This is an author produced version of a paper published in *Proceedings of the National Academy of Sciences of the United States of America*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/10759

Published paper

http://dx.doi.org/10.1073/pnas.0913485107
Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin

Elena Ziviania,b, Ran N. Taoa,b, Alexander J. Whitwortha,b

aMRC Centre for Developmental and Biomedical Genetics, and bDepartment of Biomedical Sciences, University of Sheffield, Sheffield, S10 2TN, UK.

Keywords: Parkinson disease, neurodegeneration, parkin, PINK1, Mfn, mitochondrial dynamics, ubiquitination, Drosophila.

Corresponding author:
Dr Alexander Whitworth
Tel: + 44 114 222 1084
Fax: + 44 114 276 5413
e-mail: a.whitworth@sheffield.ac.uk
Abstract

Loss of the E3 ubiquitin ligase Parkin causes early onset Parkinson disease, a neurodegenerative disorder of unknown etiology. Parkin has been linked to multiple cellular processes including protein degradation, mitochondrial homeostasis and autophagy, however, its precise role in pathogenesis is unclear. Recent evidence suggests Parkin is recruited to damaged mitochondria, possibly affecting mitochondrial fission and/or fusion, to mediate their autophagic turnover. The precise mechanism of recruitment and the ubiquitination target are unclear. Here we show in Drosophila cells that PINK1 is required to recruit Parkin to dysfunctional mitochondria and promote their degradation. Furthermore, PINK1 and Parkin mediate the ubiquitination of the pro-fusion factor Mfn on the outer surface of mitochondria. Loss of Drosophila PINK1 or parkin causes an increase in Mfn abundance in vivo and concomitant elongation of mitochondria. These findings provide a molecular mechanism by which the PINK1/Parkin pathway affects mitochondrial fission/fusion as suggested by previous genetic interaction studies. We hypothesize that Mfn ubiquitination may provide a mechanism by which terminally damaged mitochondria are labeled and sequestered for degradation by autophagy.

Introduction

Parkinson disease (PD) is a common, neurodegenerative disorder principally affecting the degeneration of nigral dopaminergic neurons. The pathogenic mechanisms are unknown but valuable insight has been gained from identifying gene mutations causative for familial forms of PD (1). Loss-of-function mutations in PINK1 and parkin are the major cause of autosomal recessive, early onset PD. PINK1 encodes a mitochondria targeted kinase (2) while parkin encodes an E3 ubiquitin
ligase (3); a class of enzymes which conjugate ubiquitin to target substrates. This modification is usually considered in the context of substrate degradation by the proteasome, but ubiquitination also serves many other cellular functions. Consequently, much emphasis has been put on elucidating a link between Parkin dysfunction and protein aggregation. Despite the identification of numerous putative Parkin substrates, an unequivocal causative link between substrate aggregation and pathogenesis remains debatable.

There is strong evidence, however, that supports an important role for Parkin in regulating mitochondrial homeostasis (4). Studies have revealed a conserved function of Parkin acting downstream of PINK1 to protect mitochondrial integrity and prevent oxidative stress-induced apoptosis (5-8). Recently, we and others have reported that Drosophila parkin and PINK1 genetically interact with components of the mitochondrial fission and fusion machinery (9-12), suggesting that loss of PINK1/parkin function may lead to excess mitochondrial fusion. Consistent with this, mitochondrial elongation has been reported in cells derived from PD patients with parkin mutations (13). However, the effects of parkin or PINK1 deficiency in mammalian cells remain unresolved since additional reports describe inconsistent phenotypes in PINK1 and parkin deficient cells (6, 14-17). The reasons for this discrepancy are unclear but warrant further clarification.

Important insight into the mechanism by which Parkin regulates mitochondrial homeostasis has revealed that upon mitochondrial depolarization Parkin translocates from the cytoplasm to accumulate on a subset of mitochondria, and promotes their degradation by autophagy (18). It has also been proposed that regulated mitochondrial fission/fusion helps sort out damaged mitochondria for degradation (19-21). These findings raise the possibility that Parkin receives some signal identifying dysfunctional or damaged mitochondria, translocates and interacts with an unknown factor, to effect mitochondrial fission and/or fusion and promote mitophagy (22).
Here we show that PINK1 is required for the recruitment of Parkin to damaged mitochondria and subsequent mitophagy, consistent with recent reports (23-25). Furthermore, we show that PINK1 and Parkin promote the ubiquitination of the pro-fusion factor Mfn. These findings suggest Mfn ubiquitination may provide a mechanism by which terminally damaged mitochondria are recognized for degradation by autophagy.

Results

PINK1 and Parkin knockdown causes mitochondrial elongation

Our previous genetic interaction studies in vivo, using both loss- and gain-of-function assays, indicate that Drosophila PINK1 and Parkin act to promote fission and/or inhibit fusion of mitochondria. To extend this study we quantified mitochondrial morphology upon loss- or gain-of-function of parkin and PINK1, alongside key regulators of mitochondrial morphology, in Drosophila S2R+ cells.

RNA interference (RNAi) can be robustly achieved in Drosophila cells by incubation of long double stranded RNA molecules complementary to the target gene (26). We performed targeted RNAi against PINK1, parkin and the Drosophila homologs of Drp1, Fis1, Opa1, and Mfn1/2 (here called Mfn). RNAi of these targets typically caused ~90% knockdown of the endogenous message after 3 days (Fig. S1). We found that sample fixation grossly altered the mitochondrial morphology (Fig. S2A), so for this study cells were imaged live using the selective mitochondrial dye rhodamine 123 (Fig. 1A,C). As expected we found that knockdown of the pro-fission genes Drp1 and Fis1 resulted in elongated mitochondria whereas knockdown of pro-fusion genes Opa1 and Mfn (also known as Marf) resulted in fragmented mitochondria. We found that knockdown of PINK1 or parkin caused a significant elongation of mitochondrial length. Elongated mitochondria were also seen when transfected mitoGFP was used to label mitochondria (Fig. S2B). Conversely,
overexpression of Opa1 and Mfn caused a hyper-fused network while overexpression of Drp1 and Fis1 caused fragmentation (Fig. 1B,D). Overexpression of parkin also caused fragmentation, however, the effect of PINK1 was not significant, suggesting PINK1 may not be limiting or may need to be activated itself to ectopically promote fragmentation.

The relative levels of key mitochondrial morphology factor transcripts were unchanged by parkin or PINK1 knockdown (Fig. S3A), indicating the morphology changes do not occur from a transcriptional response altering the abundance of fission of fusion genes. Also, in contrast to a previous report (8), we find Parkin protein levels are not changed in a PINK1 mutant (Fig. S3B). Together these observations are consistent with the PINK1/Parkin pathway modulating the action of mitochondrial fission/fusion proteins to alter morphology.

PINK1 is required for Parkin translocation and Parkin-mediated mitophagy.

The recent study by Narendra et al. revealed an important insight into the function of Parkin, reporting it translocates to dysfunctional mitochondria and promotes mitophagy (18). We sought to determine whether this was a conserved function. In wild type Drosophila cells Parkin-GFP typically showed a diffuse localization throughout the cytoplasm with occasional accumulations at mitochondria (Fig. 2A, and Fig. S4). Upon treatment with the mitochondrial uncoupling agent carbonyl cyanide m-chlorophenylhydrazone (CCCP) or the oxidative stressor paraquat a large proportion of cells showed Parkin-GFP accumulated at or near mitochondria (Fig. 2A, and Fig. S5), while overall Parkin-GFP abundance remained constant (Fig. S3C). Prolonged exposure to CCCP also led to the autophagy dependent, but proteasome independent, loss of mitochondria (Fig. 2B, and Fig. S6). Consistent with previous reports Parkin was also required for CCCP-induced mitophagy in Drosophila cells (Fig. 2B).
To extend this observation we addressed whether PINK1, which acts upstream of Parkin, may affect the recruitment of Parkin to mitochondria and their autophagic degradation. Following PINK1 RNAi knockdown, CCCP or paraquat induced Parkin-GFP recruitment to mitochondria was prevented (Fig. 2C,D). In addition, loss of PINK1 also abrogated mitophagy (Fig. 2B). These data are consistent with PINK1 acting upstream to promote Parkin recruitment to dysfunctional mitochondria which in turn promotes their degradation.

Drosophila Mitofusin is ubiquitintated by PINK1/Parkin and accumulates in mutants

From the previous observations, we hypothesized that Parkin translocates to damaged mitochondria to alter their fission/fusion ability and promote their degradation, presumably via its ubiquitin ligase activity. Thus, we sought to determine if any of the key mitochondrial morphology factors may be modified by ubiquitin, and whether such modifications are Parkin dependent.

Flag-tagged forms of Drp1, Opa1 and Mfn were co-expressed with hemagglutinin (HA)-tagged ubiquitin (HA-Ub) in Drosophila cells. Western blot analysis of these proteins revealed a single major band of the predicted size for Drp1 (Fig. 3A, white arrow). Opa1 was present in a small amount of the full length form but predominantly in the processed form (Fig. 3A, white arrowhead), as previously reported (27). However, Mfn was detected as a number of high molecular weight isoforms (asterisks) in addition to the expected full length form (Fig. 3A, black arrowhead). The smallest Mfn isoform at ~91 kDa is consistent with the predicted size of the full length, unmodified form of Drosophila Mfn.

To assess whether these isoforms are ubiquitin modified, we performed co-immunoprecipitation experiments against HA-Ub. Immunoprecipitates of Flag-tagged Drp1, Opa1 and Mfn were prepared and Western blots were probed with an antibody
against HA. HA-positive bands were detected in the Mfn (asterisks) and Opa1 (white diamonds) samples but not Drp1 (Fig. 3A). Comparison with Western blots probed against Flag showed bands of equivalent size for Mfn-Flag (Fig. 3A, asterisks), consistent with these isoforms being ubiquitinated. The smallest Mfn isoform was not HA-Ub-positive (Fig. 3A, black arrowhead) consistent with this isoform being unmodified. Larger ubiquitinated isoforms of Opa1 are not detected by anti-Flag immunoblotting suggesting these are very low abundance.

We next tested whether this ubiquitination is Parkin dependent by performing the same analysis again following RNAi knockdown of parkin. We also addressed whether attenuating the pathway more generally may affect Mfn ubiquitination, so PINK1 RNAi knockdown was also performed. Western blots of whole cell lysates from parkin and PINK1 knockdown cells revealed a striking loss of the ubiquitinated forms of Mfn (Mfn-Ub) (Fig. 3B, asterisks; and Fig. S7A). Interestingly, this appeared to be accompanied by an accumulation of non-ubiquitinated Mfn. Following enrichment by immunoprecipitation low levels of Mfn-Ub were detected in parkin knockdown cells that were undetectable in whole cell lysates, likely reflecting incomplete RNAi knockdown. However, in PINK1 knockdown cells no ubiquitinated Mfn could be detected even upon immunoprecipitation (Fig. 3B). In contrast however, ubiquitinated forms of Opa1 were unchanged by the loss of parkin or PINK1 (Fig. 3B, white diamonds), suggesting this modification is not PINK1/Parkin dependent. Again no modification of Drp1 was observed or its abundance changed by parkin or PINK1 RNAi.

To gain further evidence that Mfn ubiquitination may be mediated by Parkin we tested whether they may physically interact. Immunoprecipitation assays revealed that upon co-expression Parkin-GFP is detected in precipitates of Mfn-Flag (Fig. 3C). Together these data strongly support that Parkin mediates the ubiquitination of Mfn.
We sought to extend this observation in vivo. Using antibodies against Drosophila Mfn we could detect full length Mfn and high molecular weight Mfn-Ub (Fig. 3D), consistent with that seen in vitro. These bands were absent upon Mfn RNAi knockdown in vivo (Fig. 3D) indicating the specificity of the antiserum. Consistent with our in vitro results, Mfn-Ub was greatly reduced in a parkin mutant background (Fig. 3D).

We have shown that PINK1 is required for Parkin recruitment to mitochondria, however, previous genetic experiments in vivo have shown that overexpression of parkin can compensate for loss of PINK1. Therefore, we addressed whether overexpressing parkin may restore Mfn ubiquitination in the absence of PINK1. In PINK1 RNAi knockdown cells only unmodified Mfn was seen (Fig. 4A), however, when Parkin was overexpressed in PINK1 RNAi cells, the Mfn-Ub isoforms were again detected (Fig. 4A). Conversely, if PINK1 was overexpressed in parkin RNAi cells Mfn-Ub isoforms were not restored (Fig. 4B), consistent with genetic experiments showing PINK1 overexpression cannot compensate for loss of parkin in vivo.

Ubiquitination is a common signal for the degradation of proteins and organelles. Since evidence indicates Parkin and PINK1 promote mitophagy, we next assessed whether Mfn abundance is altered by loss of parkin and PINK1. The steady state levels of endogenous Drosophila Mfn were determined in vitro and in vivo. Western blot of control treated cells and wild type flies showed a band of the predicted full length Mfn which was absent in Mfn RNAi knockdown cells or flies (Fig. 5). parkin knockdown cells or park25 null mutant flies showed a significant increase in Mfn abundance (Fig. 5). Mfn was also significantly more abundant in PINK1 knockdown or PINK1B9 null mutant flies (Fig. 5). Interestingly, the level of Complex Vα did not appreciably increase (Fig. S7B), however, this technique is not sensitive to small changes. These data indicate Mfn levels accumulate upon loss of
PINK1/parkin, consistent with their role in mitophagy, but likely reflects turnover of a small proportion of the entire mitochondrial content.

Since our evidence suggests that Parkin is recruited to mitochondria where it may ubiquitinate Mfn we addressed whether Mfn is required for Parkin translocation. Parkin-GFP localization upon CCCP and paraquat treatment was monitored as before, and compared with Mfn RNAi knockdown cells. Under control conditions we saw Parkin-GFP translocation comparable to previous results, however, in the absence of Mfn, Parkin-GFP translocation was not eliminated but the prevalence was markedly reduced (Fig. 6). As before, the overall abundance of Parkin-GFP was unaffected by treatments in Mfn RNAi cells (Fig. S3C). These results indicate Mfn is not an absolute requirement for Parkin translocation.

Discussion

Maintenance of mitochondrial homeostasis appears to be an important function of the PINK1/Parkin pathway in multiple model systems and is likely a key factor in mediating neurodegeneration. Recent studies have begun to shed light on the potential mechanism by which this pathway maintains a healthy mitochondrial population. Emerging evidence indicates that PINK1 is required to recruit Parkin to damaged or dysfunctional mitochondria, whereupon it promotes mitophagy (23-25). Regulated mitochondrial fission and fusion events are thought to contribute to a quality control mechanism to help 'sort out' terminally damaged mitochondria for degradation (19-21). Importantly, PINK1 and parkin have previously been shown to genetically interact with components of the mitochondrial fission/fusion machinery and affect mitochondrial morphology (9-12), however, the molecular mechanisms are not known. Here we provide further evidence that PINK1 is required for Parkin translocation to damaged mitochondria and that this pathway affects mitochondrial
morphology. We also provide evidence that the PINK1/Parkin pathway promotes the ubiquitination and regulates the levels of the pro-fusion protein Mfn, thus providing a potential molecular mechanism by which PINK1/Parkin may modulate mitochondrial dynamics.

Consistent with recent reports (23-25), we find that the translocation of Parkin to damaged mitochondria and their subsequent autophagy is dependent on PINK1. However, the molecular mechanisms that promote Parkin's recruitment to mitochondria are still unclear. PINK1's kinase activity, but not mitochondrial localisation, appears to be necessary for Parkin translocation (23-25). Since PINK1 can be found extra-mitochondrially (27-30) and may directly phosphorylate Parkin (31, 32), this may be a mechanism to stimulate its translocation. Alternatively it may phosphorylate a Parkin substrate, e.g. Mfn, and thereby provide a recruitment signal. Interestingly, we find that loss of Mfn reduces but does not eliminate Parkin translocation. Recent evidence indicates Parkin also ubiquitinates VDAC on the outer mitochondrial surface (23), suggesting there may be multiple recruitment substrates. While further work will be required to elucidate these mechanisms, this provides a molecular basis for the genetic hierarchy in which PINK1 acts upstream of Parkin (5-8).

In order to understand the role of Parkin translocation we took a candidate approach to identify putative substrates. Since the function of Parkin and PINK1, has been linked with mitochondrial dynamics we surveyed key components of the mitochondrial fission and fusion machinery for ubiquitin modification. We found that Mfn, which localizes to the outer surface of mitochondria, is ubiquitinated in a PINK1/Parkin dependent manner and accumulates upon loss of PINK1 or parkin. Interestingly, the ubiquitinated isoforms do not show a typical ubiquitination 'ladder' but instead appear to reflect a pattern of one and three or four ubiquitin adducts. While it remains to be shown that Parkin directly mediates this ubiquitination, there is evidence that Parkin can mediate mono-ubiquitination (33-37), K27 (23) and K63
linkages (38, 39). These modes of ubiquitination are not typically linked to proteasome degradation, and there is growing speculation that important pathogenic functions of Parkin may be proteasome-independent (reviewed in (40)).

Numerous elegant studies have demonstrated that the mitochondrial network is extremely dynamic and responds rapidly and reversibly to many physiological changes including potentially toxic challenges such as oxidative stress and calcium flux (reviewed in (41, 42)). While mitochondrial remodeling can contribute to promoting cell death it can also act in a protective manner contributing to a quality control process that likely involves degradation by autophagy/lysosome. Recent work has reported observations that, following a fission event, regulated fusion of daughter mitochondria can determine whether they rejoin the network or are sequestered for degradation (19). Re-fusion appears to be dependent upon the recovery of mitochondrial membrane potential after division and likely represents a mechanism to 'sort out' terminally dysfunctional mitochondria (20). Since Mitofusins mediate the tethering and fusion of mitochondrial, via homo- and heterotypic interaction of their HR2 domains (43), we hypothesize that Parkin mediated Mfn ubiquitination may interfere with intermolecular interactions preventing fusion. Alternatively, Mfn ubiquitination may lead to a selective removal of Mfn from damaged mitochondria and thus reduce their re-fusion capacity of those mitochondria. Consistent with this, we find that loss of parkin or PINK1, and hence loss of ubiquitination, leads to increased Mfn levels and mitochondrial elongation, presumably due to excess fusion. Thus, Mfn ubiquitination may provide a signal that simultaneously prevents the re-fusion of terminally damaged mitochondria and labels them for safe degradation by autophagy (22).

It is reasonable to suppose that under normal conditions the majority of mitochondria are relatively 'healthy' and thus mitochondrial turnover is an infrequent event. This is supported by the observation that Complex V\(\alpha\) levels are not significantly altered by decreased mitophagy. However, this rationale implies that Mfn
accumulates and is selectively ubiquitinated on mitochondria targeted for
degradation but this remains to be shown. Interestingly, our findings provide a
molecular mechanism that can explain the previously reported genetic interactions
between PINK1 and parkin and the fission/fusion factors. In particular, that promoting
mitochondrial fragmentation, by overexpression of Drp1 or reduction of Mfn and
Opa1, is able to partially suppress the locomotor deficits, muscle degeneration and
mitochondrial abnormalities (9-12). Together these findings suggest that aberrant
accumulation of Mfn may mediate the loss of mitochondrial homeostasis caused by
loss of PINK1 or parkin. While further work will be needed to determine whether this
contributes to PD pathogenesis, our results support the emerging hypothesis that the
PINK1/Parkin pathway acts to regulate the safe degradation of terminally damaged
mitochondria as a quality control mechanism (22, 44).

Materials and Methods

Cell culture and transfection
S2R+ cells were cultured in Schneider’s medium (Invitrogen) supplemented with 5%
fetal calf serum (Sigma) and 1% penicillin-streptomycin (Invitrogen-Gibco). Cells
were transfected using Effectene reagent (Qiagen) following manufacturer’s
instructions and collected after 24-48hrs. 500µM copper sulfate solution was added
to the cells to induce plasmid expression when required. Where indicated cells were
treated with 10µM CCCP for 2 hrs or 10mM paraquat for 6 hrs.

RNAi treatment and quantification
Double stranded RNAs were prepared using MEGA script kit (Ambion). Primers used
to generate dsRNAs are described in Supplementary material. 1.2 million cells were
plated on 6 well plate and treated with 15µg dsRNA probe in serum free medium.
Two hours after probe treatment, complete medium was added to the wells and cells were cultured for 2 days before being transfected.

For mRNA quantification total RNA was extracted using TRI Reagent (Sigma) or RNeasy Mini Kit (Qiagen) following manufacturer’s instruction. 1.5µg total RNA was reverse-transcribed by using a random decamer primer (RETROscript kit, Ambion). Quantitative real-time PCR was performed using the SYBR Green Master Mix method (Sigma) with a Bio-Rad MyiQ system. Full details are in Supplementary Information.

Immunoblotting and immunoprecipitation

Standard protocols were used for Western blotting. The following commercial antibodies were used: anti-Complex Vα (1:5000, MitoSciences), anti-Flag (1:1000, Cell Signaling), anti-HA (1:1000, Cell Signaling), anti-Actin(1:10000, Chemicon), anti-α-Tubulin (1:10000, Sigma), and anti-GFP (1:2000, Abcam), and anti-Myc (1:1000, Cell Signaling). Anti-Parkin (1:3000) has been described before. Anti-Mfn (1:2000) was raised in rabbit against an N-terminal peptide, DTVDKSGPGSPLSRF. Detection was done using HRP-conjugated secondary antibodies and ECL chemiluminescence. For immunoprecipitation cells were lysed in standard lysis buffer (see SI for details). Anti-Flag (1:50) or anti-GFP (1:200) antibodies were conjugated to Protein A agarose beads and incubated with 1mg of whole-cell extract overnight and extracted with 4X Laemmli buffer.

Cell imaging

Cells were plated on imaging dishes and treated as indicated. For mitochondrial morphology analysis; live cells were incubated with 200µM rhodamine 123 and imaged live in growing medium. Quantification of mitochondria length was performed by using ImageJ software as previously described (45). For transfected cells;
following treatment, cells were fixed with paraformaldehyde and prepared by
standard protocols for immunocytochemistry: Hoechst (2µg/ml), phalloidin Alexa-
Fluor488 (2units), anti-Complex Vα (1:1000). All images were acquired on a
DeltaVision DV microscope using standard epifluorescence. Unless stated images
were deconvolved after acquisition to improve image clarity and sharpness.

Drosophila stocks and procedures

Drosophila were raised under standard conditions at 25°C. *park*25 and *PINK1*B8
mutants and *UAS-parkin* have been described before (46), (7). *w1118* and da-GAL4
strains were obtained from the Bloomington *Drosophila* Stock Center, and *UAS-Mfn-
RNAi* from the Vienna *Drosophila* Research Centre. *UAS-Mfn3* was constructed by
cloning the entire *Drosophila Mfn* open reading frame from cDNA (RE04414) into
pUAST vector, which was injected into *w1118* embryos for germline transformation
(BestGene Inc.). Multiple independent lines were isolated and assessed.

Acknowledgements

We thank D. Strutt and E. Smythe, and L. Pallanck for critical reading of the
manuscript. This work is supported by grants from the Wellcome Trust (081987) and
the Parkinson’s Disease Society (G-0713) to A.J.W. The Wellcome Trust is
acknowledged for support of the Light Microscopy Facility (GR077544AIA). The MRC
Centre for Developmental and Biomedical Genetics is supported by Grant G070091.
References

Figure Legends

Figure 1. *Drosophila* PINK1 and parkin activity promotes mitochondrial fission and/or inhibits fusion. (A) S2R+ cells were treated with the indicated RNAi probe for 3 days. Rhodamine 123 was used to visualize mitochondrial morphology in live cells. (B) S2R+ cells were transfected with plasmids to express indicated genes and co-transfected with mitoGFP in order to visualize mitochondria. (C,D) Quantification of mitochondrial length as imaged in (A) and (B) respectively. Two control (ctrl) RNAi and vector only treatments are shown to demonstrate phenotype variability. Scale bar is 5 µm. The bar graphs represent the mean and s.e.m. for at least three independent experiments. Significance was determined by one-way ANOVA with Bonferroni correction (** P<0.01, *** P<0.001).

Figure 2. PINK1 is required for Parkin translocation and mitophagy. (A) S2R+ cells co-transfected with parkin-GFP and mitoDsRed, treated with control dsRNA then treated with CCCP or paraquat, and fixed for imaging. Most Parkin-GFP puncta co-localize with (arrow) or abut (arrowhead) mitochondria. (B) Cells were treated with indicated dsRNAs and exposed to CCCP for 24 hours. Samples were fixed and stained to label mitochondria (anti-Complex Vα, red), actin (phalloidin-488, green) or nuclei (Hoechst, blue). (C) S2R+ cells transfected as in (A) and treated with PINK1 dsRNA before exposure to CCCP or paraquat. Comparison of Parkin-GFP distribution under different image analysis methods is shown in Fig. S5. (D) Percentage of cells with Parkin-GFP puncta. Scale bar is 5 µm. The bar graphs represent the mean and s.e.m. of at least four independent tests. Significance was determined by one-way ANOVA with Bonferroni correction (** P<0.01, *** P<0.001).

Figure 3. Mfn is ubiquitinated in a PINK1/Parkin dependent manner *in vitro* and *in vivo*. (A) S2R+ cells co-transfected with HA-Ub plus empty vector or Flag-tagged Mfn, Drp1 or Opa1 plasmids as indicated, were immunoprecipitated and subjected to
Western blot analysis. (B) S2R+ cells were treated with control, parkin and PINK1 RNAi before being transfected as indicated. Cells were harvested and subjected to Western blot analysis as shown. Samples were also subjected to immunoprecipitation and Western bots probed with antibodies against Flag and HA. (C) Immunoprecipitates of S2R+ cells expressing combinations of empty vector, parkin-GFP and Mfn-Flag as shown. (D) Western blot analysis of Drosophila Mfn levels in vivo. A non-specific band seen in all samples is denoted 'ns'. Complex Vα and Actin are used as loading controls. Genotypes: w^{1118}, wild type; Mfn RNAi, da-GAL4,UAS-Mfn-RNAi; Mfn overexpression, da-GAL4,UAS-Mfn; Mfn overexpression park^{25}, da-GAL4,UAS-Mfn,park^{25}/park^{25}; park^{25}, park^{25}/park^{25}. In all panels, black arrowheads indicate full length Mfn, asterisks are ubiquitinated Mfn, white arrowheads denote full length Opa1, white diamonds are ubiquitinated Opa1, and white arrows show full length Drp1.

Figure 4. Parkin overexpression can cause Mfn ubiquitination in the absence of PINK1. (A) S2R+ cells were treated with control or PINK1 RNAi probe and transfected with combinations of empty vector, parkin-GFP and Mfn-Flag, as shown. (B) S2R+ cells were treated with control or parkin RNAi probe and transfected with combinations of empty vector, PINK1-myc and Mfn-Flag, as shown. Cells were harvested and subjected to Western blot analysis using specific antibodies indicated.

Figure 5. Mfn accumulates in the absence of PINK1/Parkin. (A) S2R+ cells were treated with RNAi probe as indicated, harvested and subjected to Western blot analysis by using antibodies against Drosophila Mfn. Antibodies against Complex Vα and Actin are used as loading controls. (B) Wild type and mutant animals were collected and subjected to Western blot analysis. Genotypes: w^{1118}, wild type; Mfn RNAi, da-GAL4,UAS-Mfn-RNAi; park^{25}, park^{25}/park^{25}; PINK1^{89}, PINK1^{89}/Y.
Quantification of Mfn levels relative to Complex V\(\alpha\) loading control in S2R+ cells (C) and wild type and mutant animals (D). Charts represent mean and s.e.m. for three independent experiments. Significance was determined by one-way ANOVA with Bonferroni correction (** \(P<0.01\), *** \(P<0.001\)).

Figure 6. Loss of Mfn partially impairs Parkin translocation to mitochondria. S2R+ cells were co-transfected with plasmids expressing parkin-GFP and mitoDsRed and treated with control RNAi probe or Mfn RNAi probe before being treated with CCCP or Paraquat and analysed for Parkin-GFP accumulation. Control RNAi treated cells are represented in Fig. 2. (A) Mfn RNAi treated cells exposed to CCCP, Paraquat or no stress. Two representative images are shown for each treatment to show variability. Scale bar is 5 \(\mu\)m. (B) Percentage of cells with green puncta. The chart shows the mean and s.e.m. for counting of at least four independent well fields containing 70-90 cells/field. Significance was determined by one-way ANOVA with Bonferroni correction (* \(P<0.05\), *** \(P<0.001\)).
Figure 1. Ziviani et al
Figure 2. Ziviani et al
Figure 3. Ziviani et al
Figure 4. Ziviani et al
Figure 5. Ziviani et al
Figure 6. Ziviani et al