible routes to efficient circuit analysis in terms of quantum parameter
estimation.

I. INTRODUCTION

Optical networks are important for a wide variety of ap-
plications, from conventional optical routers and clas-
sical optical computing [1] to quantum communication
networks, linear optical quantum computing and optical
metrology [2–4]. The physical system that underpins all
of these networks is the multi-mode interferometer. It
is a collection of passive optical elements such as beam
splitters, phase shifters and polarisers, as well as active
elements such as optical squeezers, photodetectors and
switches. These networks can be implemented in bulk
optics, fibre optics, or on chip. The typical applications
such as optical quantum computing, quantum imaging
and quantum metrology all require an extremely high
precision in the optical elements. However, in any prac-
tical implementation there will be significant variations
in the interferometer elements (sometimes exceeding 10%
of the specified value). Depending on the application,
such variations may be critically detrimental to the oper-
ation of the interferometer. Furthermore, the variations
in some elements will have a much greater effect on the
functionality of the interferometer than those of others.
It is therefore key to improve our understanding of ele-
ment sensitivity of optical circuits.

The susceptibility of optical circuits to variations in
their components has been studied before, particularly
in the context of optical quantum information process-
ing. The effect of imperfect detectors in linear optical
quantum computing was studied by Glancy et al. [5],
and beam splitter variations as a source of statistical er-
rors in linear optical gates were considered by Ralph et

al. [6]. Lund et al. considered the effect of non-ideal
ancilla mode creation and detection [7]. Rohde, Ralph
and Nielsen studied mode mis-matching in the temporal
and frequency domain, and determined the optimal wave
packet shapes to reduce mode mis-matching errors [8, 9].
A general approach to systematic errors in linear opti-
cal gates was provided by Rohde, Pryde, O’Brien and

∗Electronic address: p.kok@sheffield.ac.uk

Ralph [10, 11]. However, to the best of our knowledge
nobody has studied the effect of variations in the ele-
ments of optical circuits for different implementations of
the same gate. We find, surprisingly, that different imple-
mentations of the same gate—with similar complexity—
can have dramatically different responses to variations in
optical elements.

In this paper, we explore the sensitivity of the nonlin-
ear sign (NS) gate used in linear optical quantum com-
puting [2] as an example of circuit variation analysis. We
consider two versions of this gate with identical circuit
complexity in terms of the number of optical elements,
input states and detection devices, and operating at the
same success probability (see Fig. 1). We will find that
the design of the gate has significant implications for the
process fidelity’s sensitivity on variations in the compo-
nents. This means that any optical interferometer de-
sign will have to be tested against alternative designs for
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FIG. 1: two designs for the NS gate: a) the KLM NS gate, and
b) the Reverse NS gate. The two circuits have the same com-
plexity in terms of components, input states and detectors,
and they have the same probability of successfully applying
an NS gate (psuccess =

1

4
). However, the two circuits differ

dramatically in the way they respond to variations in their
component characteristics.
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the best performance given realistic components. In Sec-
tion II we present two different version of the NS gate
and in Section III we study the effect of components
variations. Section IV looks at the broader connection
to multi-parameter estimation theory, and we conclude
with a brief discussion in Section V.

II. TWO NS GATE DESIGNS

The NS gate is a key component in the original proposal
by Knill, Laflamme and Milburn (KLM) for a quantum
computer constructed from linear optical elements, single
photon sources and photodetection [2]. The main opera-
tion of the gate is to induce a nonlinear phase shift UNS

on an optical mode defined by

α|0〉 + β|1〉 + γ|2〉 −→
UNS

α|0〉 + β|1〉 − γ|2〉 , (1)

where |n〉 is the state of n photons in the input mode and
(α, β, γ) are complex amplitudes normalised to 1. The
action of the NS gate on photon number states |n〉 with
n > 2 is not defined, and allows for additional freedom
in the construction of UNS.

The optical circuit for the original NS gate is shown
in Fig. 1a. It is a simple circuit that lends itself well to
analysis. However, the circuit is not unique. We can de-
fine a “reverse” NS gate, shown in Fig. 1b, that achieves
the same transformation on the space of zero, one and
two photons, with the same probability of success. How-
ever, the two implementations do differ in the way they
respond to variations in the transmission coefficients on
the beam splitters and path length deviations. In this pa-
per we analyse the difference in performance under these
systematic errors of the two incarnations of the NS gate.
We will refer to the original gate in Fig. 1a as the KLM
NS gate, and to Fig. 1b as the Reverse NS gate.

The NS gate is nonlinear in the sense that no combina-
tion of linear optical elements can implement the trans-
formation in Eq. (1). The gate is induced by interfer-
ence with ancilla photons in additional modes, followed
by post-selection on a particular measurement outcome
in the ancilla modes. This implies that the NS gate is
successfully implemented with a probability smaller than
one. The traditional implementation employs a single an-
cilla photon and two extra optical modes [2]. The max-
imum success probability of any NS gate is psuccess =

1
4

[12, 13], which is achieved by both implementations in
Fig. 1.

Next, we establish our conventions in describing the
NS gates. We define the action of a beam splitter as a
matrix transformation UBS on the mode operators â1 and
â2 of the two input modes a1 and a2, such that

UBS â1 U
†
BS = cos θ â1 + sin θ â2 ,

UBS â2 U
†
BS = − sin θ â1 + cos θ â2 , (2)

and the mode operators are defined by the usual commu-
tation relations

[
âj , â

†
k

]
= δjk , (3)

with δjk the Kronecker symbol. All other commutators
are zero. The KLM NS gate in Fig. 1a has beam splitter
angles

θ1 = arccos η1 , θ2 = arccos η2 , θ3 = −θ1 , (4)

where

η1 =
1

4− 2
√
2

and η2 = 3− 2
√
2 . (5)

The phases ϕj in Fig. 1a are all zero [2]. We determine
the beam splitter angles for the Reverse NS gate by re-
quiring that the success probability of the ideal gate is
again one quarter, and that the ancilla state and detec-
tion signature is the same as the KLM NS gate. Since
we are primarily interested in finding an alternative gate
and at this point do not wish to generate a complete
family of NS gates, this construction suffices. We con-
struct the mode transformations from Eq. (2) and collect
the terms that have a single creation operator â†2 and no
mode operators â†3, corresponding to the post-selection
on a detected photon in mode a2 and no detected pho-
tons in mode a3. We then obtain coefficients c0, c1, and
c2 for the zero, one, and two-photon terms in the output
state, respectively. Solving for c0 = c1 = −c2, we obtain

ξ1 = arctanχ1 , ξ2 = π + arctanχ2 , ξ3 = −ξ1 , (6)

where

χ1 =
4
√
8 and χ2 =

√
16
√
2− 13

7
, (7)

with all phases ζj in Fig. 1b equal to zero. Post-selection
is implemented by projecting the three-mode output
state onto the state |1, 0〉23, which has exactly one pho-
ton in mode 2, and zero photons in mode 3. For these
values, the coefficients |ck| = 1

2
, yielding an overall suc-

cess probability of a quarter, independent of the input
state in mode a1. In the next section we consider im-
perfections in the beam splitter transmission coefficients
and the path lengths in the interferometer.

III. IMPERFECT COMPONENTS

In any practical implementation of the NS gate, there will
be variations in the components, such as beam splitter
reflectivities and path length differences that introduce
unwanted phases in the optical modes. These are sys-
tematic errors that must be overcome by calibration of
some sort, rather than quantum error correction codes.
In this section we will determine the sensitivity of each
of the NS gate to variations in the three beam splitters
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and five path lengths. To this end we use the gate fi-
delity as a figure of merit [14, 15]. We find that given a
specified target gate fidelity, the tolerances of the optical
components vary significantly.

Let E(ρ) denote a trace preserving quantum process
on a density operator ρ. We define the gate fidelity of E
relative to an ideal (unitary) gate U as the quantity

F (E , U) =

∫
dψ 〈ψ|U† E(ψ)U |ψ〉 , (8)

where dψ is the uniform (Haar) measure over the quan-
tum state space [15]. Unfortunately, the NS gate is a non-
trace-preserving quantum process, since the probability
of success for the gate is less than one. Moreover, the
success probability of the gate changes significantly with
variations in the optical components. The probabilities
of finding the detector signature that heralds success for
the two NS gates as a function of variations in the beam
splitter angles are shown in Fig. 2. While the theoretical
maximum success probability of the ideal NS gate is one
quarter, larger probabilities of finding the right detector
outcomes are possible when the beam splitter coefficients
change and the implemented gate deviates significantly
from the ideal NS gate. We note that the curves for the
first and third beam splitters are mirror images of each
other in both the KLM and Reverse NS gate. This is
explained by the time-reversal symmetric nature of the
gates, keeping in mind that time-reversed detectors are
sources, and vice versa.

The variation in success probability means that we can-
not use Eq. (8) in a straightforward manner. The process
E must be normalised, but this means that Eq. (8) can
no longer be evaluated analytically for the NS gates. In-
stead, we average the gate fidelity over 10 000 random
uniformly sampled input states for each value of gate
component variations. Since our input state consists of
a linear superposition of the first three Fock states (and
ignoring a global phase), the state space is given by the
unit sphere in a three-dimensional complex Hilbert space
{ψ ∈ C

3 : ‖ψ‖ = 1}, where C is the complex plane and
‖·‖ is the usual complex vector norm. Any state |ψ〉 in
C

3 can be obtained by applying a suitable matrix U to
an initial state |ψ0〉, and finding a uniform distribution
over the state space reduces to finding a uniform distri-
bution over the set of unitary matrices U acting on C

3

with respect to the Haar measure. This is accomplished
using the complex normal distribution on C

3 [16].
In the remainder of this section, we study the effect

of beam splitter variations and path length differences
individually, and calculate the minimum, maximum and
mean gate fidelity for a distribution of variations across
the circuit.

A. Imperfect beam splitters

The gate fidelities for the KLM and Reverse NS gate
with imperfect beam splitters are shown in Fig. 3. The
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FIG. 2: (Color online) The probability of a detector signature
that heralds the success of the NS gates for varying beam
splitter transmission coefficients and equal amplitudes α =

β = γ = 1/
√
3. In the top graph, ∆θj is the variation away

from the ideal value θj in the KLM NS gate, while in the
bottom graph ∆ξj is the variation away from the ideal value
ξj in the Reverse NS gate. The black line indicates the ideal
success probability of one quarter. Success probabilities larger
that 0.25 are allowed, and indicate a significant departure
from the ideal NS gate.

KLM NS gate is particularly sensitive to variations in
the second beam splitter, which is the one that directly
interacts with the signal mode. The gate is significantly
less sensitive to variations in the two other beam splitters.
For example, at a fixed gate fidelity of F = 0.999, the
tolerance in the first and third beam splitters, (∆θ1 and
∆θ3, respectively) is more than three times larger than
∆θ2. The curves for the first and third beam splitters
are again mirror images of each other, as expected. The
Reverse NS gate shows a similar range of sensitivities to
beam splitter variations. Again, the two beam splitters in
the direct signal path have the greatest effect on the gate
fidelity, and the shape of these curves are very similar
to the ∆θ2 curve for the KLM NS gate. Again, we have
mirror symmetry for the first and third beam splitters.

Both gates have a success probability of psuccess =
1
4
,

but the sensitivity of the Reverse NS gate of variations
in two beam splitters instead of one makes the KLM NS
gate the preferable circuit for practical implementations.
In implementations that require high precision, the cir-
cuit design may require a variable beam splitter such as
a directional coupler that is tuneable either mechanically
[17], electrically [18], or thermally [19]. Since these struc-
tures are likely costly, and will introduce other imperfec-
tions (such as drift), the fewer beam splitters that need
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FIG. 3: (Color online) The gate fidelity of the KLM and Re-
verse NS gate for variations ∆θ and ∆ξ in the three beam
splitters, respectively. The Reverse NS gate is most sensitive
to the first and third beam splitter, while the KLM NS gate
is sensitive only to the second.

to be corrected in this way, the better. Generally, there
will be room to optimise the circuit design based on the
tolerances of the circuit on the variations in its elements.
In practice, variations in beam splitters can be quite large
in bulk optics (on the order of 10%).

B. Variations in path lengths

A similar analysis can be performed for the various path
length differences in the circuit. The KLM NS gate is
completely insensitive to path length variations encoded
in the phases ϕ1 and ϕ2, as expected. Similarly, the
Reverse NS gate is insensitive to variations in ζ1 (see
Fig. 4). For the remaining phases there is a marked dif-
ference in the two gates. The KLM NS gate loses only
about a percent in fidelity when the path lengths associ-
ated with ϕ3 and ϕ4 varies by half a wavelength, while
the Reverse gate sees a significant drop in average gate
fidelity. Compared to the beam splitter variations we
can say that the KLM NS gate is effectively insensitive
to path length differences, while the Reverse NS gate is
very sensitive to path length differences. This is another
reason to strongly prefer the KLM NS gate over the Re-
verse NS gate, and underlines the importance of circuit
analysis for component variations.

C. Compound variations

In addition to individual errors in components, we may
consider compound errors in all beam splitters and path
lengths. This describes the more realistic behaviour
where all components are subject to small variations. We
define an error vector δ with eight components (three for
the beam splitters and five for the path lengths) and mag-
nitude |δ|. For a given total error r distributed among
the components, all possible error configurations are de-
scribed by a 7-sphere of radius |δ|. We randomly sample
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FIG. 4: (Color online) The gate fidelity of the KLM and Re-
verse NS gate for variations ∆ϕj and ∆ζk in the four relevant
path lengths, respectively. The KLM NS gate is again far less
sensitive to path length variations than the Reverse NS gate.

this error space and calculate the gate fidelity. The re-
sults are shown in Fig. 5.

For each value of |δ| we generate 50 000 random vec-
tors δ. The gate fidelity for each δ is then calculated
again using 10 000 random input states into the NS gate.
In Fig. 5 we plot the minimum, maximum and mean gate
infidelity 1− F as a function of |δ|. The maximum gate
infidelity is the worst case scenario for a given |δ|. It
reaches a maximum of approximately 0.76 with increas-
ing |δ| for both the KLM and Reverse NS gate. This
value represents the limit where the circuit is so badly
constructed that it no longer outperforms a randomly
constructed circuit, and we call this the randomisation
limit. The gate infidelity of the Reverse NS gate reaches
this value much faster than the KLM NS gate, which is
consistent with our earlier observation that the Reverse
NS gate is more sensitive to variations in the two in-line
beam splitters, compared to the KLM NS gate that is
sensitive to variations in the single in-line beam splitter.
In both cases the effect of path length variations is much
less important than the beam splitter variations.

The minimum gate infidelity exhibits strong statistical
fluctuations (the green lines in Fig. 5). This is due to the
long tail in the fidelity distribution for given |δ|. Only
relatively few circuit configurations δ will give a high gate
fidelity, and the finite number of samples (50 000) is un-
likely to hit upon the true minimum gate infidelity. This
line is therefore more accurately characterised as a lower
bound on the maximum gate fidelity (or, equivalently, an
upper bound on the minimum gate infidelity).

The method used to analyse compound errors can be
generalised for any system, but in practice this is a com-
putationally intensive process. Generating k error vec-
tors over n input states requires kn evaluations of the
gate fidelity. For 3-port optical networks this is still
tractable, but for general N -port networks the number
of optical elements—and therefore the dimension of the
error vector—scales as O(N2). We will need more sophis-
ticated theoretical methods to analyse complex optical
networks.
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FIG. 5: (Color online) Minimum (dotted green), maximum
(solid blue), and mean (dashed orange) gate infidelity as a
function of the compound error |δ| for the KLM (top) and
Reverse (bottom) NS gates. The minimum gate fidelity ex-
hibits strong statistical fluctuations due to the relatively long
tail in the distribution of gate fidelities for a given |δ|. Both
circuits reach the same randomisation limit of 0.76.

IV. QUANTUM ESTIMATION OF CIRCUIT

COMPONENTS

One potentially fruitful approach towards analysing the
effect of component variations on the gate fidelity in
linear optical networks is to use the theory of multi-
parameter quantum estimation. When we consider the
components of the multi-mode interferometer, the varia-
tions away from the ideal designed value become a vector
of random variables δ in a parameter estimation prob-
lem. We can then use techniques from quantum metrol-
ogy [20], information geometry [21], and the theory of the
dynamical evolution of quantum states [22] to shed light
on the sensitivity of an interferometer on its elements.

The quantum Fisher information (QFI) is a metric in
the state space that is parametrised by the random vari-
ables δ. It is a special case of the Bures metric [23].
Intuitively, the quantum Fisher information IQ(δ) is the
amount of information about δ that is contained in the
state |ψ〉. However, for our purposes it is sufficient to
note that a large QFI means that we can detect small
variations in δ. Therefore, IQ(δ) is also a metric for the
sensitivity of |ψ〉 on δ.

Let a unitary transformation of an optical circuit be

U U
Uc

1 2

optimal conditional state

FIG. 6: The optimal conditional state |Ψopt
c 〉 is taken just

before the component c of interest (dashed line), and it is the
state that maximises the quantum Fisher information (eval-
uated by the variance of the generator of Uc with respect to
|Ψopt

c 〉), while still being capable of triggering the detector
array in the required way.

denoted by U , and deviations in the characteristics of a
component c (such as a beam splitter or phase shifter)
are generated by Gc. The unitary transformation corre-
sponding to an inaccurate component is then

Ũc(δc) = exp(−iGcδc)Uc exp(iGcδc) , (9)

where δc is a component of the vector δ. The QFI for
δc is bounded by the variance (∆Gc)

2 of Gc with respect
to the optical quantum state |Ψc〉 immediately prior to
the component c [24]. By studying (∆Gc)

2 with respect
to a variety of quantum states |Ψc〉 (average, best and
worst case scenario) we can estimate the effect of varia-
tions of that component on the total gate. Post-selection
on a particular detection signature (as in the case of the
NS gate) will typically exclude certain states |Ψc〉, and
the most informative average QFI will no longer be due
to a uniform distribution of |Ψc〉 in the quantum state
space. Instead, the set of |Ψc〉 that are to be averaged
over should be constructed from a uniform distribution
of input states over all the non-ancilla input modes, ten-
sored with the ancilla input states and transformed to
the state just before the component c.

The above procedure still requires averaging over a
large number of states. To circumvent this lengthy pro-
cess, we need a way to determine the optimal conditional
state that maximises the QFI as evaluated by (∆Gc)

2,
while still being capable of triggering the detectors ac-
cording to the required signature (see Fig. 6). The vari-
ance (∆Gc)

2 must be evaluated with respect to this opti-
mal state |Ψopt

c 〉. Again, this may be a computationally
difficult problem.

Finally, we can calculate the weighted average Wc over
the variance (∆Gc)

2
Ψ as a measure of the sensitivity of a

component to variations:

Wc =

∫
dΨ pΨ(∆Gc)

2
Ψ , (10)

where pΨ is the probability that the state |Ψc〉 leads to
the required detector signature, and dΨ is the Haar mea-
sure over the entire multi-mode optical state just before
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entering component c. For the NS gate this is a three-
mode state. We also explicitly included the subscript on
(∆Gc)

2
Ψ to remind ourselves that the variance depends

on the input state. Which of these approaches is most
suitable likely depends on the specifics of the optical cir-
cuit under consideration, and the exact relation between
circuit analysis and quantum parameter estimation will
be the subject of future studies.

V. DISCUSSION AND CONCLUSIONS

We have shown that the construction of optical networks
that implement a given unitary transformation is gener-
ally not unique, and that variations in the components
of the network can have dramatically different effects
on the network (gate) fidelity. Moreover, different net-
work topologies for the same transformation may place
very different precision requirements on the components,
and any practical implementation should involve a cir-
cuit analysis on how to best implement the optical net-

work. For small networks, a simple numerical calculation
of the average gate fidelity may be tractable, but larger
networks require more sophisticated methods. One such
method is the quantum Fisher information, which can be
calculated efficiently for optical components by consider-
ing the variance of the generator of translations.

Our findings prompt a number of important questions
for future research into the practical construction of op-
tical networks: (i) Why do some elements in a network
require much more precise fabrication than others? (ii)
How can we design optical networks that minimise the
number of sensitive elements? (iii) How can we determine
the component characteristics in situ, after the network
has been fabricated? These questions will be studied fur-
ther in future work.
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