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Fictitious play for cooperative action selection in robot teams

M. Smyrnakisa,, S. Veresa

aDepartment of Automatic Control and Systems Engineering The University of Sheffield Mappin Street Sheffield, S1 3JD United Kingdom

Abstract

A game theoretic distributed decision making approach is presented for the problem of control effort allocation in a robotic team

based on a novel variant of fictitious play. The proposed learning process allows the robots to accomplish their objectives by

coordinating their actions in order to efficiently complete their tasks. In particular, each robot of the team predicts the other robots’

planned actions while making decisions to maximise their own expected reward that depends on the reward for joint successful

completion of the task. Action selection is interpreted as an n-player cooperative game. The approach presented can be seen as part

of the Belief Desire Intention (BDI) framework, also can address the problem of cooperative, legal, safe, considerate and emphatic

decisions by robots if their individual and group rewards are suitably defined. After theoretical analysis the performance of the

proposed algorithm is tested on four simulation scenarios. The first one is a coordination game between two material handling

robots, the second one is a warehouse patrolling task by a team of robots, the third one presents a coordination mechanism between

two robots that carry a heavy object on a corridor and the fourth one is an example of coordination on a sensors network.

Keywords: Robot team coordination; Fictitious play; Extended Kalman filters; Game theory; Distributed optimisation

1. Introduction

Recent advances in industrial automation technology often require distributed optimisation in a multi-agent system

where each agent controls a machine. An application of particular interest, addressed in this paper through a game-

theoretic approach, is the coordination of robot teams. Teams of robots can be used in many domains such as mine

detection [46], medication delivery in medical facilities [13], formation control [30] and exploration of unknown

environments [34, 35, 23]. In these cases teams of intelligent robots should coordinate in order to accomplish a desired

task. When autonomy is a desired property of a multi-robot system then self-coordination is necessary between the

robots of the team. Applications of these methodologies also include wireless sensor networks [24, 20, 45, 21], smart

grids [40, 2], water distribution system optimisation [44] and scheduling problems [37].

Game theory has also been used to design optimal controllers when the objective is coordination, see e.g. [33].

Using this approach, in [33, 32] the agents/robots eventually reach the Nash equilibrium of a coordination game.

Another approach is presented in [3], based on agents’ cost functions, which use local components and the assumption

that the states of the other agents are constant.

Fictitious play is an iterative learning process where players choose an action that maximises their expected re-

wards based on their beliefs about their opponents’ strategies. The players update these beliefs after observing their

opponents’ actions. Even though fictitious play converges to the Nash equilibrium for certain categories of games

[31, 25, 27, 26, 15], this convergence can be very slow because of the assumption that players use a fixed strategy
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in the whole game [15]. Speed up of the convergence can be facilitated by an alternative approach, which was pre-

sented in [36], where opponents’ strategies vary through time and players use particle filters to predict them. Though

providing faster convergence, this approach has the drawback of high computational costs of the particle filters. In ap-

plications where the computational cost is important, as the coordination of many UAVs, the particle filters approach

is intractable. An alternative, that we propose here, is to use extended Kalman filters (EKF) instead of predicting

opponents’ strategies using particle filters. EKFs have much smaller computational costs than the particle filter vari-

ant of fictitious play algorithm that has been proposed in [36]. Moreover, in contrast to [36], we provide a proof

of convergence to Nash equilibrium of the proposed learning algorithm for potential games. Potential games are of

particular interest as many distributed optimisation tasks can be cast as potential games. Therefore convergence of an

algorithm to the the Nash equilibrium of a potential game is equivalent to convergence to the global or local optimum

of the distributed optimisation problem.

Thus the proposed learning process can be used as a design methodology for cooperative control based on game

theory, which overlaps with solutions in the area of distributed optimisation [10]. Each agent i strives to maximise a

global control reward, as negative of the control cost, through minimising its private control cost, which is associated

with the global one. The private cost function of an agent i incorporates terms that not only depend on agent i, but also

on costs associated with the actions of other agents. As the agents strive to minimise a common cost function through

their individual ones, the problem addressed here can also be seen as a distributed optimisation problem. In this work

we enable the agents to learn how they minimise their cost function through communication and interaction with other

agents, instead of finding the Nash equilibrium of the game, which is not possible in polynomial time for some games

[12]. In the proposed scheme robots learn and change their behaviour according to the other robots’ actions. The

learning algorithm, which is based on fictitious play [9], serves as the coordination mechanism of the controllers of

team members. Thus, in the proposed cooperative control methodology there is an implicit coordination phase where

agents learn other agents’ policies and then they use this knowledge to decide on the action that minimises their cost

functions. Additionally the proposed control module can be seen as a part of the BDI framework since agents update

their beliefs about their opponents’ strategies given the state of the environment.

The remainder of this paper is organised as follows. We start with a brief description of relevant game-theoretic

definitions. Section 3 present some background material about rational agents. Section 4 introduces the learning algo-

rithm that we use in our cooperative game-based robot cooperation controller, Section 5 contains the main theoretical

results and Section 6 contains the simulation results in order to define the parameters of the proposed algorithm.

Section 7 presents simulation results before conclusions are drawn.

2. Game theoretical definitions

In this section we will briefly present some basic definitions from game theory, since the learning block of our

controller is based on these. A game Γ is defined by a set of players I, i 2 {1, 2, . . . ,I}, who can choose an action,

si, from a finite discrete set S i. We then can define the joint action s, s = (s1, . . . , sI), that is played in a game as an

element of the product set S = ⇥i=I
i=1

S i. Each player i receives a reward, ri, after choosing an action si. The reward, also

called the utility, is a map from the joint action space to real numbers, ri : S ! R. We will often write s = (si, s−i),

where si is the action of player i and s−i is the joint action of player i’s opponents. When players select their actions

using a probability distribution they use mixed strategies. The mixed strategy of a player i, σi, is an element of the

set ∆i, where ∆i is the set of all the probability distributions over the action space S i. The joint mixed strategy, σ, is

then an element of ∆ = ⇥i=I
i=1
∆i. A strategy where a specific action is chosen with probability 1 is referred to as pure

strategy. Analogously to the joint actions we will write σ = (σi, σ−i) for mixed strategies. The expected utility a

player i will gain if it chooses a strategy σi (resp. si), when its opponents choose the joint strategy σ−i, is denoted by

ri(σi, σ−i) (resp. ri(si, σ−i)).

A game, depending on the structure of its reward functions, can be characterised either as competitive or as a

coordination game. In competitive games players have conflicted interest and there is not a single joint action where

all players maximise their utilities. Zero sum games are a representative example of competitive games where the

reward of a player i is the loss of other players . An example of a zero-sum game is presented in Table 1. On the other

hand in coordination games players either share a common reward function or their rewards are maximised in the

same joint action. A very simple example of a coordination game where players share the same rewards, is depicted in

Table 2. Even though competitive games are the most studied games, we will focus our work on coordination games
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Head Tails

Head 1,-1 -1,1

Tails -1,1 1,-1

Table 1. Rewards of two players in a zero sum game as function of the outcome of throwing a coin: matching pennies game.

L R

U 1,1 0,0

D 0,0 1,1

Table 2. Rewards of two players in a simple coordination game as function of joint moves to the left & up (L,U) or right & down (R,D).

because they naturally formulate a solution to distributed optimisation and coordination.

2.1. Best response and Nash Equilibrium

A common decision rule in game theory is best response. Best response is defined as the action that maximises

players’ expected utility given their opponents’ strategies. Thus for a specific mixed strategy σ−i we evaluate the best

response as:

σ̂i
pure(σ−i) = argmax

si2S

ri(si, σ−i) (1)

A joint mixed strategy σ̂ = (σ̂i, σ̂−i) is called a Nash equilibrium. Nash in [28] showed that every game has at least

one equilibrium which satisfies:

ri(σ̂i, σ̂−i) ≥ ri(σi, σ̂−i) for any i and σi 2 ∆i (2)

Equation (2) implies that if a strategy σ̂ is a Nash equilibrium then it is not possible for a player to increase their utility

by unilaterally changing its strategy. When all the robotic players in a game select their actions using pure strategies

then the equilibrium is referred to as pure Nash equilibrium.

2.2. Distributed optimisation by potential games

It is possible to cast distributed optimisation problems as potential games [1, 11], thus the task of finding an

optimal solution for a distributed optimisation problem can be seen as the search for a Nash equilibrium in a game.

An optimisation problem can be solved distributively if it can be divided intoD coupled or independent sub-problems

with the following property [4]:

r(s) − r(s̃) > 0, ri(si) − ri(s̃i) > 0, i 2 I,8s, s̃ (3)

where s and s̃ are any sets of actions by the agents , r represents the global reward function or global utility, and

ri, i 2 I, represent players’ reward or utility. Equation (3) implies that a joint action s, should have similarly positive

or negative impact on the global and the local task. Thus a solution s should increase or decrease both the local and

global utility when it is compared with another joint action s̃.

There is a direct analogy between (3) and ordinal potential games. Ordinal potential games are games where the

reward function has a potential function with the following property [26]

ri(si, s−i) − ri(s̃i, s̃−i) > 0, φ(si, s−i) − φ(s̃i, s̃−i) > 0,8s = (si, s−i), 8s̃ = (s̃i, s̃−i) (4)

where φ is a potential function and the above equality stands for every player i. Exact potential games (or potential

games thereafter), is a subclass of ordinal potential games which can be used to solve distributed optimisation prob-

lems where the difference in the global reward between two joint actions is the same as the difference in the potential

function [26]:

ri(si, s−i) − ri(s̃i, s̃−i) = φ(si, s−i) − φ(s̃i, s̃−i), 8s = (si, s−i), 8s̃ = (s̃i, s̃−i) (5)
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where similarly to ordinal potential games φ is a potential function and the above equality stands for every player i.

An advantage of potential games is that they have at least one pure Nash equilibrium, hence there is at least one joint

action s where no player can increase their reward, i.e. their potential function, through a unilateral change of action.

It is often feasible to choose appropriate forms of agents’ utility functions and also the global utility in order to

enable the existence and use of a potential function of the system. In this paper we assume that all players/robots

share the same global reward. There are cases where, because of communication or other physical constraints, only

reward functions that are shared among groups of robots can be used. But even in these cases it is possible to create

reward functions that can act as potentials. Wonderful life utility is such a utility function. It was introduced in [41]

and applied in [1] to formulate distributed optimisation tasks as potential games. Player i’s utility, when wonderful

life utility is used, can be defined as the difference between the global utility rg and the utility of the system when a

reference action is used as Player i’s action. More formally when Player i chooses an action si one can define

ri(si) = rg(si, s−i) − rg(si
0, s
−i),8si, 8s−i (6)

where si
0

denotes a reference action for player i. A reference action is introduced because in strategic games there is

no action to represents the case when the player chooses to take no action.

3. Rational agent cooperation

3.1. Agent Definitions

By analogy to previous definitions [22, 42, 6, 7] of AgentSpeak-like architectures, we define our agents as a tuple:

R = {F , B, L,Π, A} (7)

where:

• F = {p1, p2, . . . , pnp
} is the set of all predicates.

• B ⇢ F is the total set of belief predicates. The current belief base at time t is defined as Bt ⇢ B. Beliefs that are

added, deleted or modified can be either called internal or external depending on whether they are generated

from an internal action, in which case are referred to as “mental notes”, or from an external input, in which case

they are called “percepts”.

• L = {l1, l2, . . . lnl
} is a set of logic-based implication rules in terms of predicates.

• Π = {⇡1, ⇡2, . . . , ⇡n⇡ } is the set of executable plans or plans library.

Current applicable plans at time t are part of the subset applicable plan Πt ⇢ Π or ”desire set”.

• A = {a1, a2, . . . , ana
} ⇢ F \ B is a set of all available actions. Actions can be either internal, when they modify

the belief base or data in memory, or external, when they are linked to external functions that operate in the

environment.

Some AgentSpeak like languages, including the limited instruction set agent [17], can be fully defined and imple-

mented by listing the following items:

• Initial Beliefs.

The initial beliefs and goals B0 ⇢ F are a set of literals when the agent reasoning cycle is first run.

• Initial Actions.

Initial actions A0 ⇢ A are a set of actions that are executed before any reasoning cycle is run is first run. The

actions are generally goals that activate initialisations of hardware and software and wake up procedures for

perception processes repeated run during each reasoning cycle.

The following three operations are repeated for each reasoning cycle.
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• Maintenance of Percepts. This means generation of perception predicates for Bt and data objects such as the

world model.

• Logic rules.

A set of logic based implication rules L, which describe reasoning to improve the agent’s current knowledge

about the world.

• Executable plans.

A set of executable plans or plan library Π. Each plan ⇡ j is described in the form:

p j : c j  a1, a2, . . . , an j
(8)

where p j 2 B is a triggering predicate, which prompts the plan to be retrieved from the plan library whenever

it appears in the current belief base, c j 2 B is a logic formula of a context, which helps the agent to check

the condition of the world, described by the current belief set Bt, before applying a particular plan sequence

a1, a2, . . . , an j
2 A with a list of actions. Each a j can be one of (1) predicate of an external action with arguments

of names of data objects, (2) internal (mental note) with a preceding + or - sign to indicate whether the predicate

needs to be added or taken away from the belief set Bt (3) conditional set of items from (1)-(2).

The reasoning cycle of LISA used in this paper consists of the following steps (Fig. 1):

1. Belief base update.

The agent updates the belief base by retrieving information about the world through perception and commu-

nication. The job is done by two functions, called Belief Update Function (BUF) and Belief Review Function

(BRF). The BUF takes care of adding and removing beliefs from the belief base; the BRF updates the set of

current events Et, which can be trigger predicates in plans, by looking at the changes in the belief base.

2. Application of logic rules.

The logic rules in L are applied in a round-robin fashion (restarting at the beginning of the list) until there are

no new predicates generated for Bt. This means that rules need to be verified not to lead to infinite loops at the

design stage of the agent program.

3. Trigger Event Selection.

For every reasoning cycle a function called Intention Set Function selects the current event set Et:

S t : }(Bt)! }(Et) (9)

where }(·) is the power operator and represents the set of all possible subset of a particular set. We will call the

current trigger set S t(B) = Tt and the associated plans the Intention Set.

4. Plan Selection.

All the triggered plans in Tt are checked for their context to form the Applicable Plans set Πt, denoted by ⇡t.

5. Plan Executions.

All plans in ⇡t are started to be executed concurrently by going through the plan items a1, a2, . . . , an j
one-by-one

sequentially.

3.2. Cooperation cycle

The robots review their actions at a much slower rate than their reasoning cycle operates. During a time period of

cooperation cycle each of the agents observes the other’s actions, learns from it, defines a reward function relevant to

the environmental circumstances, performs optimisation to select its own action or continues the action undergoing. In

most practical situations the currently executed actions is one of the options for selection. The agent theory described

in the previous subsection can be used to make the cooperative game-based process well coordinated among the agents

using logic rules, perception cycles and executable plans allocated.

Slower than the reasoning cycle, is the asynchronous cooperation cycle. Its length in time can vary depending

on the agent’s and circumstances. It is asynchronous across the agent set as availability of communication is not

guaranteed between all the agents at all times. Each agent executes the following steps during its operational cycle,

which is an integer multiple No ≥ 3 of its reasoning cycle. Note the updating of a simultaneous localisation and

mapping-based world model W. The following steps are carried out during the reasoning cycles in the operational

cycle.

5
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Figure 1. Reasoning cycle of LISA: the plans run in a multi-threaded way, avoiding the need of S E and S I

1. Agent i performs estimation of other agent’s actions set s−i by analysing changes in W in time. The plan

associated with this is

estim agents : cooperate estim movements(W, Am), in f er activities(Am, S ni), opt(R, S ni, Act), trigger(Act).

where Am is available movement description data for the rest of the agents in the team and S ni is a notation for

s−i. Each item in s 2 s−i can be a pair describing the situation and the action the agent is taking. The reward

function ri(si, s−i) is represented by a data object R and opt(R, S ni, Act) is an optimisation procedure to obtain

the best action Act.

2. trigger(Act) adds a predicate pAct to Bt+1 to trigger the action plan associated with Act:

pAct : ˜active(pAct) & ˜ goal(reached)  per f orm(pAct).

Here the predicate goal(reached) can be established by logic inference in L during reasoning cycles involving

predicates generated by perception.

3. Finally there is a mission completion plan to be automatically executed when the mission is completed.

goal(reached) : mission started  return to base(B),−misson started.

where return to base(B) is a repeated action of returning with collision avoidance to a base described by data

object B.

The above schema is generally applicable, can be particularised for its actions and can be added to make and agent

cooperative by fictitious play.

3.3. Example

Consider the following case of a UAV team as an example. Assume that one of the UAVs in the team finds itself

with limited battery power and it can choose between two actions. One is that it quickly lands as this action has small

control cost and can therefore be performed safely. The second action is to pick up a parcel first, which has high

control cost and can result in unsafe landing later. In addition, consider the case where the action of landing will affect

negatively the performance of other UAVs and the team’s mission will fail, while picking up the parcel would result

in a successful performance of the desired joint task.

6
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Figure 2. Vehicles should patrol five areas of a warehouse. Each area has two objects of different attribute and therefore different value. The

vehicles, according to their capabilities, should choose a joint action that will minimise their common cost function.

The following case study, which is studied in simulation, shows how the proposed game theoretic decision making

mechanism works. We consider a team of robots who are to coordinate their team in order to identify possible threats

in a warehouse, where we assume that there are N rooms with some hazardous items. The materials have different

attributes of the following categories: flammable, chemical, radioactive and security sensitive. In each room there can

be items that belong up to two different categories but there are constraints. For instance, not allowed to have in the

same room flammable, radioactive and chemical materials together . Each of the I robots of the team is equipped

with sensors which can sense the different attributes and capabilities. Figure 2 depicts an example of this scenario.

The set of rooms correspond to the set of possible placement actions of each robot and is denoted by C. In each of

these delivery states there are control actions of the robots described by dynamical models. As an example, we can

consider the task of moving towards the region of interest. Each robot i should choose one of the available rooms n,

based on the cost of the total control costs of moving to room n, but also the estimated decisions of the other robots

and the suitability of robot i to examine room n for its hazardous materials.

In order to create the performance model of the proposed decision making process we need to define a utility

function. Utility functions have been used as metrics of the robots coordination efficacy in applications, such as

[29, 47, 38, 8, 39]. Since the players of the game will maximise their expected reward, the utility function can be

seen as the negative of a cost function. Therefore we can include in the utility any control costs of the robots and

environmental elements of the robots’ tasks and the constraints that might arise from specific tasks. The function of

the control cost should take into account the spatial characteristics of the problem like the cost to the robot to move

towards a specific position. The environmental part of the cost function takes into account costs that arise from the

nature of the coordination problem and can also include the quality of the sensors of a robot, the aptness of the robots

to perform specific tasks, etc. The differences between the robots can also be expressed in terms of their endurance in

a specific environment, their efficiency to accomplish a specific task and the presence of the correct sensor to identify

a specific threat. Fuzzy variables can be used to quantify robots’ efficacy. Two fuzzy variables that can be used are

sensors’ quality and battery life. The values of battery life are short, fair, long and values of sensors’ quality are low,

medium and high. If a robot is not equipped with a specific sensor then its efficiency to detect an event is zero. Each

robot should then coordinate with the other robots in order to efficiently choose a region to patrol.

The robots should coordinate and choose a region which they will patrol based on the possible threats that should

be detected in each area, their sensors’ specifications and the actions of the other robots. Each robot can choose only

one region to patrol, but many robots can choose the same area.

Each material in the warehouse has different significance and therefore each room has a different value depending

on the objects that are stored there which can be incorporated in Ei(·). In a game theoretic terminology we can define

a potential game Γ with I players which have N available actions. The utility function that is associated with room n

can be defined as:

rn(s) =
X

8i,si=n

rm
i (si) +

X

8si=n,n2N

re
i (si, s−i).

where rm
i

(si), is a function that depends on the initial position of the robot and the room n, n 2 N , and represent the

7
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robot’s cost to move towards a specific room and re
i
(si, s−i) is the environmental part of the cost.

Logic constraints such as the fact that a robot should not visit an area which it has not the appropriate sensors to

patrol or that robots with the same attributes (sensors) should not choose the same area can be included in (3.3) using

penalty terms in re
i
(si, s−i), i.e if a robot i chooses to select an area which is not suitable of its sensors or then re

i
(si, s−i)

should have a negative or zero value. Similarly if two robots i and j with the same sensors choose the same area

then re
i
(si, s−i) and re

j
(s j, s− j) should also have negative or zero values. The global utility that the robots will share is

defined by:

rg(s) =

n=N
X

n=1

rn(s) (10)

4. The learning process

In this section we present a combination of fictitious play and extended Kalman filters as the algorithm that we

will use in the learning block of the proposed decision making module. We briefly present the classic fictitious play

algorithm and how it can be combined with extended Kalman filters in a decision making algorithm.

4.1. Fictitious play

Fictitious play [9], is a widely used learning technique in game theory. In fictitious play each player chooses his

action according to the best response of his beliefs about his opponent’s strategy.

Initially each player has some prior beliefs about the strategy that his opponent uses to choose an action. These

beliefs are expressed by a weighting function 
i! j
t (s j), denoting the weight of the estimated belief function of Player

i that Player j will play action s j at the tth iteration. The players, after each iteration, update their beliefs about their

opponents’ strategy and play again the best response to their beliefs. More formally, at the beginning of a game

players maintain some arbitrary non-negative initial weight functions 
i! j

0
(s j), i = 1, . . . ,I , j 2 {1, . . . ,I}\{i} that are

updated using the formula [15]:


i! j
t (s j) = 

i! j

t−1
(s j) + I

s
j
t=s j (11)

for each j, where I
s

j
t=s j =

(

1 if s
j
t = s j

0 otherwise.

)

.

Equation (11) suggests that all the observed actions have the same impact. Therefore players assume that their

opponents choose their actions using a fixed mixed strategy. It is natural then to use a multinomial distribution to

approximate an opponent’s mixed strategy. The parameters of the multinomial distribution can be estimated using the

maximum likelihood method. The mixed strategy of opponent j is then estimated from the following formula:

σ
i! j
t (s j) =


i! j
t (s j)

P

s02S j 
i! j
t (s0)

. (12)

4.2. Fictitious play as a state space model

A more realistic assumption than using (11) is to presume that players are intelligent and change their strategies

according to the other players’ actions. We follow [36] and will represent the fictitious play process as a state-space

model. According to the state space model each player has a propensity Qi
t(si) to play each of their available actions

si 2 S i, and then to form a strategy based on these propensities. Finally players can choose an action based on

their strategy and the best response decision rule. Because players have no information about the evolution of their

opponents’ propensities, we model propensities using a Gaussian autoregressive prior on all propensities [36]. Thus

we set Q0 ⇠ N(0, I), where I is the identity matrix. Under the assumption that the changes in propensities are small

from one iteration of the game to another, the following recursive process can be used to update the values of Qt

according to the value of Qt−1 as follows:

Q(st) = Q(st−1) + ⌘t (13)

where ⌘t ⇠ N(0, χ2I).

8
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Similarly to the sigmoid function that is widely used in the neural network literature [5], to relate the weights

and the observation layer of a neural network, we assume that propensities are connected with players’ actions by the

following Boltzman formula for every s j 2 S j

I
s

j
t=s j =

e(Q j(s j)/⌧)

P

s̃2S j e(Qt(s̃)/⌧)
. (14)

4.3. Kalman filters and Extended Kalman filters

Our objective is to estimate Player i’s opponent propensity and thus to estimate the marginal probability p(Qt, s1:t).

This objective can be represented as a Hidden Markov Model (HMM). HMMs are used to predict the value of an un-

observed variable ct, the hidden state, using the observations of another variable z1:t. There are two main assumptions

in the HMM representation. The former one is that the probability of being at any state ct at time t depends only at

the state of time t − 1, ct−1. The latter one is that an observation at time t depends only on the current state ct. One

of the most common methods to estimate p(c1:t, z1:t) is Kalman filters and its variations. Kalman filter [19] is based

on two assumptions, the first is that the state variable is Gaussian. The second is that the observations are the result

of a linear combination of the state variable. Hence Kalman filters can be used in cases which are represented as the

following state space model:

ct = Act−1 + ⇠t−1 hidden layer

yt = Bct + ⇣t observations
(15)

where ⇠t and ⇣t follow a zero mean normal distribution with covariance matrices Ξ = qtI and Z = rtI respectively, and

A, B are linear transformation matrices. When the distribution of the state variable ct is Gaussian then p(ct |y1:t) is also

a Gaussian distribution, since yt is a linear combination of ct. Therefore it is enough to estimate its mean and variance

to fully characterise p(ct |y1:t).

Nevertheless in the state space model we want to implement, the relation between Player i’s opponent propensity

and his actions, which is not linear (14). Thus a more general form of state space model should be used as:

ct = f (ct−1) + ⇠t
yt = h(xt) + ⇣t

(16)

where f (·) and h(·), are non-linear functions, ⇠t and ⇣t are the hidden and observation state noise respectively, with

zero mean and covariance matrices Ξ = qtI and Z = rtI respectively. The distribution of p(ct |y1:t) is not a Gaussian

distribution because f (·) and h(·) are non-linear functions. Extended Kalman filter (EKF) provides a simple method to

overcome this shortcoming by using a first order Taylor expansion to approximate the distributions of the sate space

model in (16). In particular if we let ct = mt−1 + ✏, where mt denotes the mean of ct and ✏ ⇠ N(0, P), we can rewrite

(16) as:
ct = f (mt−1 + ✏) + wt−1 = f (mt−1) + Fc(mt−1)✏ + ⇠t−1

yt = h(mt + ✏) + ⇣t = h(mt) + Hc(mt)✏ + ⇣t
(17)

where Fc(mt−1) and Hc(mt) is the Jacobian matrix of f and h evaluated at mt−1 and mt, respectively. If we use the

transformations of (17) then p(ct |y1:t) is a Gaussian distribution.

Since p(ct |y1:t) is a Gaussian distribution, to fully characterise it, we need to evaluate its mean and its variance.

The EKF process [18, 16] estimates this mean and variance in the prediction and the update steps respectively. In the

prediction step, at any iteration t, the distribution of the state variable is estimated based on all the observations until

time t − 1, p(ct |y1:t−1). The distribution of p(ct |y1:t−1) is Gaussian and we will denote its mean and variance as m−t
and P−t respectively. During the update step the estimation of the prediction step is corrected in the light of the new

observation at time t, so we estimate p(ct |y1:t). This is also a Gaussian distribution and we will denote its mean and

variance as mt and Pt respectively.

The estimates of the state c, p(ct |y1:t−1) and p(ct |y1:t), are evaluated based on the prediction and update steps of the

EKF process [18, 16] respectively as follows:

Prediction Step

c̄t = f (ĉt−1)

P−t =F(mt−1)Pt−1F(mt−1) +Wt−1

9
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where c̄t and ĉt−1 are the estimates of c for p(ct |y1:t−1) and p(ct−|y1:t−1) respectively, and the j, j0 element of F(mt) is

defined as

[F(m−t )] j, j0 =
∂ f (c j, r)

∂c j0
|c=m−t ,q=0

Update Step

vt = zt − h(c̄t)

S t = H(c̄t)P
−
t HT (c̄t) + Z

Kt = P−t HT (c̄t)S
−1
t

ĉt = c̄t + Ktvt

Pt = P−t − KtS tK
T
t

where zt is the observation vector and the ( j, j)0 element of H(ct) is defined as:

[H(m−t )] j, j0 =
∂h(c j, r)

∂c j0
|c=m−t ,r=0

4.4. Fictitious play and EKF

For the rest of this paper we will only consider inference over a single opponent mixed strategy in fictitious play.

Separate estimates will be formed identically and independently for each opponent. We therefore consider only one

opponent, and we will drop all dependence on player i, and write st, σt and Qt for Player i’s opponent’s action,

strategy and propensity respectively. Moreover for any vector x, x[ j] will denote the jth element of the vector and for

any matrix y, y[i, j] will denote the (i, j)th element of the matrix.

We can use the following state space model to describe the fictitious play process:

Qt = Qt−1 + ξt−1

I
s

j
t=s j = h(Qt) + ζt

(18)

where ξt−1 ⇠ N(0,Ξ), is the noise of the state process and ζt ⇠ N(0,Z) is is the error of the observation state with zero

mean and covariance matrix Z, which occurs because we approximate a discrete process like best response (1), using

a continuous function h(·), where hs(k)(Q) =
exp(Qt[s(k)]/τ)

P

s̃2S exp(Qt[s̃]/τ)
, where τ is a temperature parameter. By their definition Ξ

and Z can take arbitrary values, their impact on the proposed algorithm will be discussed in Section 6.

Hence we can combine the EKF with fictitious play as follows.

At time t − 1 Player i has observed action st−1 and based on the update step of the EKF process has an estimate

of its opponent’s propensity, Q̂t−1 with the variance Pt−1. Then at time t it uses EKF prediction step to estimate his

opponent’s propensity. The estimate and its variance are:

Q̄t = Q̂t−1

P−t = Pt−1 + Ξ
(19)

Player i then evaluates his opponents strategies using his estimations as:

σt(st = k) =
exp(Q̄(st = k)/τ)
P

s̃2S exp(Q̄(s̃)/τ)
. (20)

Player i then uses the estimate of his opponents’ strategy (20) and best responses (1), to choose an action. After

observing his opponents’ action st, Player i corrects his estimate about his opponent’s propensity using the update

equations of the EKF process. The update equations are:

vt = I
s

j
t=s j − h(Q̄t)

S t = H(Q̄t)P
−
t HT (Q̄t) + Z

Kt = P−t HT (Q̄t)S
−1
t

Q̂t = Q̄t + Ktvt

Pt = P−t − KtS tK
T
t

10
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1. At time t agent i maintains estimates of his opponent’s propensities up to time

t − 1, Q̂
j

t−1
, with covariance P

j

t−1
of his distribution.

2. Agent i predicts his opponents’ propensities Q̄
j

tk
, j 2 {1, ...,I}\{i}, k 2 S j using

(19).

3. Based on the propensities in 2 each agent updates his beliefs about his oppo-

nents’ strategies using (20).

4. Agent i chooses an action based on the beliefs in 3 and applies best response

decision rule.

5. The agent i observes his opponents’ action s
j

tk
, j 2 {1, ...,I}\{i}.

6. The agent update its estimates of all of its opponents’ propensities using ex-

tended Kalman Filtering to obtain Q̂
j
t , j 2 {1, ...,I}\{i}.

Table 3. EKF based fictitious play algorithm.

The Jacobian matrix H(Q̄t) is defined as

[H(Q̄t)] j, j0 =

8

>

>

>

<

>

>

>

:

P

j, j0 exp(Q̄t[ j]) exp(Q̄t)

(
P

j exp(Q̄t[ j]))2 if j = j0

−
exp(Q̄t[ j]) exp(Q̄t[ j0])

(
P

j exp(Q̄t[ j]))2 if j , j’
.

Table 3 summarises the fictitious play algorithm when EKF is used to predict opponents’ strategies.

4.5. EKF fictitious play as part of the reasoning cycle of the agent

As described in Section 3.2 robots actions and reasoning cycles are not synchronised. After each action of the

robot team the utility function can be updated and a new reasoning cycle which will include the EKF fictitious play

learning algorithm, can be started. In particular steps 1 and 2 of the the reasoning cycle of the agent, (Section 3.1),

can be updated using the proposed learning process. The update of the propensities can be seen as Belief base update,

since when agents update their propensities, they update their beliefs about other agents actions for a given state of the

environment. Then the action selection of EKF fictitious play is the Trigger Event Selection. Note here that instead of

Best Response other alternatives can be used with EKF fictitious play algorithm as part of the Trigger Event Selection

such as Smooth Best Response [15].

5. The Main Results

In this section we present our convergence results for games with at least one pure Nash equilibrium. The results

are for the EKF fictitious play algorithm of Table 3, when the covariance matrices Ξ and Z are defined as Ξ = (⇠̃ + ✏)I

and Z = (1/t)I respectively, where ⇠̃ is a constant, ✏ is an arbitrarily small Gaussian random variable, ✏ ⇠ N(0,Ψ), t is

the tth iteration of fictitious play, and I is the identity matrix.

The EKF fictitious play algorithm has the following properties:

Proposition 1. If at iteration t of the EKF fictitious play algorithm, action k is played from Player i’s opponent, then

the estimate of his opponent propensity to play action k increases, Q̂t−1[k] < Q̂t[k]. Moreover if we denote ∆[i] as

∆[i] = Q̂t[i]− Q̂t−1[i], then ∆[k] > ∆[ j]8 j 2 S j, where S j is the action space of the jth opponent of Player i. Therefore

since
P

k2S j σ(s j = k) = 1, σ
j
t will be also increased.

Proof. The proof of Proposition 1 is on Appendix Appendix A.

Proposition 1 implies that players i, when they use EKF fictitious play, will learn their opponent’s strategies and

eventually they will choose the action that will maximise their reward based on their estimation. Nevertheless there

are cases where players may change their action simultaneously and become trapped in a cycle instead of converging

11
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to a pure Nash equilibrium. As an example, we consider the symmetric game that is depicted in Table 2. This is a

simple coordination game with two pure Nash equilibria of the joint actions (U, L) and (D,R). In the case were the

two players start from joint action (U,R) or (D, L) and they always change their action simultaneously, they will never

reach one of the two pure Nash equilibria of the game.

Proposition 2. When the players of a game Γ use an EKF fictitious play process to choose their actions, then with

probability 1 they will not change their action simultaneously infinitely often.

Proof. The proof of Proposition 2 is on Appendix Appendix B.

Based on Proposition 1 and 2 we can infer the following propositions and theorem.

Proposition 3. (a) If s is a pure Nash equilibrium of a game Γ, and s is played at time t in the process of EKF fictitious

play, s will be played at all subsequent times. That is, strict Nash equilibria are absorbing for the process of EKF

fictitious play.

(b) Any pure strategy steady state of EKF fictitious play must be a Nash equilibrium.

Proof. Consider the case where players beliefs σ̂t, are such that their optimal choices correspond to a strict Nash equi-

librium ŝ. In EKF fictitious play process players’ beliefs are formed identically and independently for each opponent

based on equation (20). By Proposition 1 we know that players’ estimations about their opponents’ propensities and

therefore their strategies will increase for the actions that are included in ŝ. Thus the best response to their beliefs

σ̂t+1 will be again ŝ and since ŝ is a Nash equilibrium they will not deviate from it. Conversely, if a player remains at

a pure strategy profile, then eventually the assessments will become concentrated at that profile, due to Proposition 1

and so if the profile is not a Nash equilibrium, one of the players would eventually want to deviate.

Proposition 4. Under EKF fictitious play, if the beliefs over each player’s choices converge, the strategy profile

corresponding to the product of these distributions is a Nash equilibrium.

Proof. Suppose that the beliefs of the players at time t, σt, converges to some profile σ̂. If σ̂ were not a Nash equilib-

rium, some players would eventually want to deviate and the beliefs would also deviate since based on Proposition 1

players eventually learn their opponents actions.

Based on the propositions (1-4) we can show that EKF fictitious play converges to the the Nash equilibrium of

games with a better reply path. A game with a better reply path can be represented as a graph in which the edges are

the join actions of the game s and there is a vertex that connects s with s0 iff only one player i can increase its payoff

by changing its action [43]. Potential games have a better reply path [43].

Theorem 1. The EKF fictitious play process converges to the Nash equilibrium in games with a better reply path.

Proof. If the initial beliefs of the players are such that their initial joint action s0 is a Nash equilibrium, from Propo-

sition 3 and equation (20), we know that they will play the joint action which is a Nash equilibrium for the rest of the

game.

Moreover, the initial beliefs of the players are such that their initial joint action s0 is not a Nash equilibrium based

on Proposition 1 and Proposition 2 after a finite number of iterations because the game has a better reply path, then the

only player that can improve his pay-off by changing his actions will choose a new action which will result in a new

joint action s. If this action is not the a Nash equilibrium then again after finite number of iterations the player who can

improve his pay-off will change action and a new joint action s0 will be played. Thus after the search of the vertices

of a finite graph, and therefore after a finite number of iterations, players will choose a joint action which is a Nash

equilibrium. Eventually after a finite number of time steps, T , the process will end up in a pure Nash equilibrium. The

maximum number of iterations that is needed is the cardinality of the joint action set multiplied with the total number

of iterations that is needed in order not to have simultaneous changes,
⇣

n

2

⌘

(t1 + t2 + t3 + . . . + T )

12
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Figure 3. Contour plot of the combined mean square error for the pure and mixed strategy case. The range of ⇠ and ⇣ is [0.005, 0.5] . The last value

of x-axis corresponds to ⇣̃ = 1/t the

6. Parameters selection

The covariance matrix of the state space error Ξ = ⇠̃I and the measurement error Z = ⇣̃I are two parameters that

we should define at the beginning of the EKF fictitious play algorithm. Our aim is to find values, or range of values, of

⇠̃ and ⇣̃ that can efficiently track opponents’ strategy when it smoothly or abruptly change, instead of choosing them

heuristically for each opponent when we use the EKF algorithm. Nevertheless it is possible that for some games the

results of the EKF algorithm will be improved for other combinations of ⇠̃ and ⇣̃ than the ones that we propose in this

section.

We examine the impact of EKF fictitious play algorithm parameters on its performance, by measuring the mean

square error (MSE) between EKF estimation and the real opponent strategy, in the following two tracking scenarios.

In the first scenario a single opponent chooses its actions using a mixed strategy which changes smoothly and has a

sinusoidal form over the iterations of the tracking scenario. In particular for t = 1, 2, . . . , 5000 iterations of the game:

σt(1) =
cos 2⇡t

n
+1

2
= 1 − σt(2), where n = 100. In the second toy example Player i’s opponent change its strategy

abruptly and chooses action 1 with probability σ2
t (1) = 1 during the first and the last 1250 iterations’ of the game and

for the rest iterations of the game σ2
t (1) = 0. The probability of the second action is calculated as: σ2

t (2) = 1 − σ2
t (1).

Figure 3 depicts the mean square error for both tracking scenarios for 0.005  ⇠̃  0.5 and 0.005  ⇣̃  0.5.

Additionally we examine the performance of EKF fictitious play for ⇣̃ = 1/t which is depicted as the last element of

the x-axis of Figure 3. There is a wide range of combinations of ⇠̃ and ⇣̃ that minimise the MSE where the mean for

both examples. The MSE is minimised for a wider range of ⇠̃ when ⇣̃ = 1/t than the all the cases where a single value

of ⇣̃ was used. Moreover the minimum value of the MSE was observed when ⇣̃ = 1
t

and ⇠̃ = 0.1. Figures 4 and 5

depict the opponent’s strategy-tracking by EKF fictitious play in both examples for these parameters.

7. Simulations

This section contains the results of two simulation scenarios, on which the performance of the proposed learning

algorithm was tested. Based on the results of the previous section, we used the following values for Ξ and Z in our

simulations, Ξt = (⇠̃ + ✏)I and Zt = ⇣̃I, where I is the identity matrix, ⇠̃ = 0.1, ⇣̃ = 1/t and ✏ is an arbitrarily small

Gaussian random number. For both simulation scenarios we report the average results for 100 replications of each

learning instance. In each learning instance the agents were negotiating for 50 iterations.

13



M. Smyrnakis and S. Veres / Engineering Applications of Artificial Intelligence 00 (2016) 1–28 14

Figure 4. Tracking of opponent strategy at a pure strategy environment, where the pre-specified strategy of the opponent and its prediction are

depicted as the red and blue line respectively.

Figure 5. Tracking of opponent strategy at a mixed strategy environment, where the pre-specified strategy of the opponent and its prediction are

depicted as the red and blue line respectively.
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Weak Fair Strong

Weak 1,1 0,0 0,0

Fair 0,0 1,1 0,0

Strong 0,0 0,0 1,1

Table 4. Players’ rewards of a symmetric game.

Figure 6. Percentage of the times that each algorithm converged to one of the two optimum joint actions for the game of Table 2.

7.1. Results in symmetric games

We initially tested the performance of the proposed algorithm in symmetric games as they are presented in Tables

2 and 4. Even though these are games that involve only two players, they can be ensued from realistic applications.

The game of Table 2 can be seen as a collision avoidance game. Consider the case where two UAVs, the players of the

game, should fly in opposite directions. They will gain some reward if they accomplish their task and fly in different

altitudes. Therefore players should coordinate and choose one of the two joint actions that maximise their reward, UL

and DR, who represent the choices of different altitudes from the UAVs.

Another example of how a symmetric game can be ensued from a realistic application comes from the area of

material handling robots. Consider the case where two robots should coordinate in order to move some objects to a

desired destination. The robots can either push or pull the objects depending on the direction of the destination of the

object. Moreover, each robot can apply different forces to the objects. The amount of the force that a robot applies to

an object can be represented as a fuzzy variable that can take the values: Weak, Fair and Strong. This scenario can

lead to the game that is described in Table 4.

Since in this paper we focus on the decision making module of a robot’s controller, we will compare the proposed

learning algorithm of EKF fictitious play with the particle filter alternative [36]. We will use it as a baseline criterion

for the greedy choice of the players, i.e the action that maximises the reward of a player independently of what the

others are doing. In particular, for the games that are presented in Tables 2 and 4, this is the random action since the

rewards for all the actions are the same.

Figures 6 and 7 depict the percentage of the replications where the algorithms converged to one of the optimal

solutions for the games depicted in Tables 2 and 4, respectively. Because of the symmetry in the utility function,

the particle-filter-based fictitious play behaves similarly to a random action. Thus when the initial beliefs were not

supporting one of the pure Nash equilibria of the games, it failed to converge to a joint action with reward. EKF

fictitious play on the other hand, always converged to a joint action that maximises players’ rewards. Figure 8 shows

the average utility that players obtain in each iteration of the game when the initial joint actions have zero reward. As

we can observe, after the maximum of 35 iterations, the utility that players receive is 1 and therefore it converges to
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Figure 7. Percentage of the times that each algorithm converged to one of the three optimum joint actions for the game of Table4.

Battery capacity

Short Fair Long

Sensors’ quality

Low 0.2 0.3 0.5

Medium 0.3 0.5 07

High 0.5 0.7 0.9

Table 5. Efficiency that a robot efficiently patrol the area for a specific threat.

one of the pure Nash equilibria.

7.2. Results on a robot team’s warehouse patrolling task

We also examined the performance of EKF fictitious play in the task allocation scenario we described in Section

2. A robot team, which consists of I robots, should examine an area A that is divided in N regions with hazardous

objects. We present simulation results for various combinations of number of regions and sizes of the robots’ team.

In particular, we examined the performance of the EKF learning algorithm when the team consists of I robots,

I 2 {5, 10, 15, 20, 25, 30, 35, 40}, who patrolling one of the N regions, N 2 {5, 10, 20}.

Each region contains two objects with different attributes. Each robot i then can be equipped with up to three of

the following sensors: fire detector, chemical detector, Geiger counter and vision system. Therefore robots with a fire

detector should patrol areas with flammable objects, robots with Geiger should patrol areas with radioactive material

etc. Moreover each robot can move towards a region n, with a velocity Vin. We assume that the velocity of a robot

i, towards a region n can be either slow, medium or fast. Therefore the time that a robot needs to reach a region n,

Tin, depends both on the distance between the robot and the region and the velocity that the robot will choose to move

towards n as well. The global reward that is shared among the robots is defined as:

rg(s) = −
PN

n=1

P

i:si=n c1Tin + c2Vin

+
PN

n=1

P

k2Kn
Vnk(1 −

Q

i:si=n(1 − Eink))
(21)

where c1 = 1, c2 = 1/6 and Eink is a metric of robot i’s efficiency to patrol a region n based on its battery capacity

and its sensor quality. It can also be seen as the probability that robot i has to detect a threat k in region n. We define

Eink as a function of robot i’s battery capacity and its sensors’ quality as it is presented in Table 5. If a robot has no

suitable sensor to patrol a specific area Eink = 0. Note that the first term in the summation represents the control cost

the robots have when they choose a specific region to allocate and the second term corresponds to the environmental

cost.
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Figure 8. Average reward that players obtain when their initial action is either UR orDL for the game of Table 2 .

Even though this article considers distributed optimisation tasks, a centralised alternative, genetic algorithm (GA),

will be also used. Since the centralised optimisation algorithms are expected to perform equally good or better than

distributed optimisation algorithms, the performance of GA can be seen as a benchmark solution. Thus a central

decision maker will choose in advance the area that each robot will patrol and the robot completes the pre-optimised

allocation task. In our comparison we used the genetic algorithm function of Matlab’s optimisation toolbox. Since

genetic algorithms are stochastic processes, in each repetition of the same replication of the task allocation problem it

will converge to a different solution. Thus we used two instances of the genetic algorithm, in the former one we used

a single repetition of the genetic algorithm per replication of our problem, in the latter one for each replication of the

task allocation problem we chose the allocation of the maximum utility among 50 runs of the genetic algorithm.

In order to be able to average across the 100 replications, we used the following scores for the global rewards

players obtained for each learning algorithm they used: F = 100 ⇥
rg(s)

rmax
, where rmax is the reward that players would

have obtained if all all areas had been patrolled with 100% efficiency.

Figures 9, 10 and 11 depict the score players obtain in the final iteration of the algorithm as a function of the

number of robots, I, for the tested algorithms when there are 5,10 and 20 areas of interest respectively.

In all cases when players chose the greedy actions, the outcome was very poor, which also indicates the need of

the coordination controller that we propose when distributed solutions are considered. When the case with 5 areas

is considered, Figure 9, all algorithms performed similarly, when I  30. When I ≥ 35 the best performance was

observed when the proposed algorithm was used. When the searching areas were increased to 10, Figure 10, the EKF

algorithm and the variants of the genetic algorithm have similar performance independently of the number of robots.

But its performance is better than the particle filters algorithm when I ≥ 20. Finally, when we consider the case with

20 search areas, the EKF fictitious play performs significantly better than both variants of the genetic algorithms we

used. But its score is 3% smaller than the one of the particle filter alternative when we consider the case where 40

robots had to coordinate.

For each agent we also tested the average computational cost of the 50 iterations, in seconds, for each of the

algorithms we tested. For the genetic algorithms, since they are centralised algorithms, the cost per robot is the

cost the algorithm needed to terminate. In order to have comparable results with the centralised cases, for the two

distributed algorithms it is assumed that robots are able to communicate. Therefore, before they take an action there

is a “negotiation” period among the robots. During this period the robots exchange messages indicating the areas,

which they intend to patrol. Then, when the final iteration of the negotiation period is reached, they execute the last

joint action. Under this process, the difference in the computational time of each robot is the total computational time

of each algorithm. The experiments were performed on a PC with Intel i7 processor at 2.5 GHz and 8 GB memory.
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Figure 9. Robot team task allocation outcome for the case whereN = 5. The x-axis represent the number of robots that was used in the simulation

scenario and the y-axis the corresponding average score of the 100 replications of the allocation task.

Figure 10. Robot team task allocation outcome for the case where N = 10. The x-axis represent the number of robots that was used in the

simulation scenario and the y-axis the corresponding average score of the 100 replications of the allocation task.
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Figure 11. Robot team task allocation outcome for the case where N = 20. The x-axis represent the number of robots that was used in the

simulation scenario and the y-axis the corresponding average score of the 100 replications of the allocation task.

One-shot Genetic algorithm Genetic algorithm Particle filter fictitious play EKF fictitious play

5 1.097 56.9 0.185 0.159

10 2.081 105.9 0.399 0.165

15 2.255 110.6 0.616 0.246

20 2.358 117.5 0.886 0.326

25 2.366 121.5 1.089 0.428

30 2.698 159.9 1.374 0.503

35 2.728 132.1 1.558 0.589

40 2.839 136.7 1.917 0.660

Table 6. Average computational time that each robot was needed per replication, 5 areas

Even though the performance of the proposed algorithm is not always improving the results of the existing algo-

rithms we tested, it has the smallest computational cost among them, as it is depicted in Tables 6,7 and 8. This is

important in robotics applications, where restrictions, such as battery life, should be taken into account.

7.3. Transportation of a heavy object through corridors.

In this section we describe how the proposed decision making module can be implemented as a coordination

mechanism between two robots, which carry a heavy item through a set of possible unmapped corridors. Based on

a game-theoretic formulation, after the robots sense that an object or wall block their way, they have to coordinate

in order to choose the action that will allow them to continue their mission even when they are not aware of the

environment’s structure. We assume that the two robots can move in corridors using the moves that are depicted in

Figure 13. In order to take into account obstacles and varying widths of corridors, we allowed two possible ways

to turn left or right. In particular, Action 1 represents the move forward, Action 2 represents the move forward for a

distance z meters and right z meters, Action 3 is a z meter diagonal right move of 45 degrees slope, Action 4 represents

the move forward for z meters and left z meters and Action 5 is a z meter diagonal left move of 45 degrees slope. This

also introduces the need of a coordination mechanism because there can be cases, such as the set of corridors which

are depicted in Figure 12, where both moves can be used by the robots to change direction.
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One-shot Genetic algorithm Genetic algorithm Particle filter fictitious play EKF fictitious play

5 2.056 106.9 0.628 0.674

10 4.353 190.5 1.165 0.705

15 4.318 199.85 1.881 1.105

20 3.296 240.25 2.579 1.704

25 4.313 246.75 3.208 2.119

30 5.092 248.5 3.762 3.143

35 5.275 255.5 4.445 3.899

40 6.023 296.0 5.271 4.487

Table 7. Average computational time that each robot was needed per replication, 10 areas

One-shot Genetic algorithm Genetic algorithm Particle filter fictitious play EKF fictitious play

5 3.455 136.9 0.826 0.706

10 12.023 556.9 1.906 1.105

15 20.141 749.2 2.932 1.704

20 20.681 870.8 3.276 2.119

25 22.014 875.1 4.955 2.229

30 22.211 909.8 6.138 3.143

35 26.146 911.6 6.754 3.899

40 27.276 944.5 8.399 4.487

Table 8. Average computational time that each robot was needed per replication, 20 areas

Figure 12. The configuration the corridor used in our simulation in a MATLABT M figure and illustration of robot moves.
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Figure 13. Available moves to each robot

Robots in this scenario have to make decisions in various areas of Figure 12. Each of these areas is assumed to

be a checkpoint, at which when the robots arrive, they use the EKF algorithm in order to choose the joint action that

will lead them to the next checkpoint. The checkpoints can either be predefined before the task starts, or they can be

dynamically generated based on set time intervals or the distance that the robots have covered. In this game, when the

robots fail to coordinate, they receive zero utility, and when they coordinate their gain is a constant c if the joint action

is feasible and zero otherwise. Thus, in each checkpoint the robots play a game with rewards defined as:

r(s) =

(

c if the joint action s is feasible and s1 = s2

0 otherwise
(22)

A joint action s is considered feasible when it is executed and the task can proceed, i.e. during the execution of the

action neither the robots nor the hit a wall.

We present the results over 100 replications of the above coordination task. In this task, because of the symmetry

of the game, when the robots use the particle filter variant of fictitious play, they fail to coordinate in the majority of

times. In particular, only in 34% of the replications of the coordination tasks were successfully completed when the

particle filters algorithm was used. On the other hand, when the proposed algorithm was used, the task was completed

in all replications.

Figure 14 displays a sample trajectory of the robots for the dynamically generated checkpoints. In this simulation

scenario we assume that 0.1 distance units corresponds to 10 meters. The checkpoints are generated when robots

move 5 meters from the previous checkpoint, i.e. z = 5. This can be seen also as a new checkpoint every 2 seconds

when the robots are moving with speed of 2.5m/s.

Table 9 shows the joint actions who can produce some reward (successful joint action) for each check point and

the average number of iterations the EKF fictitious play algorithm needed to converge to a solution.

7.4. Ad-hoc sensor network

The simulation scenario of this section is based on a coordination task of a power constrained sensor network,

where sensors can be either in a sensing or sleeping mode [14]. When the sensors are in a sensing mode, they can

observe the events that occur in their range. During their sleeping mode the sensors harvest the energy they need in

order to be able function, when they are in the sensing mode. The sensors then should coordinate and choose their

sensing/sleeping schedule in order to maximise the coverage of the events. This optimisation task can be cast as a

potential game. In particular we consider the case where I sensors are deployed in an area where E events occur. If

an event e, e 2 E, is observed from the sensors, then it will produce some utility Ve. Each of the sensors i = 1, . . . ,I

should choose an action si = j, from one of the j = 1, . . . , J time intervals which they can be in sensing mode. Each

sensor i, when it is in sensing mode, can observe an event e, if it is in its sensing range, with probability pie =
1

die
,

where die is the distance between the sensor i and the event e. We assume that the probability that each sensor observes

an event is independent from the other sensors’ probabilities. If we denote by iin the sensors that are in sense mode

when the event e occurs and e is in their sensing range, then we can write the probability of an event e to be observed

from the sensors, iin as:

1 −
Y

i2iin

(1 − pie) (23)
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Figure 14. Trajectory of the robots through the checkpoints.

Successful joint actions Iterations

Checkpoint 1 (Action 1,Action 1) 1

Checkpoint 2 (Action 1,Action 1) 1

Checkpoint 3 (Action 1,Action 1) 1

Checkpoint 4 (Action 2,Action 2),(Action 3,Action 3) 25.6

Checkpoint 5 (Action 1,Action 1) 1

Checkpoint 6 (Action 1,Action 1) 1

Checkpoint 7 (Action 1,Action 1) 1

Checkpoint 8 (Action 1,Action 1) 1

Checkpoint 9 (Action 1,Action 1) 1

Checkpoint 10 (Action 1,Action 1) 1

Checkpoint 11 (Action 1,Action 1) 1

Checkpoint 12 (Action 4,Action 4),(Action 5,Action 5) 29.8

Checkpoint 13 (Action 1,Action 1) 1

Checkpoint 14 (Action 1,Action 1) 1

Checkpoint 15 (Action 1,Action 1) 1

Checkpoint 16 (Action 1,Action 1) 1

Checkpoint 17 (Action 2,Action 2),(Action 3,Action 3) 22.6

Checkpoint 18 (Action 1,Action 1) 1

Checkpoint 19 (Action 1,Action 1) 1

Checkpoint 20 (Action 1,Action 1) 1

Checkpoint 21 (Action 2,Action 2),(Action 3,Action 3) 27.9

Checkpoint 22 (Action 1,Action 1) 1

Checkpoint 23 (Action 1,Action 1) 1

Checkpoint 24 (Action 1,Action 1) 1

Checkpoint 25 (Action 1,Action 1) 1

Checkpoint 26 (Action 1,Action 1) 1

Checkpoint 27 (Action 1,Action 1) 1

Table 9. Average number of iterations that was needed by EKF fictitious play algorithm in order for the robots to reach consensus.
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EKF fictitious play Particle filter fictitious play 500 particles Particle filter 1000 particles

Average time 0.33 5.37 8.43

Table 10. Average computational time for each agent in seconds.

The expected utility which is produced from the event e, is the product of its utility Ve and the probability that it is

observed by the sensors iin that are in sensing mode when the event e occurs and e is in their sensing range. More

formally, we can express the utility that is produced from an event e as:

re(s) = Ve(1 −
Y

i2iin

(1 − pie)) (24)

The global utility is then the sum of the utilities that all events, e 2 E, produce

rglobal(s) =
X

e

re(s). (25)

Each sensor, after each iteration of the game, receives some utility, which is based on the sensors and the events that

are inside its communication and sensing range respectively. For a sensor i we denote ē the events that are in its

sensing range and s̃−i the joint action of the sensors that are inside its communication range. The utility that sensor i

will receive if its sense mode is j will be

ri(si = j, s̃−i) =
X

ẽ

rẽ(si = j, s̃−i). (26)

In this simulation scenario 40 sensors are placed on a unite square, each have to choose one time interval of the

day when they will be in sensing mode and use the rest of the time intervals to harvest energy. We consider cases

where sensors had to choose their sensing mode among 4 available time intervals. Sensors are able to communicate

with other sensors that are at most 0.6 distance units away, and can only observe events that are at most 0.3 distance

units away. The case where 20 events are taking place is considered. Those events were uniformly distributed in space

and time, so an event could evenly appear in any point of the unit square area and it could occur at any time with the

same probability. The duration of each event was uniformly chosen between (0 − 6] hours and each event had a value

Ve 2 (0 − 1].

The results of EKF fictitious play are compared with the ones of the particle filter based algorithm. The number of

particles in particle filter fictitious play algorithm, play an important role in the computational time of the algorithm.

For that reason comparisons were made with three variants of the particle filter algorithm with 500-1000 particles.

The results presented in Figure 15 and Table 10 are the averaged reward of 100 instances of the above described

scenario. Figure 15 depicts the the average global reward. The global reward in each instance was normalised using

the maximum reward, which is achieved when all the sensors are in sense mode. As it is depicted in Figure 15 the

average performance of the particle filter algorithm is not affected by the number of particles in this particular example.

But the EKF fictitious play performed better than the particle filters alternatives. In addition, as it is shown in Table

10, the computational cost of the two particle filter’s variants is greater than the EKF fictitious play algorithm.

8. Conclusions

A novel variant of fictitious play has been presented. This variant is based on extended Kalman filters and can

be used as a decision making module of a robot’s controller. The relation between the proposed learning process and

the BDI framework was also considered. The main theoretical result has been, that the learning algorithm associated

with the cooperative game converges to the Nash equilibrium of potential games. The application of this method-

ology has been illustrated on four examples. The filtering methods used for learning have also been compared for

their performance and computational costs. The methods presented can potentially find widespread applications in

the robotics industry. Possible improvements could be obtained by the adoption of more sophisticated reward/cost

functions, without altering the essential features of the methodology.
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Figure 15. Average reward as a function of time of the three learning algorithms. The x-axis represents the Iteration and the y-axis the average

normalised reward.

Appendix A. Proof of Proposition 1

Appendix A.1. Case where players have two available actions

In this Section the proof of Proposition 1 is provided for the case where players have two available actions.

Proof. In the case where players have only 2 available actions Player i’s predictions about his opponent’s propensity

are:

Q̄t =

 

Q̂t−1[1]

Q̂t−1[2]

!

(A.1)

P−t =

 

P−
t−1

[1, 1] P−
t−1

[1, 2]

P−
t−1

[2, 1] P−
t−1

[2, 2]

!

+ qI (A.2)

without loss of generality we can assume that its opponent in iteration t chooses action 2. Then the update step will

be :

vt = zt − h(Q̄t) (A.3)

since Player i’s opponent played action 2 and hs(k)(Q) =
exp(Qt[s(k)]/⌧)

P

s̃2S exp(Qt[s̃]/⌧)
we can write vt and Ht(Q̄t) as:

vt =

 

0

1

!

−

 

σt−1(1)

1 − σt−1(1)

!

=

 

−σt−1(1)

σt−1(1)

!

Ht(Q̄t) =

 

at −at

−at at

!

(A.4)

where at is defined at = σt−1(1)σt−1(2). The estimation of S t = H(Q̄t)P
−
t HT (Q̄t) + Z will be:

S t = a2

 

b −b

−b b

!

+ Z (A.5)

where b = P−t [1, 1] + P−t [2, 2] − 2P−t [1, 2]. The Kalaman gain, Kt = P−t HT (Q̄t)S
−1
t can be written as
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Kt =
1

2rb + r2

 

P−t [1, 1] k

k P−t [2, 2]

!  

at −at

−at at

!  

b + r b

b b + r

!

(A.6)

up to a multiplicative constant we can write

K1 ⇠

 

c −c

−d d

!

(A.7)

where c = P−t [1, 1] − P−t [1, 2] and d = P−t [2, 2] − P−t [1, 2]. The EKF estimate of the opponent’s propensity is:

Q̂t =

 

Q̂t[1]

Q̂t[2]

!

=

0

B

B

B

B

B

@

Q̄t[1] − 2σ(1)
a(b−k)

4a2(b−k)+(r+✏)

Q̄t[2] + 2σ(1)
a(b−k)

4a2(b−k)+(r+✏)

1

C

C

C

C

C

A

(A.8)

Based on the above we observe that Q̂t(1) < Q̂t−1(1) and Q̂t(2) > Q̂t−1(2).

Appendix A.2. Case where players have more than two available actions

In this Section the proof of Proposition 1 is provided for the case where players have more than two available

actions.

Proof. In the case where there are more than 2 available actions, when 1/t << 1, then the covariance matrix S t '

H(Q̄t)P
−
t HT (Q̄t) and then Kt ' H(Q̄t). From the definition of H(Q̄t) we know that it is invertible, with positive

diagonal elements and negative off diagonal elements. In particular we can write :

H(Q̄t)[i, i] =
X

j2S/i

σt−1(si)σt−1(s j)

H(Q̄t)[i, j] = −σt−1(si)σt−1(s j).

Suppose that action s j is played from Player i’s opponent then the update of Q̂t[ j] is the following:

Q̂t[ j] = Q̄t + H(Q̄t)[ j, ·]y.

The only positive element of y is y[ j]. The multiplication of H(Q̄t)[ j, ·] and y is the sum of I positive coefficients and

therefore the value of Q̂t[ j] will be increased. In order to complete the proof we should show that ∆[ j] > ∆[i]8i 2 S/i,

where ∆[ĩ] = Q̂t[ĩ] − Q̂t−1[ĩ], ĩ 2 S . For simplicity of notation for the rest of the proof we will write H[i, j] instead of

H(Q̄t)[i, j] and σ(i) instead of σt−1(si).

∆[i] = H[i, ·]y

= H[i, 1]σ(1) + H[i, 2]σ(2) + . . .+

H[i, i − 1]σ(i − 1) − H[i, i]σ(i)+

H[i, i + 1]σ[i + 1] + . . .+

H[i, j − 1]σ( j − 1) − H[i, j](1 − σ( j))+

H[i, j + 1]σ( j + 1) + . . . + H[i,I]σ(I)

(A.9)

∆[ j] = H[ j, ·]y

= H[ j, 1]σ(1) + H[ j, 2]σ(2) + . . .+

H[ j, j](1 − σ( j)) + . . . + H[i,I]σ(I)

(A.10)

∆[i] − ∆[ j] = σ(1)(H[i, 1] − H[ j, 1]) + . . .+

σ(i − 1)(H[i, i − 1] − H[ j, i − 1])−

σ(i)(H[i, i] + H[ j, i])+

σ(i + 1)(H[i, i + 1] − H[i, i + 1]) + . . .+

σ( j − 1)(H[i, j − 1] − H[ j, j − 1])−

(1 − σ( j))(H[[i, j] + H[ j, j]])+

σ( j + 1)(H[i, j + 1] − H[ j, j + 1]) + . . .+

σ(I)(H[i,I] − H[ j,I])

(A.11)
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If we substitute H[·, ·] with its equivalent then we can write ∆[i] − ∆[ j] as:

∆[i] − ∆[ j] = (σ(1))2(σ(i) − σ( j)) + . . .+

(σ(i − 1))2(σ(i) − σ( j))−

(σ(i))2((
P

j̃2S/i σ( j̃)) + σ( j))+

(σ(i + 1))2(σ(i) − σ( j)) + . . .+

(σ( j − 1))2(σ(i) − σ( j))−

(1 − σ( j))σ( j)((
P

j̃2S/ j σ( j̃)) + σ(i))+

(σ( j + 1))2(σ(i) − σ( j)) + . . .+

(σ(I))2(σ(i) − σ( j))

(A.12)

solving the inequality ∆[i] − ∆[ j] < 0 we obtain:

∆[i] − ∆[ j] < 0,

(σ(i) − σ( j))((
P

j̃2S/{i, j}(σ( j̃)2))) <

((σ(i))2((
P

j̃2S/i σ( j̃)) + σ( j))+

(1 − σ( j))(σ( j))((
P

j̃2S/ j σ( j̃)) + σ(i)))

(A.13)

In the case where σ(i) < σ( j) the inequality is satisfied always because the left hand side of the inequality is always

negative and the right hand side is always positive. In the case where σ(i) > σ( j) the inequality (A.13) can be proven

by contradiction that (A.13) is satisfied 8i, i , j. Therefore we assume that:

∆[i] − ∆[ j] ≥ 0,

(σ(i) − σ( j))((
P

j̃2S/{i, j}(σ( j̃)2))) ≥

((σ(i))2 + (1 − σ( j))(σ( j)))((
P

j̃2S/i σ( j̃)) + σ( j))

(A.14)

Since ((
P

j̃2S/{i, j}(σ( j̃)2))) < ((
P

j̃2S/i σ( j̃)) + σ( j)) in order to complete the proof, we only need to show that:

σ(i) − σ( j) ≥ (σ(i))2 + (1 − σ( j))σ( j)

σ(i) − (σ(i))2 ≥ 2σ( j) − (σ( j))2

σ(i)(1 − σ(i)) ≥ σ( j)(2 − σ( j))

(A.15)

Inequality (A.15) will be satisfied if the following inequality holds:

(1 − σ(i)) ≥
σ( j)

σ(i)
(2 − σ( j)) (A.16)

Inequality (A.16) will be satisfied if

(1 − σ(i)) ≥ (2 − σ( j))

σ( j) − σ(i) ≥ 1
(A.17)

since σ(i) > σ( j), (A.17), is false 8i and thus by contradiction ∆[i] − ∆[ j] < 0, which completes the proof.

Appendix B. Proof of Proposition 2

In this Section the proof of Proposition 2 is provided.

Proof. Similarly to the proof of Proposition 1, we consider only one opponent and a game with more than one pure

Nash equilibria. We assume that a joint action s = (s1( j0), s2( j)) is played which is not a Nash equilibrium. Since

players use EKF fictitious play because of Proposition 1 t,hey will eventually change their action to s̃ = (s1( j̃0]), s2( j̃))

which will be the best response to action s2( j) and s1( j0) for players 1 and 2 respectively. But if this change is

simultaneous then their is no guarantee that the resulting joint action s̃ will increase the expected reward of the players.

We will show that with high probability the two players will not change their actions simultaneously infinitely often.

Without loss of generality we assume that at time t Player 2 changes its action from s2( j) to s2( j̃). We want to

show that the probability that Player 1 will change its action to s1( j̃0) with probability less than 1. Player 1 will change

its action if it thinks that Player 2 will play action s2( j̃) with high probability such that its utility will be maximised
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when it plays action s1( j̃0). Therefore Player 1 will change its action to s1( j̃0) if σ2(s2( j)) > λ, where σ2(·) is the

estimation of its Player 1 about Player 2’s strategy. Thus we want to show that:

p(σ2 > λ) < 1,

p(
exp(Q̂t−1[ j])

P

j002S 2 exp(Q̂t−1[ j00])
> λ) < 1,

p(Q̂t−1[ j] > ln λ
1−λ
+

P

j002S 2/ j exp(Q̂t−1[ j00])) < 1,

p(Q̂t−2[ j] + (Kt−1yt−1)[ j] > . . .

ln λ
1−λ
+

P

j002S 2/ j exp(Q̂t−1[ j00])) < 1

(B.1)

we can expand Kt−1yt−1[ j] as follows

(Kt−1yt−1)[ j] = ((Pt−2 + (⇠̃ + ✏)I)HS −1yt−1)[ j]

= (Pt−2HS −1yt−1)[ j] + ((⇠̃ + ✏)HS −1yt−1)[ j]
(B.2)

If we substitute Kt−1yt−1[ j] in (B.1) with its equivalent, then we obtain the following inequality:

p(Q̂t−2[ j] + (Pt−2HS −1yt−1)[ j] + ((⇠̃ + ✏)HS −1yt−1)[ j] > . . .

ln λ
1−λ
+

P

j002S 2/ j exp(Q̂t−1[ j00])) < 1,

p(((⇠̃ + ✏)HS −1yt−1)[ j] > −Q̂t−2[ j] − (Pt−2HS −1yt−1)[ j] . . .

ln λ
1−λ
+

P

j002S 2/ j exp(Q̂t−1[ j00])) < 1,

p(✏ > C) < 1

(B.3)

where C is defined as:

C =
ln λ

1−λ

(HS −1yt−1)[ j]
+

P

j002S 2/ j
exp(Q̂t−1[ j00])

(HS −1yt−1)[ j]
−

−Q̂t−2[ j]−(Pt−2HS −1yt−1)[ j]

(HS −1yt−1)[ j]
−

q(HS −1yt−1)[ j]

(HS −1yt−1)[ j]

(B.4)

Inequality (B.3) is always satisfied since ✏ is a Gaussian random variable. To conclude the proof we define χt as

the event that both players change their action at time t simultaneously, and assume that the two players have changed

their actions simultaneously at the iterations t1, t2, . . . , tT , then the probability that they will also change their action

simultaneously at time tT+1, P(χt1 , χt2 , . . . , χtT , χtT+1) is almost zero for large but finite T .
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