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Abstract

Breast cancer risk factors and clinical outcomes vary by tumour marker expression. However, individual studies
often lack the power required to assess these relationships, and large-scale analyses are limited by the need for
high throughput, standardized scoring methods. To address these limitations, we assessed whether automated
image analysis of immunohistochemically stained tissue microarrays can permit rapid, standardized scoring of
tumour markers from multiple studies. Tissue microarray sections prepared in nine studies containing 20 263
cores from 8267 breast cancers stained for two nuclear (oestrogen receptor, progesterone receptor), two mem-
branous (human epidermal growth factor receptor 2 and epidermal growth factor receptor) and one cytoplasmic
(cytokeratin 5/6) marker were scanned as digital images. Automated algorithms were used to score markers in
tumour cells using the Ariol system. We compared automated scores against visual reads, and their associations
with breast cancer survival. Approximately 65–70% of tissue microarray cores were satisfactory for scoring.
Among satisfactory cores, agreement between dichotomous automated and visual scores was highest for oestro-
gen receptor (Kappa 5 0.76), followed by human epidermal growth factor receptor 2 (Kappa 5 0.69) and proges-
terone receptor (Kappa 5 0.67). Automated quantitative scores for these markers were associated with hazard
ratios for breast cancer mortality in a dose-response manner. Considering visual scores of epidermal growth fac-
tor receptor or cytokeratin 5/6 as the reference, automated scoring achieved excellent negative predictive value
(96–98%), but yielded many false positives (positive predictive value 5 30–32%). For all markers, we observed
substantial heterogeneity in automated scoring performance across tissue microarrays. Automated analysis is a
potentially useful tool for large-scale, quantitative scoring of immunohistochemically stained tissue microarrays
available in consortia. However, continued optimization, rigorous marker-specific quality control measures and
standardization of tissue microarray designs, staining and scoring protocols is needed to enhance results.
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Introduction

Breast cancer is a biologically heterogeneous disease,
which comprises multiple distinctive subtypes that
are distinguishable by immunohistochemistry (IHC)
[1,2] or molecular analysis such as transcriptomic
profiling [3–5]. Clinically, IHC staining for oestrogen
receptor (ER), progesterone receptor (PR) and epider-
mal growth factor receptor 2 (HER2) is routinely per-
formed in most diagnostic laboratories to help select
adjuvant treatment and to assess prognosis [6,7].
Research studies demonstrate that expanding this
IHC panel to include markers of basal breast cancers,
such as cytokeratin 5/6 (CK5/6) and epidermal
growth factor receptor 1 (EGFR or HER1), can ena-
ble more detailed molecular subtyping, approximat-
ing taxonomies based on molecular profiling [1,8,9].

Evaluating differences across breast cancer sub-

types is central to etiological and clinical research.

However, such studies require large sample sizes in

order to include sufficient numbers of the less com-

mon subtypes, many of which are clinically impor-

tant. Tissue microarrays (TMAs) can be used to

assess IHC results for multiple cases in one tissue

section [10], enabling standardized IHC staining and

facilitating scoring. Given that visual scoring is

labour intensive and suffers from imperfect inter-

rater agreement, automated quantitative image analy-

sis has been proposed as an alternative that may offer

logistical advantages with good reliability.
Automated analysis of pathology images has been

in use for more than 20 years [11] and has been
applied extensively in recent years in the study of
breast cancer with increasingly complex algorithms
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and improved concordance with visual scores [12–
18]. However, most comparisons are based on TMAs
of a few hundred to a few thousand tumours con-
structed and stained in a single pathology laboratory.
Although centralized construction and staining of
TMAs is desirable to obtain comparable data [19],
this is not always practical in large collaborative
investigations that aggregate pathology samples from
multiple studies.

This article details the application of fully auto-
mated image analysis of 8267 breast cancers collated
from nine studies within the Breast Cancer Associa-
tion Consortium (BCAC) [20]. Automated image
analysis was applied to score nuclear (ER, PR),
membranous (HER2, EGFR) and cytoplasmic (CK5/
6) markers to determine the usefulness and pitfalls of
this approach and to identify limitations that might
be addressed with methodological research.

Materials and methods

Study populations

This report includes nine BCAC studies with
formalin-fixed, paraffin-embedded tumour blocks that
had been previously prepared as TMAs (supplemen-
tary material Table 1). Relevant research ethics com-
mittees approved all studies; samples were
anonymized before being sent to two coordinating
centres at Strangeways Research Laboratory (Univer-
sity of Cambridge, Cambridge, UK) and Break-
through Pathology Core Facility (Institute of Cancer
Research, London, UK) for analysis. A total of 8267
cases with information on clinico-pathological char-
acteristics of the tumour, obtained from clinical
records or centralized review of cases, were included
in the analyses (supplementary material Table 2).

TMA immunohistochemistry

Three studies (ABCS, PBCS and SEARCH) provided
previously stained TMA slides of ER and PR, four
studies (ABCS, HEBCS, PBCS and SEARCH) of
HER2, three studies (ABCS, KBCP, PBCS) of CK5/
6 and three studies (HEBCS, KBCP, PBCS) of
EGFR. Studies lacking pre-existing stained TMAs for
specific stains provided unstained TMA slides for
centralized staining. Staining centres and protocols
are detailed in supplementary material Table 3.

Automated Ariol scanning and scoring of TMAs

All TMA slides were scanned and analysed on the
Leica Ariol system (Leica Biosystems, Newcastle

upon Tyne, UK) using standard procedures and prede-
fined algorithms tuned by an image analysis expert
(see details in supplementary material). A single tuned
algorithm was then applied to all TMAs. For ER and
PR nuclear staining, we obtained automated measures
of average stain intensity and percentage of cells
stained. For HER2, the system calculated the
HercepTest score [21] (0, 11, 21, 31). For CK5/6
and EGFR, we obtained a continuous automated score
(0–300) based on a weighted sum of the percentage of
positive cells in three bins of weakly, intermediate
and strongly positive cells. Quality control procedures
are described in the supplementary material.

Visual scoring of TMAs

Randomly selected cores from each study were re-
arrayed in ‘virtual TMAs’ for visual scoring (see sup-
plementary material). This resulted on a total of 942,
952 and 998 core images being visually scored in
duplicate by two pathologists (M.E.S. and E.P.) for
ER, PR and HER2, respectively. The Allred scoring
system and intensity score was used for ER and PR
[22]. Stains for ER and PR were considered positive
if the Allred score was �3. For HER2, the Herceptest
scoring system was used for visual scoring. Positive
stains for HER2 were defined in two groups as hav-
ing an intensity score of 2 or 3 (HER2 21) or 3 only
(HER2 31).

TMA slides of CK5/6 from four studies (CNIO-
BCS, MCBCS, ORIGO, SBCS) and slides of EGFR
from six studies (ABCS, CNIO-BCS, MCBCS,
KBCP, ORIGO, SBCS) that had been centrally
stained at CRUK-CI were visually scored using the
SlidePath system (see supplementary material). Ten
scorers scored a total of 5771 cores for CK5/6 and
8259 for EGFR. MES served as the reference pathol-
ogist and scored a random sample of up to 100 cores
per study/centre assigned to each of the other scores
to evaluate inter-scorer agreement. CK5/6 and EGFR
positive score by visual scoring was defined as
>10% of positive cells.

Scorers assigned each core the following quality
control categories: 1) satisfactory core (invasive
tumour), 2) DCIS only, 3) no tumour/few tumour
cells, 4) no core and 5) unsatisfactory for other
reasons.

Statistical methods

The correlation between automated continuous scores
and visual ordinal scores was evaluated by the Spear-
man’s correlation coefficient, using data from the vir-
tual TMA. The area under the curve (AUC) of
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receiver operating characteristic (ROC) graphs was
used to evaluate the discriminatory accuracy of the
ER, PR combined-automated scores (intensity*per-
centage) to distinguish between visual positive and
negative scores. The automated score that optimized
the sensitivity and specificity in the ROC graph was
applied as the cut-off point to define marker status
for all analysed cores (not just the ones in the virtual
TMA). We also evaluated an alternative method to
define the cut-off for positive and negative scores, as
described by Ali et al [15]. Briefly, the cut-off under
this method is determined by the distribution of auto-
mated percentage and intensity scores for all cores,
ie, it does not use information on visual scores from
a subset of tumours in the virtual TMAs to define a
cut-off point.

The kappa statistic was used as a measure of
agreement between dichotomous or semi-quantitative
scores. Sensitivity and specificity were calculated as
measures of validity using the visual score as the ref-
erence; positive predictive value (PPV) and negative
predictive value (NPV) were calculated as a measure
of the value of automated dichotomous scores to pre-
dict visual dichotomous scores.

Comparisons between automated scores and visual
scores were performed at the core level for cores in
the virtual TMAs. Subject-level scores for ER, PR,
HER2 were derived by selecting the maximum score
of all available cores for a given subject, after having
excluded cores identified as having few or no tumour
cells or no cores by the pathologist. These were com-
pared to positive/negative status in the BCAC data-
base, based primarily on medical records, or
centralized reviews by study centres.

Kaplan–Meier survival plots were used to plot sur-
vival functions by subject-level IHC scores. Associa-
tions with 10-year breast cancer-specific survival
were assessed using a Cox proportional-hazards
model, providing estimates of hazard ratio (HR) and
95% confidence interval (95% CI). Violations of the

proportional-hazards assumption were accounted for
by the T coefficient that varied as a function of log
time. We used penalized-likelihood criteria, ie,
Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC), to compare model parsi-
mony and fit of alternative non-nested Cox regression
models including visual versus automated scores.
Models with lower values for AIC or BIC have a bet-
ter balance between model parsimony and fit. All sta-
tistical analyses were conducted in Stata/MP version
12.1 (StataCorp, College Station, TX, USA).

Results

Differences in TMAs and clinico-pathological
characteristics of cases across studies

The nine studies used different TMA designs includ-
ing a total of 20 263 tissue cores in 104 TMA blocks
from 8267 BCAC breast cancer cases (Table 1 and
supplementary material Table 1). The average age at
diagnosis was 53 years. There were substantial differ-
ences in the distribution of age and clinico-
pathological characteristics across studies (supple-
mentary material Table 2). A range of 75–77% of
cores across virtual TMAs for ER, PR, HER2 were
satisfactory for scoring (5–8% of which had only
DCIS component), 10–13% had no tumour or few
tumour cells, 3–5% had missing cores and 7–10%
had unsatisfactory cores for other reasons (eg, blurred
image, folded cores; see Table 2).

Core-level comparison between ER, PR, HER2
automated and visual scores in virtual TMAs

The distributions of continuous automated scores and
ordinal Allred visual scores for ER and PR are shown
in Figures 1 and 2, respectively. The automated and
ordinal visual scores were highly correlated and there

Table 1. Description of study populations and TMA designs used by participating studies

Study Acronym Country Cases

Age at diagnosis,

mean (range)

TMA

blocks

Cores

per case

Cores

per TMA

Core

size (mm)

Total cores

per study

ABCS Netherlands 1000 43 (23 50) 26 1–6 12–241 0.6 3 314

CNIO-BCS Spain 171 60 (35 81) 3 2–2 86–148 1.0 342

HEBCS Finland 1154 56 (22 95) 17 2–8 56–400 0.6 4 880

KBCP Finland 392 59 (23 92) 12 3–3 96–99 1.0 1 176

MCBCS USA 348 58 (26 87) 4 4–4 280–400 0.6 1 392

ORIGO Netherlands 233 56 (27 88) 3 3–9 237–310 0.6 841

PBCS Poland 1406 56 (27 75) 9 2–7 363–474 0.6 3 790

SBCS UK 358 60 (30 92) 11 3–8 90–156 0.6 1 320

SEARCH UK 3205 52 (24 70) 19 1–2 152–172 0.6 3 208

Totals 8267 53 (22 95) 104 1–9 12–474 0.6–1.0 20 263
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was a clear separation of the distribution of auto-
mated scores by the visual positive/negative scores
(Figures 1D, 1E and 2D, 2E). There were differences
in distributions of automated scores across studies
that could reflect different clinico-pathological char-
acteristics of the tumours or staining quality (supple-
mentary material Figures 3 and 4).

The AUC for ER and PR showed excellent dis-
crimination (Table 3). For dichotomous scores, there
was excellent inter-rater agreement for ER and PR
and substantial agreement between automated and
visual scores, which were better for ER than PR
(Table 3, see supplementary material Table 4 for
cross-tabulations). The automated system had good
sensitivity and specificity. The NPV was substantially
lower for the automated to rater comparisons than
the inter-rater comparison (�70% versus 95%). Use
of study-specific cut-off points for negative versus
positive scores did not substantially improve the
measures of agreement (data not shown). Measures
of relative performance of automated versus visual
scoring were similar when we used the Ali et al [15]
method to select a cut-off point for positive and neg-
ative automated score (data not shown).

The kappa statistics for HER2 Herceptest score
showed substantial agreement for both inter-rater and
automated to visual comparisons (kappa 5 0.62–0.71;
Table 4). Although the agreement for the HER2 21

dichotomous classification was substantial for both
inter-rater and rater-automated comparisons, the
agreement for HER2 31 was only moderate for one
of the raters. Sensitivity to identify HER2 31 cores
was low, both in inter-rater and rater-automated com-
parisons (Table 4). When we examined cross-
tabulations to evaluate the sources of disagreement
(supplementary material Table 4), it could be seen
that extreme discrepancies, ie, Ariol scores of 0
where pathologist scores were 3 were very infre-
quent. Of the 13 discrepant cores, five were deter-
mined as pathologist error and re-evaluated; four
were due to poor tissue or staining quality (either
through folds, high level of background staining or

edge artifact, small tumour fragment) and four were
due to Ariol error. The kappa statistics for rater-
automated agreement changed little when pathology
errors and staining errors were removed from the
analysis (data not shown).

Subject-level comparison for ER, PR, HER2
automated scores to positive/negative scores in
BCAC database

Figure 3 shows scatter plots and distributions of auto-
mated scores for all cases (6424 cases for ER and
6385 cases for PR) by positive/negative status previ-
ously assigned by each individual study. The agree-
ment between subject-level automated scores and
marker status was substantial to moderate, generally
lower than the core-level comparisons in the virtual
TMAs (Table 5; see supplementary material Table 5
for cross-tabulations). There were substantial differ-
ences in the measures of agreement by study (supple-
mentary material Table 6).

To evaluate the impact of core quality on measures
of agreement, we used automated estimates of the
number of tumour nuclei to identify cores with no or
few tumour cells. Measures of agreement improved
only slightly after these exclusions; however, this
resulted in a substantial reduction in the number of
subjects with valid scores (data not shown). We,
therefore, decided not to make these exclusions in
the remaining analyses.

Survival analysis for ER, PR, HER2 automated
scores compared to positive/negative scores from
individual studies

Kaplan–Meier survival curves drawn from the full
subject-level dataset demonstrated that the automated
analysis generated the expected survival associations
for ER, PR and HER2 (Figures 4–6). While estimates
of HR for automated data showed weaker associa-
tions with survival for dichotomous scores, auto-
mated scores allowed classification of cases into
meaningful quantitative levels of ER and PR expres-
sion. Quintiles of the automated scores resulted in a
refinement of the associations with survival (Figures
4 and 5). However, models with automated scores
had a worse fit than models with dichotomous visual
scores (see AIC/BIC values in Figures 4 and 5).

The HRs for women in the lowest quintiles for ER
and PR were similar to those for receptor negative
cases according to the BCAC database (representing
25.3% of the cases for ER 36.2% of cases for PR).
The percentage of cores classified as negative in the
BCAC database included in each of the quintiles for

Table 2. Distribution of quality control measures for tissue cores
stained for ER, PR and HER2 in the virtual TMAs

Quality control category

ER PR HER2

N % N % N %

Satisfactory Core (invasive tumour) 649 69 679 71 672 67

DCIS only 61 6 52 5 82 8

No Tumour, few tumour cells 123 13 98 10 126 13

No core 38 4 32 3 48 5

Unsatisfactory core for other reasons 71 8 91 10 70 7

Total 942 952 998
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Figure 1. Distribution of ER continuous automated scores and ER visual ordinal scores in virtual TMAs. (A) Scatter plot of the inten-
sity and percentage automated scores colour coded according to the Allred score for the corresponding core by visual scoring. The
red curve represents the cut-off point for positive/negative status by the ROC method. (B) Distribution of Allred visual scores (rater
1). (C) Distribution intensity*percent automated scores used in the ROC method. (D) Boxplot of the distribution of the intensity*per-
cent automated score by categories of the Allred visual score. (E) Boxplot of the distribution of the intensity*percent automated score
by visual positive/negative status. Red lines in C–E show the positive/negative cut-off points for the corresponding automated score.
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Figure 2. Distribution of PR continuous automated scores and PR visual ordinal scores in virtual TMAs. (A) Scatter plot of the inten-
sity and percentage automated scores colour coded according to the Allred score for the corresponding core by visual scoring. The
red curve represents the cut-off point for positive/negative status by the ROC method. (B) Distribution of Allred visual scores (rater
1). (C) Distribution of intensity*percent automated scores. (D) Boxplot of the intensity*percent automated score by categories of the
Allred visual score. (E) Boxplot of the intensity*percent automated score by visual positive/negative status. Red lines in C–E show the
positive/negative cut-off points for the corresponding automated score.
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ER and PR is shown in supplementary material Table
8. Automated scores for HER2 also allowed estima-
tion of HR by HER2 semi-quantitative scores, show-
ing increasing hazard for increasing scores (Figure
6). However, as for ER and PR, the model fit was
worse for automated that visual scores (see AIC/BIC
values in Figure 6)

Comparison of automated and visual scores for
CK5/6 and EGFR

An initial analysis for CK5/6 and EGFR in the entire
TMA dataset resulted in very poor performance of
automated scoring compared with visual scores by
rater 1 or rater 2 (data not shown). A subsequent re-
analysis was performed only in the SEARCH study to
demonstrate if limiting the tuning and analysis to a sin-
gle study helped. Although this resulted in a marked
improvement, the PPV was still poor (49.2% for CK5/
6 and 30.0% for EGFR) reflecting a large number of
false positives (Table 6). Performance was better for

ER-negative than ER-positive tumours, the former
including a higher percentage of CK5/6 and EGFR-
positive tumours. Examination of discordant cores
showed that the disagreements were primarily related
to false positives due to scoring of normal cells by
Ariol. We, therefore, scored visually all cores that had
not been previously scored by individual studies (ie,
5771 cores stained for CK5/6 and 8259 cores stained
for EGFR). The distribution of quality control scores
for these TMAs was similar to those seen for ER, PR
and HER2 (supplementary material Table 9). Exami-
nation of inter-rater agreement on a subset of 357
CK5/6 cores and 760 EGFR cores scored visually by a
reference pathologist for QC showed a better agree-
ment than the automated versus visual agreement seen
in the SEARCH study; however, the PPV was also rel-
atively low (Table 6). Evaluation of discordant pairs
revealed that disagreements between visual scores
were primarily due to disagreements between patholo-
gists in identifying whether immunostained cells were
normal cells versus cancer cells.

Table 3. Inter-rater agreement and agreement between each rater and Ariol automated quantitative ER, PR scores for cores in the
virtual TMA

Marker Comparison N % Pos.

Continuous automated score Dichotomous automated score

AUC (95%CI)

Observed

agreement Kappa (95%CI) Se (%) Sp (%) PPV (%) NPV (%)

ER Rater 1 vs rater 2 615 76.3 n/a 96.7 0.91 (0.83, 0.99) 98.3 91.8 97.5 94.4

Ariol vs rater 1 587 75.0 0.97 (0.95, 0.98) 90.1 0.76 (0.68, 0.84) 89.5 91.8 97.0 74.6

Ariol vs rater 2 636 76.4 0.96 (0.95, 0.98) 90.1 0.75 (0.67, 0.83) 88.9 94.0 98.0 72.3

PR Rater 1 vs rater 2 655 67.0 n/a 96.8 0.93 (0.85, 1.00) 97.5 95.4 97.7 94.9

Ariol vs rater 1 624 67.3 0.93 (0.91, 0.95) 83.8 0.65 (0.57, 0.73) 82.9 85.8 92.3 70.9

Ariol vs rater 2 634 66.6 0.93 (0.91, 0.95) 84.4 0.66 (0.59, 0.74) 83.6 85.8 92.2 72.5

Raters scores are dichotomous (positive/negative), and Ariol automated scores are considered as continuous and dichotomous.
% Pos., % positive cores for reference rater; Se, sensitivity; Sp, Specificity; PPV, positive predictive value; NPV, negative predictive value.

Table 4. Inter-rater agreement and agreement between each rater and Ariol automated quantitative HER2 scores for cores in the
virtual TMA

HER2 semi-quantitative score (0/1, 2,3) N Observed agreement Kappa (95% CI)

Comparisons

Rater 1 vs rater2 660 92.7 0.71 (0.65, 0.78)

Ariol vs rater 1 693 90.7 0.62 (0.56, 0.68)

Ariol vs rater 2 716 93.7 0.71 (0.65, 0.77)

HER2 dichotomous score N % Pos. Observed agreement Kappa (95% CI) Se (%) Sp (%) PPV (%) NPV (%)

HER2 21 (0/1 vs 2/3)

Rater 1 vs rater2 660 20.9 91.4 0.73 (0.65, 0.81) 74.6 95.8 82.4 93.5

Ariol vs rater 1 693 21.2 90.0 0.69 (0.62, 0.77) 72.1 94.9 79.1 92.7

Ariol vs rater 2 716 19.6 91.6 0.73 (0.66, 0.81) 77.9 95.0 79.0 94.6

HER2 31 (0/2 vs 3)

Rater 1 vs rater2 660 12.6 94.1 0.68 (0.61, 0.76) 59.0 99.1 90.7 94.4

Ariol vs rater 1 693 12.4 91.3 0.46 (0.40, 0.53) 34.9 99.3 88.2 91.5

Ariol vs rater 2 716 8.4 95.8 0.67 (0.60, 0.74) 55.0 99.5 91.7 96.0

% Pos.5% positive cores for reference rater
Se, sensitivity; Sp, Specificity; PPV, positive predictive value; NPV, negative predictive value.
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Discussion

Automated image analysis of TMAs using many dif-
ferent systems has been shown to perform well for
multiple markers [12–18,23,24]. However, most stud-
ies have been based on relatively small comparisons
of TMAs from one or few centres. Our report is a
large-scale evaluation of the performance of auto-
mated image analysis in the scoring of TMAs from

different source institutions across different countries
in a consortium of breast cancer studies.

The core-level measures of agreement between
automated and visual scores for the virtual TMAs in
our report are most comparable to those in previous
reports as they were based on comparisons of the
same exact images. For ER, PR and HER2, they
were lower than previously reported by our group
using the Ariol system [14], or an automated scoring
algorithm adapted from astronomy [15], possibly

Figure 3. Distribution of ER (A–C) and PR (D–F) continuous automated scores (subject level) and positive/negative status in BCAC data-
base, including 6424 cases for ER and 6385 cases for PR from nine studies. (A) Scatter plot of the intensity and percentage automated
scores colour coded according to the BCAC ER status (red for positive and blue for negative). The red curve represents the cut-off point
for positive/negative status by the ROC method. The smaller inserted plots show ER-positive and ER-negative cases separately (B) Distri-
bution of intensity*percent automated scores. (C) Boxplot of the intensity*percent automated score by BCAC ER status. Red lines show
the positive/negative cut-off points for the corresponding automated score. Figures D–F show similar plots for PR.

Table 5. Agreement between Ariol automated quantitative ER, PR and HER2 scores for each subject and marker status from clinical/
study records

Marker N % Pos.

Continuous automated score Dichotomous automated score

AUC (95%CI)

Observed

agreement Kappa (95%CI) Se (%) Sp (%) PPV (%) NPV (%)

ER 6424 74.5 0.89 (0.89, 0.90) 84.1 0.62 (0.59, 0.64) 84.6 82.7 93.4 64.7

PR 6385 63.6 0.87 (0.86, 0.88) 80.0 0.57 (0.55, 0.60) 82.5 75.7 85.6 71.2

HER2 21 6322 15.5 – 88.9 0.62 (0.59, 0.64) 77.2 91.0 61.3 95.6

HER2 31 6322 15.5 – 89.2 0.43 (0.41, 0.44) 31.8 99.7 95.4 88.8

Clinical/study scores are dichotomous (positive/negative), and ER, PR Ariol scores are considered both as continuous and dichotomous.
% Pos., % positive cores for reference rater; Se, sensitivity; Sp, Specificity; PPV, positive predictive value; NPV, negative predictive value.
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reflecting the greater variability in tissue preparation
related to multiple specimen sources. Bolton et al
[14] used TMAs stained by ER, PR and HER2 from
PBCS, and Ali et al [15] used ER and HER2 stained
TMAs from SEARCH. While these TMAs were also
included in our study, the automated image analysis
of the TMAs was done independently using different
methods. Patient characteristics, modes of tumour
detection, pathologic features and tissue handling in
this report were likely highly variable because of the
inclusion of multiple studies, but representative of
‘real world’ population-based samples collected over
many years in international collaborations.

As expected, the agreement for subject-level com-
parisons was lower than for core-level comparisons
since the latter are comparing scores based on differ-
ent pieces of the tumour tissue, and the visual scores
came from multiple sources (mainly clinical records
and central review of cases by individual studies).
Arguably, however, these comparisons are most rele-
vant for answering scientific questions. A key

advantage of automated image analysis is that it does
not use pathologists’s time and can be run continu-
ously, including overnight. The analysis time is
dependent on the type of stain, size of cores and
number of cores per TMA. For instance, the time to
score a TMA with 183 cores of 0.6 mm diameter can
range from 25 min for a simple nuclear analysis (ER)
to 70 min for a cytoplasmic analysis (CK5/6). The
entire dataset was analysed over the course of a week
using four batch processors. This is in comparison to
approximately 35–40 min for a simple manual ER
score of a similar TMA by a skilled pathologist using
computer-assisted scoring methods. A limitation of
the automated approach is that 20–25% of cores in
TMAs are unsatisfactory for scoring, but imaging
systems do not perform well in triaging such cores.
QC assessment of each core by visual inspection to
identify unsatisfactory cores would improve the per-
formance of the automated scoring. Similarly, study-
specific training of algorithms could also improve
performance. Although during TMA production,

Figure 4. Kaplan–Meier survival curves and hazard ratios (HR) for 10-year breast cancer survival by ER, based on 6135 subjects and
981 breast cancer specific deaths, using (A) pathologists data from study sites (positive/negative), (B) dichotomized (positive/negative)
automated scores and (C) automated scores classified in quintiles.
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tissue cores are targeted to tumour areas, contamina-
tion by normal elements is unavoidable. Identification
of tumour cells by semi-automated systems including
manual demarcation of tumour areas prior to auto-

mate scoring could improve the performance of auto-
mated systems. However, these additional procedures
are time consuming, and the added efforts to improve
scoring diminish the relative value of automation.

Figure 5. Kaplan–Meier survival curves and hazard ratios (HR) for 10-year breast cancer survival by PR, based on 6115 subjects and
998 breast cancer specific deaths, using (A) pathologists data from study sites (positive/negative), (B) dichotomized (positive/negative)
automated scores and (C) automated scores classified in quintiles.

Figure 6. Kaplan–Meier survival curves and hazard ratios (HR) for 10-year breast cancer survival by PR, based on 6039 subjects and
997 breast cancer specific deaths, using (A) pathologists data from study sites (positive/negative), and (B) semi-quantitative
automated scores.
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Automated pattern-recognition software to identify
tumour areas such as Definiens [24] are promising
but it is still difficult to get accurate identification of
breast tumour cells, particularly in heterogeneous sets
of tissue samples such as those derived from interna-
tional consortia.

The performance of automated scoring for PR was
worse than ER stains, possibly partly explained by a
higher regional heterogeneity in positive staining for
PR than ER [16,25]. HER2 scoring performed using
FDA-approved commercial algorithms in brightfield
[26–28] and in fluorescence [29] has demonstrated
substantial agreement with visual assessment in stud-
ies of varying size and design. We observed a sub-
stantial agreement for HER2 semi-quantitative scores
for inter-rater or automated-rater comparisons, which
was similar to that demonstrated previously on the
Ariol system in our hands [14].

Dichotomous classification of automated scores for
ER, PR and HER2 achieved less separation of prog-
nostic groups by marker expression than the clinical/
study scores. Because these three markers are rou-
tinely determined in most clinical settings, the main
advantage of the automated scores was providing
quantitative measures of expression that allowed
refinement in the groups of patients with different
prognosis. Although semi-quantitative scores can also
be obtained from clinical records, the reporting is not
homogeneous and this information is not available in
many epidemiological studies.

The performance of automated analysis of the
cytoplasmic CK5/6 and membranous EGFR stains
was much worse than for the time-tested nuclear ER/
PR and membranous HER2 antibodies, resulting in
many false positive results. Automated scoring of
cytoplasm stains such CK5/6 is particularly challeng-
ing since most systems use colour de-convolution to
remove the nuclear counterstain from the brown stain
in order to identify nuclei and determine the cell

type. This method reduces resolution so the accuracy
of identification decreases. The poor performance for
CK5/6 and EGFR was also an issue for the inter-
rater comparison, although to a lesser extent. Exami-
nation of discordant scores revealed that both the
inter-rater and automated-visual discordances were
often due to scoring immunopositive normal cells.
Automated image analyses for CK5/6 and EGFR
may provide useful triage; negative results may be
considered final, whereas positive results require vis-
ual confirmation. This would potentially reduce scor-
ing workloads by about 75%, and could be further
refined by limiting visual review to ER-negative or
triple negative (ER2/PR2/HER22) cancers express-
ing basal markers. However, image management
could present challenges for targeted visual reviews.

In conclusion, using automated image analysis of
TMAs stained by ER, PR and HER2 can be a useful
tool to obtain quantitative scores for these markers in
large collaborative studies including heterogeneous
TMAs. However, automated scoring does not result
in an improved performance of survival models,
compared to visual scores. Automated scoring of
CK5/6 and EGFR may permit triage of negative
cores but positive results require visual review.
Efforts to improve the performance of automated
analysis should focus on standardization of specimen
handling, TMA construction [30,31] and use of cen-
tralized optimized IHC-staining protocols. Improved
standardization and optimization of key steps in these
procedures combined with technical advances in
automated analysis of IHC stains would facilitate
large population-based studies of breast cancer.
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SUPPLEMENTARY MATERIAL ON THE INTERNET

The following supplementary material may be found online.

Table S1. Description of study populations included in the analyses.

Table S2. Distribution of clinico-pathological characteristics by study, for 8267 BCAC breast cancer cases included in the analyses.

Table S3. Staining protocols used by different studies for ER, PR, HER2, CK56 and EGFR

Table S4. Cross-classification of visual (rater 1 and rater 2) and Ariol automated scores for ER, PR and HER2 stains in Virtual TMA.

Table S5. Cross-classification between Ariol automated quantitative ER, PR and HER2 scores for each subject and marker status from clini-

cal/study records. Clinical/study scores are dichotomous (positive/negative), and ER, PR Ariol scores are considered both as continuous and

dichotomous.

Table S6. Agreement between Ariol automated quantitative ER, PR and HER2 scores for each subject and marker status from clinical/study

records, by study.

Table S7. Inter-rater agreement of CK56 and EGFR scoring by study.

Table S8. Cross-classification of subjects by ER and PR status (positive/negative) according to BCAC case data and quintiles of the combined

automated Ariol score.

Table S9. Distribution of quality control measures for tissue cores stained for CK56 and EGFR TMAs from participating studies.

Figure S1. Representative images of ER staining demonstrating the level of variation in DAB and Haematoxylin staining across the sample

set. (A) SEARCH study; (B) ABCS study (BOOG_E TMA); (C) ABCS study (BOOG_J TMA); (D) KBCP study.

Figure S2. Screengrab images from the Ariol system visualizing the algorithm training for representative images detailed in Supplementary

material Figure 1. (A1, B1, C1, D1) DAB colour recognition (red) and haematoxylin colour recognition (green) demonstrating the effect of

cytoplasmic ER staining and dark heamatoxylin staining on colour recognition. (A2, B2, C2, D2) Nuclear segmentation, based on the colour

recognition. Yellow dots delineate ER-positive nuclei. Pink dots delineate ER-negative tumour cells according to the tuned algorithm A)

SEARCH study; (B) ABCS study (BOOG_E TMA); (C) ABCS study (BOOG_J TMA); (D) KBCP study.

Figure S3. Distribution of Ariol automated intensity (A), percentage (B), and combined (C) scores for ER, by study.

Figure S4. Distribution of Ariol automated intensity (A), percentage (B), and combined (C) scores for ER, by study.
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