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QUADRATIC Q-CURVES, UNITS AND HECKE L-VALUES

NEIL DUMMIGAN AND VASILY GOLYSHEV

Abstract. We show that if K is a quadratic field, and if there exists a qua-
dratic Q-curve E/K of prime degree N , satisfying weak conditions, then any
unit u of OK satisfies a congruence ur ≡ 1 (mod N), where r = g.c.d.(N −

1, 12). If K is imaginary quadratic, we prove a congruence, modulo a divisor of

N , between an algebraic Hecke character ψ̃ and, roughly speaking, the elliptic

curve. We show that this divisor then occurs in a critical value L(ψ̃, 2), by
constructing a non-zero element in a Selmer group and applying a theorem of
Kato.

1. Introduction

An elliptic curve E defined over Q is said to be a Q-curve if it is isogenous, over
Q, to all its Gal(Q/Q)-conjugates. If E has complex multiplication by an order in
an imaginary quadratic field F , with Hilbert class field H, then E is a Q-curve,
and (with all the isogenies) can be defined over H. Let N be a square-free positive
integer, with r prime factors, and let X∗(N) be the quotient of the modular curve
X0(N) by the group, of order 2r, of Atkin-Lehner involutions. This curve is defined
overQ, and if P ∈ X∗(N)(Q) is a non-cusp rational point, then the points onX0(N)
projecting to P are defined over some number field K with Gal(K/Q) ≃ (Z/2Z)ρ,
for some ρ ≤ r. These points represent a collection of isogenous Q-curves, each of
which can be defined over K (though maybe not the isogenies between them). A
theorem of Elkies [11] implies that every non-CM Q-curve is isogenous to such a
collection of Q-curves, for some square-free N . In this paper we concentrate on the
case that N is prime (in which case we write X+

0 (N) instead of X∗(N)) and K is a
quadratic field, and call E a “quadratic Q-curve”, with N -isogenous conjugate Eσ.

In Section 2 we introduce, for a non-CM quadratic Q-curve E, the character χ1

by which Gal(Q/K) acts on the kernel of the N -isogeny from E to Eσ. In Section
3 we examine the ramification properties of χ1. In particular we use a proposition
of Serre to identify with a fundamental tamely-ramified character its restriction to
the inertia group at a prime divisor of N . In Section 4 this allows us, under certain
hypotheses, to prove the first main result (Theorem 4.1), that if u is any unit in
OK , and q a prime divisor of N , then u ≡ ±1 (mod q). This is achieved by a
simple application of global class field theory to the triviality of χ2

1(u), and is only
of interest when K is real quadratic.

The primesN for whichX+
0 (N) has genus zero (i.e. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

31, 37, 47, 59, 71) are well-known to be those dividing the order of the Monster
group. In Section 5 we present numerical examples for several suchN , using rational
parametrisations found by González and Lario. We also consider the example
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2 NEIL DUMMIGAN AND VASILY GOLYSHEV

N = 43, for which X+
0 (N) is an elliptic curve with Mordell-Weil group of rank 1,

and for which the map from X0(N) to X+
0 (N) has been made explicit by Yamauchi.

At the end of Section 5 we observe the congruences arising from the five values of
N for which the genus of X0(N)+ is at least 2 but for which “exceptional” rational
points (non-cuspidal, non-CM) were discovered by Elkies and Galbraith.

In Section 6 we consider Q-abelian varieties of higher dimension, with everywhere
good reduction, and make a link with Shimura’s theory of abelian varieties arising
from modular forms with nebentypus.

The character χ1 takes values in F×

N . In Section 7 we show, in the case that K is

imaginary quadratic, that χ2
1 is the reduction of an algebraic Hecke character ψ̃ of

A×

K , of type (2, 0). The L-function L(ψ̃, s) has critical values at s = 1, 2. In Section

9 we use this congruence relation between ψ̃ and χ2
1 to construct a non-zero element

in a certain Selmer group for ψ̃, which, via the Bloch-Kato conjecture (Section 8),

should lead to the appearance of a divisor of N in the algebraic part of L(ψ̃, 2),
and in fact it does, thanks to work of Kato and Rubin. In Section 10 we consider
an example where this can be observed.

We were led to consider quadratic Q-curves by the appearance of E × Eσ in
pencils of abelian surfaces (fibred over an open subset of X0(N)+) which, for certain
values of N ≤ 11, are mirror dual to families of Fano 3-folds of Picard rank 1, [15,
§3.2]. We wanted an arithmetical manifestation, as the modulus of a congruence
or a factor in an L-value, of the factor N in the anticanonical degree of the Fano
3-folds.

We thank Anton Mellit and Don Zagier for discussions on this subject with the
second named author, Takuya Yamauchi for correcting a sign error in 5.2, and the
referee for a careful reading.

2. Kernels of cyclic isogenies

For a prime numberN , let Y0(N)/Q be the modular curve defined by the modular
equation Φ(X,Y ) = 0 [6, Chapter 11]. The Fricke involution wN : (X,Y ) 7→ (Y,X)
is obviously defined over Q. Let Y +

0 (N)/Q be the quotient curve Y0(N)/wN , and
π : Y0(N) → Y +

0 (N) the quotient map. If P ∈ Y +
0 (N)(Q), and if π−1(P ) contains

two points that are not Q-rational, then they are necessarily of the form (j, jσ) and
(jσ, j), where K/Q is a quadratic extension, Gal(K/Q) = 〈σ〉 and j ∈ K. Let F be
the functor from the category C of Q-algebras to the category of sets, taking S to
the set of S-isomorphism classes of (E,C), with the elliptic curve E and its N -cyclic
subgroup scheme C both defined over S. If G is the functor of points from C to
sets, S 7→ Y0(N)(S), then there is a natural transformation of functors from F to G.
This is not an equivalence of functors (Y0(N) is only a coarse moduli space), but it
does induce a bijection between F(Q) and Y0(N)(Q). The point (j, jσ) represents
a Q-isomorphism class (E,C), where moreover the j-invariants of E and E/C are j
and jσ respectively. Since j ∈ K, the Q-isomorphism class of E may be represented
by a curve E defined over K. Then E/C ≃ Eσ over Q, where Eσ is the result of
applying σ to all the coefficients in a Weierstrass equation for E. Thus we get an
isogeny φ : E → Eσ, with kernel C, determined up to an automorphism of Eσ

(which we shall imagine to have been fixed). However, we do not know that the
isogeny φ : E → Eσ is defined over K, and in general it is not (see [16, Proposition
3.3] for example). The point is that although the isogeny E → E/C is defined over
K, we are composing it with an isomorphism E/C → Eσ, which might not be.
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Lemma 2.1. Suppose that E does not have complex multiplication. Then there
exists a character χ : Gal(Q/K) → {±1} such that for all g ∈ Gal(Q/K), φg =

χ(g)φ. It follows that also ±φ̂g = χ(g)φ̂, where φ̂ is the dual isogeny. Note that
φg : E → Eσ, since E,Eσ are defined over K.

Proof. Suppose, for a contradiction, that there exists g ∈ Gal(Q/K) with φg 6= ±φ.
Then φ̂g ◦φ is an endomorphism of E, of degree N2, but different from ±[N ]. This
would imply that E had complex multiplication. �

The same argument shows that φσ : Eσ → E is ±φ̂.
Consider theN -adic Tate modules TN (E) and TN (Eσ). Each is a free ZN -module

of rank 2, with continuous ZN -linear action of Gal(Q/K). The reductions mod N
are E[N ] and Eσ[N ]. Choose e1 ∈ TN (E) and f1 ∈ TN (Eσ) such that their images

in E[N ] and Eσ[N ] generate kerφ and ker φ̂ respectively. Then φ(e1) = Nf2 for

some f2 ∈ TN (Eσ), and φ̂(f1) = Ne2 for some e2 ∈ TN (E). Since φ̂φ = φφ̂ = [N ],

φ̂(f2) = e1 and φ(e2) = f1. We have ZN -bases {e1, e2} and {f1, f2} for TN (E) and

TN (Eσ) respectively, and with respect to these bases both φ and φ̂ are represented

by the matrix

[
0 1
N 0

]
. We may choose e1 and f1 in such a way that for the Weil

pairing, 〈e1, e2〉 = 〈f2, f1〉 = 1.

Lemma 2.2. One has that kerφ ⊆ E[N ] and ker φ̂ ⊆ Eσ[N ] are Gal(Q/K)-
invariant.

Proof. For g ∈ Gal(Q/K), (kerφ)g = ker(φg) = ker(±φ) = kerφ. Similarly for

ker φ̂. �

Hence if, with respect to the bases {e1, e2} and {f1, f2}, g ∈ Gal(Q/K) is repre-

sented by matrices

[
a b
c d

]
(on TN (E)) and

[
a′ b′

c′ d′

]
(on TN (Eσ)) then N | c and

N | c′.
Lemma 2.3. [

a′ b′

c′ d′

]
= χ(g)

[
d c/N
Nb a

]
,

with χ as in Lemma 2.1.

Proof. On TN (Eσ),

g =
1

N
φφ̂g =

χ(g)

N
φgφ̂ =

χ(g)

N

[
0 1
N 0

] [
a b
c d

] [
0 1
N 0

]
= χ(g)

[
d c/N
Nb a

]
,

where the second equality follows from Lemma 2.1. �

3. Restrictions of characters to inertia subgroups

The action of Gal(Q/K) on E[N ] is reducible, with composition factors χ1, χ2 :

Gal(Q/K) → F×

N . If g ∈ Gal(Q/K) is represented by the matrix

[
a b
c d

]
as above,

then χ1(g) ≡ a (mod N) and χ2(g) ≡ d (mod N). Considering the Weil pairing,
χ1χ2 = ǫ, the mod N cyclotomic character (giving the action on N th roots of
unity), which is ramified precisely at primes dividing N .
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Let q be a prime of OK , the ring of integers of K, dividing the rational prime N ,
and let Kq be the completion of K at q, with uniformiser π. Let Ku

q and Kt
q be the

maximal unramified and tamely ramified extensions (respectively) of Kq. For each
integer d > 1 with N ∤ d, there is a character θd : Gal(Kt

q/K
u
q ) → µd (where µd

denotes the group of dth roots of unity inside Ku
q ) such that g(π1/d) = θd(g)π

1/d,

for all g ∈ Gal(Kt
q/K

u
q ) and all choices of π1/d. Viewing Gal(Kt

q/K
u
q ) as the

tame quotient of the inertia group Iq, and reducing mod π, we get a character

θd : Iq → F
×

N . Letting d = Nr − 1 for some integer r ≥ 1, this is a “fundamental
character of level r”, θNr−1 : Iq → F×

Nr . Deviating from the notation of Serre [29,
1.7], in the case r = 1 we relabel this θq.

Proposition 3.1. Let E/K be an elliptic curve with a cyclic N -isogeny φ : E →
Eσ, and no complex multiplication, as in the previous section, and χ1, χ2 : Gal(Q/K) →
F×

N be as above. Suppose also that N > 5, and that E has good reduction at any
divisor of N .

(1) The good reduction at any divisor of N is ordinary.
(2) The prime N splits in OK , say (N) = qq.
(3) Without loss of generality,

χ1 |Iq= θq, χ1 |Iq= id.,

χ2 |Iq= id., χ2 |Iq= θq.

Proof. It follows from [29, Proposition 12(c)] that if the reduction were supersin-
gular then the action on E[N ] of Gal(Q/K) (or even of the subgroup Iq) would be
irreducible, which it clearly is not. Hence the reduction is ordinary, and by [29,
Proposition 11] {χ1 |Iq , χ2 |Iq} = {id., θeq}, where e is the ramification index of
Kq/QN . If N does not split in OK then q is the unique prime divisor of N . Now

Gal(Q/K) acts on kerφ as χ1 and on ker φ̂ as χχ2, where χ is as in Lemma 2.1.

Restricting to Iq, we get either id. on kerφ with χθeq on ker φ̂, or θeq on kerφ with χ

on ker φ̂. Either way, the Gal(K/Q)-symmetry between kerφ and ker φ̂ is violated,
since the condition N > 5 ensures that, unlike χ, θeq is not quadratic or trivial.

We have (N) = qq, and e = 1. Now {χ1 |Iq , χ2 |Iq} = {θq, id.} and {χ1 |Iq
, χ2 |Iq} = {θq, id.}, but (after ordering q and q appropriately) it must be as stated
in the proposition, otherwise again the symmetry is violated. (We see also that χ
is unramified at q and q.) �

Note that the discussion in §2 determined E only up to quadratic twist, so we are
really assuming that some E/K within theK-isomorphism class has good reduction
at primes dividing N .

Proposition 3.2. Let p be a prime of OK not dividing N . Then χ2 |Ip= χ−1
1 |Ip

and, if r := g.c.d.(N − 1, 12) then χ1 |Ip has order dividing r.

Proof. We have χ2 |Ip= χ−1
1 |Ip because χ1χ2 = ǫ, which is unramified at p. If

E has good reduction at p then the action of Ip on E[N ] is trivial. If E has
multiplicative reduction at p then E is isomorphic, over an unramified extension of
Kp (which makes no difference when we restrict to Ip), to the Tate curve Eq, with

Eq(Kp) ≃ Kp

×
/qZ, where q is the Tate parameter. Now Eq[N ] ≃ (µN ×〈q1/N 〉)/qZ

has a submodule µN on which Gal(Kp/Kp) acts via ǫ (whose restriction to Ip is

trivial), and a quotient the image of 〈q1/N 〉 (on which Gal(Kp/Kp) acts via the
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trivial character). So in both cases, of good or multiplicative reduction, χ1 |Ip is
trivial. Similarly, if the reduction at p is bad but potentially multiplicative then
χ1 |Ip has order 2 (which divides r, since r is necessarily even). Finally, if the
reduction at p is bad but potentially good then, using a theorem of Serre and
Tate [30], as in [29, 5.6], χ1 |Ip could have order 2, 3, 4 or 6 (the possible orders of

non-trivial automorphisms of an elliptic curve), but since | F×

N |= N − 1, the only
possibilities are divisors of g.c.d.(N − 1, 12). �

Corollary 3.3. The character χr1 is unramified away from q, while χr1 |Iq= θrq.
The character χr2 is unramified away from q, while χr2 |Iq= θr

q
.

4. Congruences for units

Theorem 4.1. For a prime N > 5, let K/Q be a quadratic extension such that K
is the field of definition of some point P on Y0(N) mapping to Y +

0 (N)(Q). Suppose
that P can be represented by (E,C), where E/K is an elliptic curve without complex
multiplication, and with good reduction at primes dividing N . If u is any unit in OK
and (N) = qq, then ur ≡ 1 (mod q) and ur ≡ 1 (mod q), i.e. ur ≡ 1 (mod N),
where r := g.c.d.(N − 1, 12).

Proof. The character χ1 : Gal(Q/K) → F×

N factors through the abelianisation of

Gal(Q/K) hence, by global class field theory, through A×

K/K
×, necessarily killing

the connected components R>0 at real places and C× at complex places (embedded
in A×

K with 1 at all other places). Now χr1 : A×

K/K
× → F×

N is trivial on every local

O×
p for p 6= q, by Corollary 3.3, since this O×

p (embedded in A×

K with 1 at all other
places) is the image of the abelianisation of Ip under the global reciprocity map.
By [29, Proposition 3], if g ∈ Iq maps to s ∈ O×

q under the local reciprocity map,

then θq(g) = s−1 in F×

N , where ‘bar’ stands for the reduction mod q.

Viewing χr1 as a character from A×

K to F×

N , killing K×, it must kill u. But χr1
is trivial at all the real and complex places, and at all finite p 6= q, u lies in O×

p ,
on which χr1 is trivial. It follows then that for the local component χr1,q at q of χr1,
one has χr1,q(u) = 1. On the other hand, by Corollary 3.3 and the above, one also

has χr1,q(u) = u−r. Hence ur ≡ 1 (mod q). To prove the congruence mod q, we
apply the same argument with χ2 in place of χ1. It can also be deduced from the
congruence mod q by applying σ and using uσ = ±u−1. �

As already remarked, 2 | r. In the special case 2 = r, which is equivalent
to N ≡ 11 (mod 12), we will have u ≡ ±1 (mod q). Note that r need not be the
smallest positive integer m such that um ≡ 1 (mod N) for all units. In the example
in §5.2 below, where N = 43, we have r = 6 but m = 2.

The above theorem is really only of interest when K is real quadratic, since
when K is imaginary quadratic the only units satisfy ur = 1. The interest of the
imaginary quadratic case is in a different phenomenon, involving the appearance of
N in the values of L-functions of certain Hecke characters. We explain this from
§7 onwards.

The condition that E/K be without complex multiplication is easy to verify in
practice. Berwick gave a list of all 14 quadratic fields generated by j-invariants
of elliptic curves with complex multiplication [1]. They are Q(

√
m) with m =

2, 3, 5, 6, 7, 13, 17, 21, 29, 33, 37, 41, 61 or 89.



6 NEIL DUMMIGAN AND VASILY GOLYSHEV

The Weierstrass equation y2 = x3 − 27j(j − 1728)x + 54j(j − 1728)2 has j-
invariant j. It also has discriminant ∆ = j2(j − 1728)3, so defines an elliptic curve
with good reduction at primes dividing N as long as the norms of j and j − 1728
are not divisible by N .

For us N is prime, but we could modify the proof to work for general square-free
N , proving congruences modulo prime divisors of q, a prime number dividing N ,
with q > 5 and r now g.c.d.(q − 1, 12). According to Quer [23, Table 4] there are
eight square-free values of N for which X0(N)/WN has genus zero, which guar-
antees the existence of infinitely many quadratic Q-curves of degree N . They are
N = 6, 10, 14, 15,21, 26, 35 and 39. For all q | N here we have r = q − 1, so
that automatically ur ≡ 1 (mod q), and the theorem does not give us anything
interesting.

5. Examples

5.1. X+
0 (N) genus zero. Let X+

0 (N) be the nonsingular projective curve bira-
tional to Y +

0 (N). It has genus zero for precisely the following prime values of
N ≡ 11 (mod 12) : 11, 23, 47, 59, 71. González and Lario [14] showed how to
obtain a rational parametrisation of Y +

0 (N), working out the cases N = 11 and
N = 23 in detail. Quer used their method to work out the details for all cases,
giving a polynomial f(t) ∈ Z[t] [23, Table 1] such that if t ∈ Q represents a rational
point P ∈ Y +

0 (N)(Q) then the Galois conjugate points in the inverse image on

Y0(N) are defined over K = Q(
√
f(t)).

(1) When N = 11 we use González and Lario’s rational parametrisation of
Y +
0 (N), for which f(t) = (6 + t)(t3 − 2t2 − 76t − 212), since they also tell

us that j, jσ are roots of x2 − J1x+ J2, where

J1 = 8720000 + 19849600t+ 8252640t2 − 1867712t3 − 1675784t4 − 184184t5

+57442t6 + 11440t7 − 506t8 − 187t9 + t11,

J2 = (38800 + 21920t+ 4056t2 + 248t3 + t4)3.

When t = −8 we find K = Q(
√
122) and (11) = qq, with q = (11,

√
122−

1), q = (11,
√
122 + 1). The norms of j and j − 1728 are 21236 and 214316,

respectively. The fundamental unit u = 11−
√
122 is clearly ≡ −1 (mod q)

and 1 (mod q).

When t = −9 we find K = Q(
√
1257), and the norms of j and j − 1728

are −561673 and 23226472, respectively. (Note that the fact that the norm
of j is a cube (when N ≡ 2 (mod 3)) also follows from [Go, Proposition
1.2].) Using the computer package Magma we find a fundamental unit

u = 101399 − 2860
√
1257. Since 101399 ≡ 1 (mod 11) and 2860 ≡ 0

(mod 11), visibly u ≡ 1 (mod qq).
(2) When N = 59, Quer’s f(t) = (t3− t2− t−2)(t9−7t8+16t7−21t6+12t5−

t4 − 9t3 + 6t2 − 4t− 4). Letting t = −2, K = Q(
√
47968). A fundamental

unit is

u = 27672421205427535850325684101− 505395470410258019579528970
√
47968.

Since 27672421205427535850325684101 ≡ −1 (mod 59) and
−505395470410258019579528970 ≡ 0 (mod 59), we see directly that u ≡
−1 (mod qq). In this case we did not calculate the j-invariant.
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One easily checks that (in cases where u ≡ ±1 (mod N)), b ≡ 0 (mod N)
when NormK/Q = 1, while a ≡ 0 (mod N) when NormK/Q = −1.

5.2. X+
0 (N) genus one. X+

0 (N) has genus 1 for the following prime values of
N : 37, 43, 53, 61, 79, 83, 89, 101, 131. Yamauchi worked out an equation for the
canonical embedding in P2 of the genus 3 curve X0(43). A dehomogenisation is

x4 + 10x2y2 + 21y4 + 4x2y + 52y3 + 2x2 − 26y2 + 20y − 3 = 0.

He also showed that X+
0 (43) is the elliptic curve s2 + s = t3 + t2, and that the

quotient morphism of degree two is given by t = y
1−y , s =

x2+3y2+6y−1
4(y−1)2 [33]. Rear-

ranging, y = t
1+t and x2 = 4s(y − 1)2 − 3y2 − 6y + 1, which can be expressed in

terms of s and t.
If (t, s) is a rational point on X+

0 (43) then its inverse image points on X0(43)

are defined over K = Q(
√
x2). Plotting x2 = 0 as a curve in the (t, s)-plane, we

can identify the region x2 > 0, and find that only a small portion of the curve
s2 + s = t3 + t2 (approximately for s > 0 and −0.7 ≤ t ≤ 0.2) lies inside it. The
Mordell-Weil group X+

0 (43)(Q) is generated by P := (0, 0), and the first positive
multiple for which x2 > 0 is 12P =

(
−3629
7569 ,

71117
658503

)
. This gives x2 = 37·79·29611

24521972 , so

K = Q(
√
37 · 79 · 29611) = Q(

√
d), where d = 86552953. Using the long formulas

in [33, Section 2], the points on X0(43)(K) mapping to 12P represent elliptic curves
with j-invariants

(−756085166179320265296984452968269379228116825502930471115222326067869

73125±81269908873832888331766083959540493989077097178750929704296221303

39500
√
86552953)/9691808871033067112824380501725664483616416540730367659.

Since the norms of j and j − 1728 are

5672713644047036117333370009324593

1944
and

2347121259921493290301211923532737471659219312

1944

respectively, we have good reduction at primes dividing 43. (For more on the cubes
in the norm of j, see [Go].)

Using Magma we find a fundamental unit of the form u = a + b
√
d, where a

and b each have around 2800 digits, with a ≡ −1 (mod 43) and b ≡ 0 (mod 43),
so that u ≡ −1 (mod 43). As already remarked, Theorem 4.1 only gives us u6 ≡ 1
(mod 43), whereas in fact u2 ≡ 1 (mod 43).

5.3. X+
0 (N) genus > 1. There are only five known examples of Q-rational points

on Y +
0 (N) whereN is prime and the genus ofX+

0 (N) is greater than 1. The values of
N are 73, 103, 137, 191 and 311. These examples were discovered by Galbraith [13],
and those for N = 73, 103 and 191 independently by Elkies. Only for N = 103, 191
or 311 is K real quadratic.

(1) When N = 191, K = Q(
√
d) = Q(

√
61 · 229 · 145757). In OK we have

(191) = qq, with q = (191,
√
d− 54), q = (191,

√
d+54). The factorisations

of the norms of j and j − 1728 given in [13, Table 1] do not involve the
prime 191, so we may choose E/K within its K-isomorphism class to have
good reduction at q and q. Using Magma we find a fundamental unit of
the form u = a+ b

√
d, where a and b have 158 and 153 digits respectively,
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a ≡ 0 (mod 191) and b ≡ 46 (mod 191). Since 46 · 54 ≡ 1 (mod 191), we
have u ≡ 1 (mod q), and similarly u ≡ −1 (mod q).

(2) When N = 311, K = Q(
√
d) = Q(

√
11 · 17 · 9011 · 23629). In OK we have

(311) = qq, with q = (311,
√
d−42), q = (311,

√
d+42). Again, E has good

reduction at q and q. A fundamental unit is u = a + b
√
d, where a and b

each have just under 3000 digits, a ≡ 1 (mod 311) and b ≡ 0 (mod 311),
so u ≡ 1 (mod qq).

(3) When N = 103, K = Q(
√
2885), (103) = qq with q = (103,

√
2885 − 1),

q = (103,
√
2885+ 1), E has good reduction at q and q, and a fundamental

unit is u = (11011 − 205
√
2885)/2. One finds that u ≡ 47 (mod q) and

u ≡ 46 (mod q), so something appears to be wrong, but then we recall
the condition N ≡ 11 (mod 12), which, though holding for N = 191 and
N = 311, is not satisfied by N = 103, for which g.c.d.(N − 1, 12) = 6.
So Theorem 4.1 only gives us u6 ≡ 1 (mod qq) (with χ1 |Ip of order 3 or
6 for at least one prime p of bad but potentially good reduction). One
checks directly that 476 ≡ 1 (mod 103) and 463 ≡ 1 (mod 103). We have
g.c.d.(N − 1, 12) = 6 also in the case N = 43 above, but that time we were
lucky.

6. Modular forms with nebentypus, and Q-abelian varieties with

everywhere good reduction

Let D > 1 be a square-free integer with D ≡ 1 (mod 4). Let χD : (Z/DZ)× →
{±1} be the unique primitive quadratic character mod D (so χD(−1) = 1), and

let K = Q(
√
D), Gal(K/Q) = 〈σ〉. Let f =

∑∞

n=1 anq
n ∈ S2(Γ0(D), χD) be a

normalised, new, Hecke eigenform, and let F = Q({an}). Shimura [31, Section 7.7]
proved that F is a CM field. Let F ′ be its totally real subfield, and Gal(F/F ′) =
〈ρ〉. He also constructed an abelian variety A/Q, of dimension [F : Q], naturally
associated to f , with an injection from F into EndQ(A) ⊗ Q. This A is isogenous
to a factor of the jacobian of the modular curve X1(D), and may be chosen (in
its isogeny class) so that the ring of integers OF injects into EndQ(A). Shimura
constructed an abelian subvariety B, defined over K, such that A is isogenous over
K to B×Bσ, and OF ′ preserves B. Furthermore, if x ∈ OF with x 6= 0 and xρ = −x
then inside A, x gives an isogeny from B to Bσ, so B is a “Q-abelian variety”. Let
b be the ideal of OF generated by {x ∈ OF | xρ = −x}, c = NormF/F ′(b), and
let λ | b be a prime ideal dividing an odd rational prime q (if such a prime ideal
exists). Then λ′ := NormF/F ′(λ) is a prime ideal of OF ′ , with OFλ

′ = λ2 (see [31],
just after Remark 7.28’).

Shimura proved that B has good reduction at all primes of OK not dividing D.
Casselman [5] proved that in fact B has good reduction at all primes of OK , for the
examples examined by Shimura, namely D = 29, 37, 41 (for which B is an elliptic
curve), D = 53, 61, 73 (for which B is an abelian surface) and D = 89, 97 (for which
B is an abelian three-fold). See the table on p. 207 of [31]. In the general case,
Deligne and Rapoport showed [8, V.3.7(iii)] that a certain subfactor of the jacobian
of X1(D) (take their H to be the kernel of χD) has good reduction at all primes of
OK . Since B is isogenous to a factor in the isogeny decomposition of this subfactor,
it then follows from the criterion of Néron-Ogg-Shafarevich [30, Theorem 1] that B
too has everywhere good reduction. The elliptic curve for D = 29 was discovered
independently by Tate (via a Weierstrass equation) and studied by Serre [29, 5.10].
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The abelian surface for D = 53 has been realised as the jacobian of an explicitly
given curve of genus 2, and good reduction proved directly, by Dembélé and Kumar
[9]. We should mention that Shimura’s purpose in [31, Section 7.7] is the explicit
construction of ray class fields of real quadratic fields.

Ohta proved [22, Theorem 2] that if u0 is a fundamental unit of K, chosen
totally positive if NormK/Q(u0) = 1, then NormK/Q(u0 − 1) ≡ 0 (mod q), from
which it easily follows that u ≡ ±1 (mod q) for any prime divisor of q in OK .
This was observed experimentally by Shimura (see just before Proposition 7.34
in [31]). A nice example is D = 97, for which q = 467. A fundamental unit is

u = 5604− 569
√
97 ≡ 0− 569 · 87 ≡ −1 (mod q), where q = (467,

√
97− 87).

Our proof of Theorem 4.1 employs essentially the same argument as Ohta. In
place of our χ1, he considers the character by which Gal(Q/K) acts on the one-
dimensional Fλ′ -vector space B(Q)∩A[λ]. For the determination of the restriction
to Iq in terms of fundamental characters, he uses results of Raynaud [24] in place
of [29, Proposition 11], which is specific to one-parameter formal groups so applies
only to elliptic curves. It is not necessary to worry about the restriction to Ip for
p 6= q, thanks to the everywhere good reduction. His argument for q not being inert
in K is different.

Note that the representation of Gal(Q/Q) on the 2-dimensional Fλ-vector space
A[λ] has dihedral image. For a converse of Ohta’s theorem, identifying divisors of
NormK/Q(u0 − 1) as the characteristics of dihedral residual representations, and
generalisations to higher weights and non-primitive quadratic characters, see the
work of Koike, Hida, and Brown and Ghate [21, 17, 3]. It is known, by theorems of
Khare-Wintenberger and Ribet, [20, Corollary 10.2(i)], [26, Theorem 6.1] that every
Q-curve “is modular”, yet our Theorem 4.1 cannot be a corollary of [3, Theorem
2.1], for at least two reasons. Theorem 4.1 includes cases where r > 2, but even in
the case r = 2, [3, Theorem 2.1] can apply only to elliptic curves with everywhere
potentially good reduction (by [8, V.3.7(iii)]), hence not, for example, to the curve
in §5.2, which has multiplicative reduction at some divisor of 19.

7. Congruences with Hecke characters

In the remainder of the paper we concentrate on the case where K is imaginary
quadratic. The first part of the following proposition is well-known.

Proposition 7.1. Let K be an imaginary quadratic field, and let s = #O×

K , so

that s = 4 when K = Q(i), 6 when K = Q(
√
−3), and 2 otherwise.

(1) There exists a finite extension L of K, and a continuous homomorphism

ψ̃ : A×

K → L× such that

(a) ψ̃|C× and ψ̃|O×

p
(for any finite prime p) are trivial;

(b) ψ̃(α) = αs for all α ∈ K×.

In other words, ψ̃ is an algebraic Hecke character of type (s, 0). In (a), each
local completion is embedded in A×

K by putting 1 in the other components,

while in (b), K× is embedded diagonally in A×

K .
(2) Suppose that E/K is a quadratic Q-curve of prime degree N > 5, without

complex multiplication, and with good reduction at the primes q, q dividing
N . Let χ1 and q be as at the beginning of §3, and r = g.c.d.(N − 1, 12).
Then s | r. Let λ be a divisor of q in L. Define ψ : A×

K → L×

λ by ψ(a) :=

(ψ̃(a))r/s/arq. Then ψ|K× is trivial, and since ψ|C× is also trivial, ψ may be
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identified, by global class field theory, with a character ψ : Gal(Q/K) → L×

λ ,
factoring through the Galois group of the maximal abelian extension of K.
The image of ψ is contained in O×

λ , and letting ψ : Gal(Q/K) → F×

λ be the
reduction, we may choose ψ so that

ψ = χr1.

Proof. (1) Having specified condition (a), it remains to show that ψ̃(p) (i.e.

ψ̃(πp), which is independent of the choice of uniformiser πp), may be chosen,
for each finite prime p, in such a way that (b) also holds. Let p1, . . . , pt
represent independent generators of the ideal class group of OK , with pi of
order ci and pcii = (βi), with βi ∈ K×. Choosing the pi also to be integral

ideals, βi ∈ OK . We must have (ψ̃(pi))
ci = βsi (which is well-defined,

independent of the choice of βi up to a unit), so we set ψ̃(pi) = (βsi )
1/ci

in some extension of K. Now take p a prime ideal different from the pi.
Then there exist ai ∈ Z and γ ∈ K× such that p = (

∏t
i=1 p

ai
i )(γ), so we set

ψ̃(p) = (
∏t
i=1(ψ̃(pi))

ai)γs, which again is well-defined, and clearly leads to
(b) being satisfied.

(2) By Proposition 3.1, N splits in OK , so N ≡ 1 (mod 4) if K = Q(i) and
N ≡ 1 (mod 3) if K = Q(

√
−3). Since also N is odd, it is now easy to see

that s | r. If a ∈ K× then ψ(a) := (ψ̃(a))r/s/arq = ar/ar = 1, as required.
If in the proof of (1) we choose the pi to be different from q, we see that all

the ψ̃(p) are integral at λ.

Because of the choices of the (βsi )
1/ci , ψ̃ is in general not unique, but

may be adjusted by a character of the class group of OK . At any finite
prime p, the abelianisation of the inertia group, Iabp , is identified with the

image, under the Artin map, of O×
p (embedded in A×

K with 1 at all the other

components). Since ψ̃|O×

q
is trivial, by (1)(a), ψ|Iq maps s ∈ O×

q to s−r

and so by [29, Proposition 3] (already referred to in the proof of Theorem
4.1), ψ|Iq = θrq. By Corollary 3.3, ψ/χr1 : Gal(Q/K) → F×

λ is everywhere
unramified, hence identifiable with a character of the class group. Since
such a character lifts to L×

λ , we may choose a different ψ if necessary, to

ensure that ψ = χr1.
�

8. The Bloch-Kato conjecture

Consider ψ̃ : A×

K → L× as in Proposition 7.1. From now on we assume that
r = 2, i.e. that N ≡ 11 (mod 12) (so also s = 2). We use the same notation as in
the previous section. Consider the L-function

L(ψ̃, s) =
∏

p

(1− ψ̃(p)(Np)−s)−1,

where the product is over all prime ideals p of OK . We may also write L(ψ̃, s) =∑
a
ψ̃(a)(Na)−s, where the sum is over all non-zero integral ideals of OK . For p 6= q

the Euler factor at p is (1−ψ−1(Frob−1
p )(Np)−s)−1, in fact L(ψ̃, s) is the L-function

attached to the λ-adic representation ψ−1 of Gal(Q/K), or equivalently IndQK(ψ−1)

of Gal(Q/Q). If K has discriminant −D then by a theorem of Hecke, for which

a convenient reference is [18, Theorem 5.1.4],
∑

a
ψ̃(a)qNa is the q-expansion of a
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cusp form of weight k = 3 = r + 1 for Γ1(D), with character χK , i.e. the Legendre

symbol
(
−D
)
. Fixing ψ̃, we call this form f . If Σ is a finite set of prime numbers,

we put LΣ(ψ̃, s) =
∏

p/∈ΣK
(1−ψ̃(p)(Np)−s)−1, where ΣK is the set of prime divisors

in OK of primes in Σ. We shall assume that Σ contains all the prime divisors of D,
and that it does not contain N .

Attached to ψ̃ is a “premotivic structure”Mψ̃ over Q with coefficients in L. Thus

there are 2-dimensional L-vector spaces Mψ̃,B and Mψ̃,dR (the Betti and de Rham

realisations) and, for each finite prime λ of OL, a 2-dimensional Lλ-vector space
Mψ̃,λ, the λ-adic realisation. These come with various structures and comparison

isomorphisms, such asMψ̃,B⊗LLλ ≃Mψ̃,λ. See [10, 1.1.1] for the precise definition
of a premotivic structure. In our case the premotivic structures come from elliptic
curves with complex multiplication, as described in [19, 15.7], see also [28, I.4.1.3].
Note that those are premotivic structures over K, but we are restricting the field
of definition from K to Q, turning rank-1 into rank-2. Though temporarily λ
has denoted any finite prime of OL, from now on we are only interested in the
particular choice of λ in the previous section. The λ-adic realisation Mφ̃,λ comes

with a continuous linear action of Gal(Q/Q). This is by IndQK(ψ−1).

On Mψ̃,B there is an action of Gal(C/R), and the eigenspaces M±

ψ̃,B
are 1-

dimensional. On Mψ̃,dR there is a decreasing filtration, with F j a 1-dimensional
space precisely for 1 ≤ j ≤ k − 1 = 2. The de Rham isomorphism Mψ̃,B ⊗L C ≃
Mψ̃,dR ⊗L C induces isomorphisms between M±

ψ̃,B
⊗ C and (Mψ̃,dR/F )⊗ C, where

F := F 1 = F 2. Define Ω± to be the determinants of these isomorphisms. These
depend on the choice of L-bases for M±

ψ̃,B
and Mψ̃,dR/F , so should be viewed as

elements of C×/L×. For 1 ≤ j ≤ 2, the Tate-twisted premotivic structure Mψ̃(j)

is critical (i.e. the above map is an isomorphism, with F = F j), and its Deligne

period c+ (see [7]) is (2πi)jΩ(−1)j . Deligne’s conjecture for Mψ̃(j), known in this

case, asserts then that L(ψ̃, j)/(2πi)jΩ(−1)j is an element of L. The points j = 1
and j = 2 are paired by the functional equation, and we shall concentrate on j = 2.

We would like to choose L-bases for Mψ̃,B and Mψ̃,dR, to pin down Ω := Ω+

locally at λ. We shall choose O(λ)-lattices Mψ̃,B in Mψ̃,B and Mψ̃,dR in Mψ̃,dR.

(Here O(λ) is a localisation, not a completion.) We get these from the integral
structures described in [19, 15.7]. With these choices it is still natural to talk of an

element “LΣ(ψ̃, 2)/(2πi)
2Ω” of L×

λ /O
×

λ , and the Bloch-Kato conjecture predicts its
order at λ.

A comparison isomorphism identifies Mψ̃,λ := Mψ̃,B ⊗ Oλ with a Gal(Q/Q)-

stable Oλ-lattice in Mψ̃,λ. For ease of notation we now let Ṽ :=Mψ̃,λ, T̃ := Mψ̃,λ,

and W̃ := Ṽ /T̃ .
Following [2, Section 3], for p 6= N and j ∈ Z, let

H1
f (Qp, Ṽ (j)) = ker

(
H1(Dp, Ṽ (j)) → H1(Ip, Ṽ (j))

)
.

Here Dp is a decomposition subgroup at a prime above p, Ip is the inertia subgroup,

and Ṽ (j) is a Tate twist of Ṽ . The cohomology is for continuous cocycles and
coboundaries. For p = N (which is the rational prime that λ divides) let

H1
f (QN , Ṽ (j)) = ker

(
H1(DN , Ṽ (j)) → H1(DN , Ṽ (j)⊗QN

Bcrys)
)
.
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(See [2, Section 1] for the definition of Fontaine’s ring Bcrys.) There is a natural
exact sequence

0 −−−−→ T̃ (j) −−−−→ Ṽ (j)
π−−−−→ W̃ (j) −−−−→ 0.

Let H1
f (Qp, W̃ (j)) = π∗H

1
f (Qp, Ṽ (j)). Define the λ-Selmer group H1

Σ(Q, W̃ (j))

to be the subgroup of elements of H1(Q, W̃ (j)) whose local restrictions lie in

H1
f (Qp, W̃ (j)) for all primes p /∈ Σ. Recall that Σ is a finite set of primes, containing

all the prime divisors of D, but not containing N .
The following is a reformulation of the λ-part of the Bloch-Kato conjecture, as

in (59) of [10], similarly using the exact sequence in their Lemma 2.1.

Conjecture 8.1 (Case of λ-part of Bloch-Kato).

(1) ordλ

(
LΣ(ψ̃, 2)

(2πi)2Ω

)
= ordλ

(
Tam0

λ(W̃ (2)) #H1
Σ(Q, W̃ (1))

#H0(Q, W̃ (1))

)
.

We omit the definition of the Tamagawa factor Tam0
λ(W̃ (2)), but note that (since

N > k = 3), its triviality is a direct consequence of [2, Theorem 4.1(iii)]. It is also

easy to see that H0(Q, W̃ (1)) is trivial, so in fact the conjecture predicts that

ordλ

(
LΣ(ψ̃, 2)

(2πi)2Ω

)
= ordλ(#H

1
Σ(Q, W̃ (1))).

Note that if A is a finite Oλ-module then #A denotes its Fitting ideal.

Proposition 8.2.

ordλ

(
LΣ(ψ̃, 2)

(2πi)2Ω

)
≥ ordλ(#H

1
Σ(Q, W̃ (1))).

This follows from results of Kato [19, Proposition 14.21(2), 15.23], which rely on
earlier work of Rubin [27]. Note that our λ is one of the “almost all” primes in [19,

15.23], since T̃ /λT̃ is an irreducible representation of Gal(Q/Q).

9. Construction of an element in a Selmer group

Our goal in this section is to construct a non-zero element of H1
Σ(Q, W̃ (1)),

for a suitable choice of Σ, using the congruence ψ = χ2
1 from (2) of Proposi-

tion 7.1. Recall from §2 the bases {e1, e2}, {f1, f2} for the N -adic Tate modules
TN (E), TN (Eσ). Consider the free rank-4 ZN -module TN (E) ⊗ TN (Eσ). This is
isomorphic to Hom(TN (E), TN (Eσ))(1), where the identification of TN (E) with
Hom(TN (E),ZN (1)), via the Weil pairing, is such that e2 : e1 7→ 1, e1 : e2 7→ −1.
Ignoring the Tate twist, −e1 ⊗ f1 + Ne2 ⊗ f2 is the element of TN (E) ⊗ TN (Eσ)
corresponding to the map TN (E) → TN (Eσ) induced by φ, since φ(e2) = f1 and
φ(e1) = Nf2. (One may also think of this as a projection of the cycle-class of the
graph in H2(E×F,ZN )(1).) Its orthogonal complement, with respect to the bilin-
ear pairing of TN (E)⊗ TN (Eσ) induced by the Weil pairings (i.e. the intersection
pairing on H2(E×F )), is T := 〈e1⊗f1+Ne2⊗f2, e2⊗f1, e1⊗f2〉ZN

. With respect
to this basis, the action of g ∈ Gal(Q/K) (as in §2) on this invariant submodule

is by the matrix



ad+ bc bd ac/N
2cd d2 c2/N
2Nab Nb2 a2


, c.f. [15, Section 3]. By considering the
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second cohomology of the Weil restriction of scalars (from K to Q) of E (or Eσ),
we see that the action of Gal(Q/K) on TN (E) ⊗ TN (Eσ) extends to Gal(Q/Q).
A complex conjugation σ ∈ Gal(Q/Q) acts by switching the factors, using the
map induced by the conjugation isomorphism E ≃ Eσ, which is (x, y) 7→ (x, y),
equivalently z (mod Λ) 7→ z (mod Λ). This has the effect of swapping each ei
with the corresponding fi, and Gal(Q/Q) preserves T, with σ acting by the matrix

1 0 0
0 0 1
0 1 0


 .

On T/NT, g ∈ Gal(Q/K) acts by



ad bd a(c/N)
0 d2 0
0 0 a2


. Looking also at the

matrix by which σ acts, we see that T/NT is an extension of a 1-dimensional
submodule spanned by (the image of) e1 ⊗ f1 + Ne2 ⊗ f2, by a 2-dimensional
quotient. On the submodule, Gal(Q/Q) acts via the character ǫχK , since ad = ǫ(g)
but ǫ(σ) = −1, while it follows from the fact that a2 = χ2

1(g) = ψ(g) that the

quotient is isomorphic to IndQK(ψ). Let T be T with the Gal(Q/Q)-action multiplied

by χK . Then T/NT is an extension of ǫ (the cyclotomic character) by χKIndQK(ψ).

But χKIndQK(ψ) ≃ IndQK(ψ), so we have an extension of ǫ by IndQK(ψ). We would
like to use this to produce a Galois cohomology class that will give us the required
non-zero element of H1

Σ(Q, W̃ (1)). The trouble is, if the extension is trivial then
the class will be zero. Before addressing this problem, we need the following lemma.

Lemma 9.1. The 3-dimensional representation V := T ⊗ZN
QN of Gal(Q/Q) is

irreducible.

Proof. Let VN (E) := TN (E)⊗QN and VN (Eσ) := TN (Eσ)⊗QN . If V is not irre-
ducible, then it has a 1-dimensional subquotient, necessarily reducing to ǫ, so a finite
order character times the N -adic cyclotomic character. Restricting to Gal(Q/F ),
for F sufficiently large, we may remove the finite order character. If the subquotient
is a submodule, we get an element of HomGal(Q/F )(VN (E), VN (Eσ)), not a multiple

of the graph of φ. By Faltings’ Theorem [12, Theorem 4, Corollary 1], there is an
isogeny from E to Eσ, defined over F , independent of φ, contrary to E not having
complex multiplication. If the subquotient is not a submodule, we may apply the
same argument to HomGal(Q/F )(VN (Eσ), VN (E)). �

It now follows, by imitating the proof of a well-known result of Ribet [25, Propo-
sition 2.1], that for some Gal(Q/Q)-invariant ZN -lattice T ′ in V , T ′/NT ′ is a non-

trivial extension of ǫ by IndQK(ψ). In a standard way, this gives us a non-zero class

γ ∈ H1(Gal(Q/Q),HomFN
(IndQK(ψ), ǫ)) ≃ H1(Q, IndQK(ψ

−1
)(1)). In the notation

of the previous section, this is H1(Q, (T̃ /NT̃ )(1)). The inclusion i : T̃ /NT̃ →֒ W̃

gives us δ := i∗(γ) ∈ H1(Q, W̃ (1)), and δ 6= 0 since H0(Q, W̃ ) is trivial.

Theorem 9.2. Let Σ = {p | D} ∪ Σ′, where p ∈ Σ′ ⇐⇒ no quadratic twist of

E/K has good reduction at all divisors of p. Then d ∈ H1
Σ(Q, W̃ (1)).

Proof. If p 6= N and p /∈ Σ, then T is unramified at p, i.e. the action of Ip is trivial.
(Note that in TN (E) ⊗ TN (Eσ), E may be replaced by a quadratic twist without
changing the representation.) Reducing modulo N , Ip acts trivially on T/NT , so

clearly γ, and hence δ, is trivial on Ip. It follows that resp(δ) ∈ H1
f (Qp, W̃ (1)),
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as explained in the proof of [4, Lemma 7.4]. That resN (δ) ∈ H1
f (QN , W̃ (1)) is an

almost immediate consequence of the second part of [10, Proposition 2.2]. �

Corollary 9.3. ordλ

(
LΣ(ψ̃,2)
(2πi)2Ω

)
> 0.

10. A further example

Revisiting the case N = 11 from 5.1(1), putting t = −3 gives K = Q(
√
−87),

j = −34481 + 16588
√
−87. The class group of OK is cyclic of order 6. The

Weierstrass equation y2 = x3 − 27j(j − 1728)x + 54j(j − 1728)2 has j-invariant
j, ∆ = j2(j − 1728)3, c4 = j(j − 1728) and c6 = −j(j − 1728)2. We find that
NormK/Q(j) = 2931013, while NormK/Q(j − 1728) = 131212132. In OK , (29) =

(29,
√
−87)2, (101) = (101,

√
−87 + 32)(101,

√
−87 − 32), (131) = (131,

√
−87 +

31)(131,
√
−87− 31), (1213) = (1213,

√
−87 + 139)(1213,

√
−87− 139), and

(j) = (29,
√
−87)3(101,

√
−87 + 32)3,

(j − 1728) = (131,
√
−87− 31)2(1213,

√
−87− 139)2.

Simultaneously making a quadratic twist and changing the equation, replacing x
by ux, y by u3/2y, ∆ 7→ u6∆, c4 7→ u2c4 and c6 7→ u3c6. If p is any of the prime
ideals (29,

√
−87), (101,

√
−87 + 32), (131,

√
−87− 31) or (1213,

√
−87− 139) (i.e.

the possible primes of bad reduction), by choosing u with ordp(u) = −1 we get a
quadratic twist with good reduction at p. So in this case, Σ′ = ∅ and Σ = {3, 29}.

If p is a prime of OK such that p2 = (3) or p2 = (29) then ψ̃(p) = ±3 or ±29,
so the missing Euler factors, evaluated at s = 2, are (1± 3−1)−1 and (1± 29−1)−1.

Since 3 6≡ ±1 (mod 11) and 29 6≡ ±1 (mod 11), ordλ

(
LΣ(ψ̃,2)
(2πi)2Ω

)
= ordλ

(
L(ψ̃,2)
(2πi)2Ω

)
,

so Corollary 9.3 shows that ordλ

(
L(ψ̃,2)
(2πi)2Ω

)
> 0.

The computer package Magma has a command “Lratio” which computes the
product (over the Galois conjugates of f) of such L-values, divided by some period.
In fact it computes this rational number exactly using modular symbols, without
having to approximate either the numerator or the denominator; see [32, Theorem
3.41]. In §8 above, we could have used a premotivic structure (and an S-integral
premotivic structure) attached to the newform f , constructed using the cohomology
of modular curves (hence close to modular symbols), as in [10, 1.6.2], instead of

that attached to ψ̃ using elliptic curves with complex multiplication. The only
difference this might make is that we should substitute a different period Ω′ for
Ω, but they ought to be the same. See the comment immediately preceding [19,
15.12]. The period used by Magma can be related to our Ω′ sufficiently well to
show that we should see a factor of 11 in the numerator of this Lratio. To justify
this, we need conditions that 11 does not divide the class number of OK (which
is true in our case) and that 11 is not a prime of congruence between the Galois
conjugacy class of f and its orthogonal complement in S3(Γ1(87), χK) (which can
be checked using Magma). We find that S3(Γ1(87), χK) is 18-dimensional, and
that the Galois conjugacy classes of newforms span subspaces of dimensions 3, 3
and 12. The two subspaces of dimension 3 must account for the 6 unramified
algebraic Hecke characters of type (2, 0), of which one is ψ̃, associated with the
newform f . One of these subspaces has Lratio 11/2, the other 1/4, so f must
belong to the first one, and we can check this directly as follows. In OK , (17) =
pp = (17,

√
−87 − 7)(17,

√
−87 + 7). We find j ≡ 1 (mod p) and j ≡ 6 (mod p).
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Using this to reduce the Weierstrass equation for E, we can count the number of
points, and find that if E(Fp) = 1 + 17 − ap then ap = 6, and similarly ap = −6.
Since ap ≡ χ1(p) + χ2(p) ≡ χ1(p) + 17/χ1(p) (mod 11), we find that χ1(p) = −2
or −3 in F11, while χ1(p) = 2 or 3, so χ2

1(p) = 4 or −2. The two 3-dimensional
spaces contain newforms with coefficients generating the same cubic field, which
has a unique prime divisor of norm 11, modulo which the coefficient a17(f) must

be congruent to ψ̃(p) + ψ̃(p) ≡ χ2
1(p) + 172/χ2

1(p) ≡ 2. This puts f in the first
space, with Lratio 11/2. (For the other one a17(f) would have to be congruent to
−2 instead.)
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