This is a repository copy of An efficient system for the generation of marked genetic mutants in members of the genus Burkholderia.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/107474/

Version: Accepted Version

Article:
Shastri, S., Spiewak, H.L., Sofoluwe, A. et al. (6 more authors) (2016) An efficient system for the generation of marked genetic mutants in members of the genus Burkholderia. Plasmid. ISSN 0147-619X

https://doi.org/10.1016/j.plasmid.2016.11.002

Article available under the terms of the CC-BY-NC-ND licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Reuse
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
An efficient system for the generation of marked genetic mutants in members of the genus *Burkholderia*

Sravanthi Shastria, Helena L. Spiewaka, Aderonke Sofoluwea1, Vigdis A. Eidsvaaga2, Atif H. Asghara3, Tyrone Pereiraa, Edward H. Bulla, Aaron T. Butta and Mark S. Thomasa*

aDepartment of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield, UK, S10 2RX.

*Corresponding author at: Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield, UK, S10 2RX.

Email address: m.s.thomas@sheffield.ac.uk

1Present address: Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.

2Present address: Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway.

3Present address: Umm Al-Qura University, Makkah, Saudi Arabia. P.O Box 6287.

Abbreviations

BHR, broad host-range
MCS, multiple cloning site
TIR, translation initiation region
CmR, chloramphenicol resistance/resistant
CmS, chloramphenicol sensitive
KmR, kanamycin resistance
TcR, tetracycline resistance
TpR, trimethoprim resistance
Highlights

- We have constructed improved antibiotic-resistance cassettes and suicide vectors for use in members of the *Burkholderia cepacia* complex (Bcc) and related species.
- These vectors facilitate construction of mutants by gene disruption with antibiotic-resistance markers.
- We have validated the utility of the vectors for marked genetic inactivation in *B. cenocepacia*, *B. lata* and *B. thailandensis*.

Keywords

Marked mutation; gene inactivation; *Burkholderia cepacia* complex; suicide vector; antibiotic-resistance.

Abstract

To elucidate the function of a gene in bacteria it is vital that targeted gene inactivation (allelic replacement) can be achieved. Allelic replacement is often carried out by disruption of the gene of interest by insertion of an antibiotic-resistance marker followed by subsequent transfer of the mutant allele to the genome of the host organism in place of the wild-type gene. However, due to their intrinsic resistance to many antibiotics only selected antibiotic-resistance markers can be used in members of the genus *Burkholderia*, including the *Burkholderia cepacia* complex (Bcc). Here we describe the construction of improved antibiotic-resistance cassettes that specify resistance to kanamycin, chloramphenicol or trimethoprim effectively in the Bcc and related species. These were then used in combination with and/or to construct a series enhanced suicide vectors, pSHAFT2, pSHAFT3 and pSHAFT-GFP to facilitate effective allelic replacement in the Bcc. Validation of these improved suicide vectors was demonstrated by the genetic inactivation of selected genes in the Bcc species *Burkholderia cenocepacia* and *B. lata*, and in the non-Bcc species, *B. thailandensis*.
1. Introduction

Burkholderia cepacia complex (Bcc) are a group of at least twenty closely related Gram-negative bacterial species of the *Burkholderia* genus, which are phenotypically similar but genetically different (Vandamme et al., 1997; De Smet et al., 2015). These species are found ubiquitously in the environment, including soil, water and the rhizosphere of some plants (Coenye and Vandamme, 2003). Many Bcc species have also been isolated from the sputum of cystic-fibrosis (CF) patients, identifying them as opportunistic pathogens of those with lung disease and weakened immune systems (Henry et al., 1997; Speert et al., 2002). Colonisation of the lungs by Bcc can result in several clinical outcomes, including chronic-infection with gradual lung deterioration and a rare adverse reaction known as Cepacia syndrome, which leads to rapid lung decline, septicemia, necrotizing pneumonia and is often fatal (Isles et al., 1984). The most prevalent causative agents of Bcc infections in CF-patients in the UK, Canada and USA are *B. cenocepacia* and *B. multivorans* (Drevinek and Mahenthiralingam, 2010; De Soyza et al., 2010; Zlosnik et al., 2015). Unfortunately, Bcc infections can be difficult to treat due to the high intrinsic resistance of these bacteria to many antibiotics. Over recent years restrictions have been placed on individuals colonized with Bcc to prevent transmission of Bcc infections, by limiting their contact with at risk members of the population (Ledson et al., 1998).

Efforts have been made to understand the virulence mechanisms used by Bcc bacteria that allow them to be successful pathogens. These include mechanisms of bacterial cell invasion, intracellular survival, quorum sensing, iron acquisition, and protein secretion (Martin and Mohr, 2000; Sokol et al., 2003; Visser et al., 2004; Mullen et al., 2007; Aubert et al., 2008; Uehlinger et al., 2009; Somvanshi et al., 2010). A key factor to aid in the characterization of these traits is the ability to manipulate the genome of Bcc species. Methods for targeted gene inactivation in *Burkholderia* have largely relied on the disruption of the target chromosomal gene with an antibiotic-resistance marker, either through employing an integrative vector (Flannagan et al., 2007; Chapalain et al., 2013) or by allelic replacement whereby the wild type gene is replaced by a copy of the target gene that is inactivated with an antibiotic-resistance cassette (Huber et al., 2001; Malott et al., 2005;
Agnoli et al., 2006). In the latter, two recombination crossover events are selected for (one occurring either side of the lesion in the target gene) and no vector sequences remain on the chromosome in the mutant. Vectors for generation of such marked mutants include plasmids in the pEX18 and pEX19 series (Hoang et al., 1998), and a vector constructed in our lab, pSHAFT (Agnoli et al. 2006).

Due to their high level of intrinsic resistance to many antibiotics, the number of commonly employed resistance markers that can be used for genetic manipulation of Bcc species is generally restricted to those specifying increased resistance to trimethoprim, chloramphenicol and tetracycline. All three markers can be selected for in single copy in B. cenocepacia (Farmer and Thomas, 2004; Asghar et al., 2011; Ryan et al., 2013). For aminoglycoside-sensitive strains, whether naturally occurring (such as B. cenocepacia strain H111) or engineered, the aac and aph markers, which specify resistance to the aminoglycosides gentamycin and kanamycin, respectively, are selectable in single copy and can therefore also be used in allelic replacement experiments (Huber et al., 2001; Hamad et al., 2010; Inhülsen et al., 2012; Carlier et al., 2014).

Allelic replacement in bacteria involving disruption of a target gene with a selectable resistance marker can be problematic if the host bacterium already exhibits a high degree of intrinsic resistance to the antibiotic, thereby precluding selection of the marker. This can be ameliorated if the antibiotic-resistance gene is efficiently expressed. However, the use of strong promoters to drive high-level transcription of the marker gene can exert detrimental polar effects that include destabilisation of plasmids housing such markers or unwanted or toxic expression of downstream genes following insertion of the marker in the host genome (Stueber and Bujard, 1982; Stassi and Lacks, 1982; Schrecke et al., 2013; our published observations). In these situations the negative effects of very active promoters can be circumvented by placement of a strong transcription terminator downstream of the selectable marker gene (Gentz et al., 1981; Fellay et al., 1987). Here we describe the construction of novel antibiotic-resistance cassettes where we have employed these principles either to increase expression of the antibiotic-resistance marker to facilitate its selection in a single copy or to prevent detrimental polar effects by blocking transcriptional readthrough into
downstream genes. These cassettes were used to build improved suicide vectors derived from the vector pSHAFT and were also used in conjunction with these vectors for allelic replacement in the Bcc and other members of the genus *Burkholderia*.

2. Materials and methods

2.1. Strains, plasmids, and growth conditions

The bacterial strains and plasmids used in this study are given in supplementary Table S1. For cultivation of bacteria, strains were routinely grown in/on LB medium at 37°C. For selection of trimethoprim resistance in *E. coli* iso-sensitest agar (Oxoid) was employed, whereas for *B. cenocepacia* M9-minimal salts agar containing 0.5% glucose was used (except where indicated). M9-minimal salts used here contained 42 mM Na$_2$HPO$_4$, 22 mM KH$_2$PO$_4$, 19 mM H$_3$BO$_3$, 9 mM NaCl, 1 mM MgSO$_4$, and 100 μM CaCl$_2$. For selection of kanamycin resistance in *B. cenocepacia* Lennox agar was utilised. Antibiotics were used, when appropriate, at the following concentrations for selection of plasmids and antibiotic-resistance cassettes in *E. coli* and *Burkholderia* species, as indicated: ampicillin, 100 μg/mL (*E. coli*); kanamycin, 50 μg/mL (*E. coli* and *B. cenocepacia*); chloramphenicol, 25 μg/mL (*E. coli* and *B. cenocepacia* and *B. lata*) and 50 μg/mL (*B. thailandensis*). For *B. cenocepacia* strains exhibiting a high intrinsic resistance to trimethoprim, such as K56-2, this antibiotic was included in the medium at 100 μg/mL.

2.2. DNA preparation and manipulation

Recombinant DNA techniques were performed essentially as described in Sambrook et al. (1989). DNA amplification by PCR was performed as standard according to the manufacturer’s instructions using KOD DNA polymerase enzyme (Millipore) and a G-storm thermocycler. Primers used in this study are indicated in supplementary Table S2, and were purchased from Eurogentec, Belgium. To extract DNA for PCR, bacterial colonies were resuspended in 200 μL TE buffer (10 mM Tris, 1.0 mM EDTA (pH 8.0)), boiled for 7 minutes, and then centrifuged to pellet cell debris. The supernatant was retained for use in PCR
(referred to as ‘boiled lysate’). PCR products were purified from solution or by agarose gel-extraction using a QIAquick PCR purification kit (Qiagen). DNA restriction enzymes were purchased from Promega or New England Biolabs. DNA was ligated using T4 DNA ligase (Promega). 5’ DNA overhangs were filled-in using DNA I polymerase Klenow fragment (Promega). Sequencing was performed by the Core Genomic Facility at The University of Sheffield, UK.

2.3. Plasmid constructions

Plasmids were extracted from saturated bacterial cultures using a spin-column-based plasmid mini-prep extraction kit (Thermo Scientific). Plasmids were transferred into *E. coli* by heat-shock assisted transformation according to Hanahan (1983).

To construct p34E-Km, the Tn5-derived *aphA2* gene, including its promoter (Rothstein and Reznikoff, 1981), was excised from pKNOCK-Km as a *Mlu*I fragment, end-filled with DNA polymerase I Klenow fragment and ligated between the filled *Eco*RI sites of p34E-Tp.

To generate p34E-Cm2, the *catA2* gene of the plasmid pSHAFT was amplified with primers p34E-Cmfor2 and p34E-Cmrev, which incorporated a synthetic promoter (-10 and -35 elements) upstream of the *catA2* TIR in the amplified product. The 823 bp amplicon was restricted with *Eco*RI and used to replace the *Eco*RI-excised KmR cassette of p34E-Km.

To construct p34E-TpTer, first a 306 bp DNA fragment containing the *rrnB* T1T2 terminators was amplified from the plasmid pEA302T with rrnBterfor and rrnBterrev and restricted with *Bam*HI and *Hind*III, following which it was ligated between the corresponding restriction sites of pUC18 to give pUC18Ter. Second, the megaprimer variation of SOE PCR (Perrin and Gilliland, 1990) was used to fuse the *rrnB* T1T2 terminators to the 3’ end of *dfrB2*. To do this, the *dfrB2* gene (and native promoter) was amplified from p34E-Tp with primer Tp(forward), and the fusion primer Tp(reverse) that was complementary to the 3’ end of the *dfrB2* gene, including the stop codon, and contained a 5’ tail with 19 bp of homology to the upstream region of the *rrnB* T1T2 DNA fragment. The resultant amplicon served as a forward megaprimer in combination with reverse primer rrn(R), to amplify a 903 bp *dfrB2*
rrnB T1BT2 fusion fragment from pUC18Ter. This product was then ligated between the
EcoRI and HindIII sites of pUC19, giving rise to pUC19TpTer. Last, the TpTer cassette of
pUC19TpTer was excised as a StuI fragment and ligated between the filled-in EcoRI sites of
p34E-Km, thereby replacing the KmR cassette.

To construct pSHAFT2, the catA2 region of pSHAFT was amplified with a pair of
primers, pSHOOTERfor2 and pSHOOTERrev. The 871 bp product was digested with BamHI
and SalI and ligated between the BglII and SalI sites of pSHAFT, thereby replacing the Ω-
Cm interposon.

To construct pSHAFT3, first, a double-stranded oligonucleotide was generated by
annealing oligonucleotides pSHAFT3MCSfor and pSHAFT3MCSrev. This was achieved by
combining 45 μM of each oligonucleotide in 1x KOD DNA polymerase reaction buffer
(Millipore) and 1 mM MgCl₂, incubating at 90°C for 10 minutes followed by incubation at
room temperature for 1 hour and subsequent purification of the double-stranded
oligonucleotide. pSHAFT2 was restricted with NotI and EcoRI and ligated to the double-
stranded oligonucleotide, to generate pSHAFT3.

To construct pSHAFT-GFP, an 866 bp DNA fragment containing the gfp coding
sequence and Shine-Dalgarno was amplified from pBHR1-GFP with primers GFPfor and
GFPrev, purified and digested with BamHI and SalI. This was then ligated between BglII-SalI
sites of pSHAFT to replace the 3.7 kb Ω-Cm fragment of this vector.

The sequences of p34E-Km, p34E-Cm2, p34E-TpTer, pSHAFT, pSHAFT2,
pSHAFT3 and pSHAFT-GFP were deposited in GenBank database, and given the
accession numbers KX485327, KX485328, KX485329, KX485330, KX485332, KX485333
and KX485331, respectively. As we observed that the nucleotide sequence of the dfrB2
cassette in p34E-Tp as deposited in the database is incorrect, we have also submitted an
amended sequence of this plasmid that has been assigned accession number KX485326.
pUC18Ter and pUC19TpTer were assigned accession numbers KX527623 and KX527624,
respectively.
2.4. Gene replacement in *B. cenocepacia*

To inactivate chromosomal genes in *Burkholderia* using pSHAFT2 or pSHAFT3, the antibiotic counter-selection-based strategy used for allelic replacement by pSHAFT was employed (Agnoli et al. 2006). For isolation of a *B. cenocepacia* BCAM0195::Tp mutant, a 3.64 kb DNA fragment containing the BCAM0195 gene orthologue in strain H111 was amplified from a boiled lysate using primers BCAM0195for and BCAM0195rev, restricted with *Hind*III and *Bam*HI and ligated between the corresponding sites of pBBR1MCS-1, generating pBBR1-BCAM0195'. The cloned 3.11 kb gene fragment was then disrupted by ligation of the p34E-Tp-derived TpR cassette as a *Sma*I-fragment between two *Pml*I sites located 1.58 kb apart within BCAM0195, generating pBBR1-ΔBCAM0195::Tp. The 2.04 kb ΔBCAM0195':Tp allele was transferred to pSHAFT2 as a *Xho*I-*Xba*I fragment to give pSHAFT2-ΔBCAM0195':Tp. This plasmid was conjugated into *B. cenocepacia* H111 using *E. coli* donor strain S17-1(λpir) according to Herrero et al., (1990) and de Lorenzo and Timmis (1994), and *B. cenocepacia* exconjugants were selected on M9-glucose agar containing trimethoprim. Exconjugants were patched onto the same medium and also LB agar containing chloramphenicol. Exconjugants that were chloramphenicol-sensitive were identified as candidate ΔBCAM0195::Tp mutants. Due to the loss of short regions of DNA at the 5' and 3' ends of BCAM0195 during the construction of pSHAFT2-ΔBCAM0195':Tp, potential ΔBCAM0195::Tp mutants could be verified by PCR using the original BCAM0195for and BCAM0195rev primers, as they annealed to genomic sequences located a short distance either side of the region of DNA that was also present in pSHAFT2-ΔBCAM0195':Tp.

For isolation of a BCAL1709::TpTer mutant in *B. cenocepacia* AHA27, a 1.354 kb DNA fragment containing the 3' region of the BCAL1709 orthologue was amplified from *B. cenocepacia* Pc715j genomic DNA using primers BCAL1709for and BCAL1709rev, restricted with *Xba*I and *Xho*I, and the resulting 1.297 kb amplicon was ligated between the corresponding sites of pSHAFT-GFP to give rise to pSHAFT-GFP-BCAL1709. The BCAL1709 gene was then disrupted by ligation of the p34E-TpTer-derived TpR cassette as a
SmaI fragment into a unique Zral site within BCAL1709, resulting in pSHAFT-GFP-BCAL1709::TpTer. This plasmid was then conjugated into AHA27 and exconjugants containing the BCAL1709::TpTer allele within the genome were selected for as described for construction of the BCAM0195::Tp mutant. The presence of gfp on pSHAFT-GFP causes recipient colonies to fluoresce under UV light, and was used to distinguish between recombinants that arose through a single crossover (i.e. plasmid integration - fluorescent) and a double crossover (i.e. allelic replacement - non-fluorescent). 50 trimethoprim-resistant exconjugants were patched on duplicate IST agar plates containing trimethoprim. One of each pair of plates was exposed to UV light on a transilluminator in the dark to identify non-fluorescent candidate AHA27 BCA1709::TpTer mutants. Candidate mutants from the non-irradiated duplicate plate(s) were verified by PCR using primers BCAL1709forOut and BCAL1709revOut, which annealed to genomic sequences a short distance either side of the region of DNA that was also present in pSHAFT-GFP-BCAL1709::TpTer.

3. Results and discussion

3.1. Construction of antibiotic resistance cassettes for genetic manipulation of the Burkholderia cepacia complex

To facilitate the generation of mutants in Burkholderia through insertional inactivation of chromosomal target genes by antibiotic resistance markers and the construction of useful plasmid vectors that would allow an investigation into gene function and control in members of this genus, we made derivatives of the cassette cloning vector, p34E (Tsang et al., 1991), harbouring the kanamycin- (aphA2), chloramphenicol- (catA2) and trimethoprim- (dfrB2), resistance genes.

First, p34E-Km was constructed by replacing the trimethoprim-resistance (TpR) cassette of p34E-Tp with the Tn5-derived aphA2 (aph(3')-II) gene from pKNOCK-Km (Figure 1). Although a similar kanamycin-resistance cassette (KmR) plasmid, p34S-Km (which contains the Tn903-derived aph(3')-la gene), has been previously described (Dennis and Zylstra, 1998a), the Tn5-derived antibiotic resistance marker in p34E-Km offers the advantage that it makes available the HindIII and SmaI sites flanking the cassette (as they
do not cut within the **aphA2** gene) and also contains flanking **EcoRI** sites. Both types of
cassette are of a similar size (~1.3 kb). A shorter variant of the Tn903-based **Km^R** cassette
lacking the internal **HindIII** and **SmaI** sites was subsequently constructed, but it lacks the
flanking **EcoRI** sites and the possibility for directional cloning associated with p34E-Km
(Dennis and Zylstra, 1998b).

Most plasmids used for genetic manipulation that specify chloramphenicol resistance
(**Cm^R**) harbour the Tn9-derived **catA1** gene (or one that is closely related) that specifies an
enzyme belonging to group 1 of the type A chloramphenicol acetyltransferases (CATs)
(Shaw, 1983; Schwarz et al., 2004). A notable exception is mini-Tn5Cm, which contains the
catA2 gene (de Lorenzo et al., 1990). Pertinently, chloramphenicol resistance conferred by
this mini-transposon is selectable in single copy in *B. cenocepacia* (Farmer and Thomas,
2004). However, the **catA2** gene specifying this resistance is located on a large DNA
fragment (the ~3.7 kb **Ω**-Cm interposon) that was used to assemble the transposon and is
not available as a small cassette (Fellay et al., 1987; de Lorenzo et al., 1990). The **Ω**-Cm
interposon includes a 2.8 kb DNA fragment derived from the cloning vector pKT210 which
contains the 214 codon **catA2** ORF and several other predicted ORFs found on the naturally
occurring BHR plasmid pSa (Bagdasarian et al., 1981; Tait et al., 1982; Shaw, 1983; Fellay
et al., 1987). In order to generate a compact **Cm^R** cassette containing an efficiently
expressed cat gene, the **catA2** gene contained on pSHAFT (a suicide plasmid derived from
pUTmini-Tn5Cm (see below)), was modified to incorporate a synthetic **σ^70-**dependent
promoter upstream of the **catA2** TIR. The modified **catA2** gene was used to replace the **Km^R**
cassette of p34E-Km, to generate p34E-Cm2 (Figure 1). The **Cm^R** cassette in p34E-Cm2,
can be transferred to other vectors using any of the flanking restriction sites except **SmaI**
(Figure 1), although even here, selection for chloramphenicol resistance would permit
selection for the products of a tripartite ligation between the target vector and the two **SmaI-
generated cassette fragments. As an alternative, either of the blunt end-generating **SacI**
isoschizomers, **Eco53kl** or **Eci136II**, may be used.

The most similar vectors available as sources of a **Cm^R** cassette are p34S-Cm and -
Cm2 (Dennis and Zylstra, 1998a; 1998b). Rather than the **catA2** gene present in p34E-Cm2,
these other plasmids contain the Tn9-derived \textit{catA1} gene and the cassettes are slightly longer (918 bp rather than 823 bp). \textit{p34S-Cm} contains an internal \textit{EcoRI} site whereas in \textit{p34S-Cm2} this site has been removed. However, unlike \textit{p34E-Cm2}, \textit{p34S-Cm2} lacks flanking \textit{EcoRI} sites.

The trimethoprim-resistance gene (\textit{dfrB2}) present on the cassette vectors \textit{p34E-Tp} and \textit{p34S-Tp} is under control of the very strong \textit{PcS} integron promoter (also known as \textit{P1}) (Lévesque et al., 1994; DeShazer and Woods, 1996; Dennis and Zylstra, 1998a; Jové et al., 2010). We have observed that insertion of the \textit{TpR} cassette in certain orientations in some plasmid vectors is not possible (see below) and when used in allelic replacement experiments it can result in impaired growth of the resultant mutants, presumably due to overexpression of chromosomal genes located downstream of the integrated cassette (S.S. and M.S.T., unpublished observations). To circumvent this problem, we modified the \textit{TpR} cassette by placing the efficient T1T2 transcription terminators from the \textit{E. coli} \textit{rrnB} ribosomal RNA operon, downstream of the \textit{dfrB2} coding sequence (Brosius, 1984; Orosz et al., 1991). To do this, we started with \textit{pEA302T}, a plasmid into which a 500 bp \textit{EcoRI} fragment containing the 5S rRNA gene and the T1T2 terminators was cloned in order to prevent readthrough transcription of the \textit{tac} promoter into the replication region (Amann et al., 1983). A DNA fragment containing only the \textit{rrnB} T1T2 terminators was amplified using primers that also incorporated additional restriction sites at the flanking regions of the fragment, and was subsequently transferred to \textit{pUC18} to give \textit{pUC18Ter}.

The \textit{rrnB} terminators (from \textit{pUC18Ter}) were then fused to the \textit{dfrB2} gene (from \textit{p34E-Tp}) by the megaprimer variation of the SOE PCR technique (Perrin and Gilliland, 1990), and the amplicon was ligated into \textit{pUC19}, giving rise to \textit{pUC19TpTer}. Although the \textit{TpTer} DNA fragment in \textit{pUC19TpTer} can be transferred as a \textit{StuI} or \textit{NdeI} cassette, to increase its versatility, it was transferred into \textit{p34E-Km}, substituting for the \textit{KmR} cassette. The resultant plasmid, \textit{p34E-TpTer}, is analogous to \textit{p34E-Tp} but has strong transcription termination signals located downstream of the \textit{dfrB2} gene and includes the addition of \textit{NdeI} sites in the flanking MCSs (Figure 1).
3.2. Construction of allelic replacement vectors, pSHAFT2 and pSHAFT3, for generation of marked mutants in the *Burkholderia cepacia* complex

We sought to improve upon existing vectors used for allelic replacement in the Bcc. A useful vector for insertional inactivation of chromosomal genes with selective markers (usually antibiotic resistance cassettes) is pSHAFT, an R6K-based suicide plasmid (Figure 2) (Agnoli et al., 2006). This vector was derived from the transposon delivery plasmid, pUTmini-Tn5Cm (de Lorenzo et al., 1990), by deletion of the *tnp* (transposase) gene and one of the 19 bp repeat sequences (the ‘I end’) that flank mini-Tn5Cm, and therefore it cannot be mobilised in the presence of transposase provided in trans. pSHAFT is also devoid of the *pir* gene, which specifies the plasmid replication initiator protein, π, and can therefore only replicate in bacteria containing the *pir* gene, such as *E. coli* CC118(λ;pir) (Herrero et al., 1990; Rakowski and Filutowicz, 2013). Along with the chloramphenicol-resistant marker carried by mini-Tn5Cm, pSHAFT also contains the origin of transfer (*oriT*) from RP4 (RK2) that allows for efficient conjugal transfer of the plasmid to a variety of Gram-negative bacterial species. Following transfer of a Bcc gene (or gene fragment) to pSHAFT, the gene is disrupted by insertion an antibiotic-resistance cassette (other than CmR) that is selectable in the Bcc. The plasmid is then introduced into a Bcc strain and selection for the presence of the antibiotic-resistance cassette (AbR) is applied. As the plasmid cannot replicate in Bcc, only recombinants are obtained in which the plasmid has recombined with the host genome at the locus that is homologous to the Bcc DNA present on the plasmid. This may result in integration of the plasmid into the genome (single crossover, CmR AbR) or allelic replacement (double crossover, CmS AbR).

However, the major drawback with pSHAFT is the limited number of unique restriction sites that can be used for inserting mutant alleles for subsequent chromosomal targeting. One reason for this is the duplication of restriction sites either side of the CmR element during the assembly of mini-Tn5Cm in the progenitor plasmid pUT (de Lorenzo and Timmis, 1994). Moreover, as discussed above, the cassette specifying resistance to chloramphenicol is unnecessarily large, as mini-Tn5Cm was originally constructed by
inserting the ~3.7 kb O-Cm interposon between the 19 bp I and O ends of Tn5 carried by pUT (de Lorenzo et al., 1990).

To improve the utility of pSHAFT, the vector was modified by replacing the interposon with a much shorter DNA fragment containing the catA2 gene under control of a synthetic σ70-dependent promoter as also incorporated in p34E-Cm2, thereby decreasing the plasmid size from 7.5 to 4.6 kb. The new plasmid, pSHAFT2, contains 11 unique restriction sites located downstream of the catA2 gene, one of which (StuI) allows the cloning of blunt-ended fragments, while the BglII site can also accommodate BamHI-generated fragments. At the catA2-distal end of the MCS are three closely spaced EcoRI sites that can be considered as an additional single unique site for cloning purposes (Figure 2).

The versatility of pSHAFT2 was then improved by replacing the region extending from the NotI site in the MCS to the most distant of the three EcoRI sites by a double-stranded oligonucleotide that contained internal Spel and Apal sites. This also resulted in a net loss of two of the three EcoRI sites present in pSHAFT2 and removal of the mini-Tn5 O end that originated from the progenitor plasmid of pSHAFT. The new plasmid, pSHAFT3 (4.5 kb), is shown in Figure 2.

3.3. Construction of an allelic replacement vector, pSHAFT-GFP, that allows fluorogenic detection of integration events in the Burkholderia cepacia complex during generation of marked mutants

To allow for inactivation of chromosomal genes where the Burkholderia strain already harbours a chloramphenicol resistance marker or to disrupt chromosomal genes with a CmR cassette we constructed pSHAFT-GFP (Figure 2). This plasmid is analogous to pSHAFT2 but with the catA2 gene replaced by the gfp gene, which therefore allows for fluorogenic detection of recombinants containing the genomically integrated vector. The forward primer used to amplify the gfp gene specified recognition sites for the restriction enzymes SalI, Smal, BglII, XbaI, KpnI, XhoI and StuI and an artificial promoter containing the consensus -35 and -10 elements for σ70-dependent promoters, whereas the reverse primer specified...
only a BamHI site. This vector is used in the same way as pSHAFT2 except for the fact that single and double crossover recombinants harbouring the selectable marker used to inactivate the target chromosomal gene are distinguished from each other by screening colonies for the absence of yellow-green fluorescence. Although this usually requires exposure to UV in the dark (a UV transilluminator works well in this regard), in some mutagenesis experiments the presence of the GFP marker can be discerned without recourse to UV exposure by the yellow-green colour of the colonies.

3.4. Isolation of marked mutants in \textit{B. cenocepacia} using the pSHAFT-vector series

To inactivate chromosomal genes in \textit{Burkholderia} using the pSHAFT-vector series, DNA fragments of ≥ 1.0 kb containing the target gene (or gene fragment) are inserted into the MCS and then subsequently disrupted by insertion of an antibiotic resistance cassette (usually TpR, KmR or TcR) such that at least 0.5 kb of homology occurs between the cloned DNA target region and the chromosome either side of the lesion (Figure 3A). Depending on the availability of restriction sites, in some cases we have found it more convenient to first clone the target DNA sequence into a general-purpose plasmid vector and then introduce the antibiotic resistance cassette before transferring the disrupted DNA fragment to the suicide vector. In using these plasmids to inactivate chromosomal genes in \textit{Burkholderia}, we have observed that the TpR cassette can often only be inserted into target genes in one orientation, such that transcription is directed towards the \textit{catA2} gene, and away from the origin of replication. We assume this is due to transcriptional destabilisation of plasmid replication functions (Gentz et al., 1981; Stueber and Bujard, 1982; Stassi and Lacks, 1982) as this problem does not occur with the TpTer cassette (our unpublished observations).

Once the disrupted gene or gene fragment has been introduced into pSHAFT2, it is transferred to \textit{Burkholderia} and selection is applied for the antibiotic resistance marker that was used to disrupt the gene or gene fragment present in the suicide vector, thus identifying strains that have integrated the disrupted allele into the genome by homologous recombination. Recombinants are of two types: those that are the result of a single crossover, in which the entire plasmid has integrated into the genome at the target gene
locus, and those that are the result of a double crossover in which only the mutant allele has been transferred to the genome in place of the original wild type gene (Figure 3A). In the former, wild type and mutated copies of the gene (or gene fragment) are present in the genome of the recipient bacterium, which will also specify increased resistance to chloramphenicol due to the integrated vector. These are identified by ‘patching’ out recombinants on LB agar containing 50 μg/ml chloramphenicol. Chloramphenicol-sensitive recombinants are screened for the presence of the mutated allele (and absence of the wild type allele) by PCR using primers that anneal to genomic sequences flanking the region that was originally cloned in the suicide vector.

We have successfully used pSHAFT2 to generate several marked mutants within Bcc species. This included the insertional inactivation of the I35_0520 gene in B. cenocepacia strain H111 (the orthologue of BCAM0195 in strain J2315 and will be referred to as such hereon), which was disrupted by the TpR cassette derived from p34E-Tp. BCAM0195 is predicted to encode a non-ribosomal peptide synthetase (NRPS) of unknown function. During the isolation of the ΔBCAM0195::Tp mutant, we observed that out of 50 trimethoprim resistant exconjugants, 16 were chloramphenicol sensitive. Three of these were verified as ΔBCAM0195::Tp mutants by PCR, where the DNA fragment amplified from BCAM0195 in the mutants was ~900 bp smaller than the wild-type, due to replacement of a large segment of BCAM0195 by the TpR cassette in the ΔBCAM0195::Tp allele (Figure 3B).

We have also used this plasmid to introduce an orbI::Tp allele into the genome of B. lata using the same selection conditions employed for allelic replacement in B. cenocepacia (results not shown). The applicability of the pSHAFT vectors to other non-Bcc species within the genus was established by generating a type VI secretion system mutant of B. thailandensis (a member of the ‘pseudomallei’ group) in an analogous fashion using pSHAFT3 as the vector and the TpTer cassette to disrupt the tssK gene (results not shown).

To demonstrate the utility of pSHAFT-GFP it was used to inactivate the orthologue of the B. cenocepacia J2315 BCAL1709 gene that is present in the siderophore-negative B. cenocepacia mutant AHA27. AHA27 is a derivative of B. cenocepacia strain Pc715j that contains a mini-Tn5CmlacZYA insertion in the pobA gene encoding a phosphopantetheinyl...
transferase (PPTase) required for activating NRPS enzymes, and thereby specifies higher
levels of resistance to chloramphenicol than the parent strain (Asghar et al., 2011). Based
on amino acid sequence alignment, BCAL1709 is very likely to encode a putative TonB-
dependent receptor thought to be involved in the uptake of an unknown xenosiderophore
complexed with ferric iron (M.S.T., unpublished results). Following cloning of a BCAL1709
gene fragment in pSHAFT-GFP and its disruption with the TpR cassette derived from p34E-
TpTer, the resultant plasmid (pSHAFT-GFP-BCAL1709::TpTer) was introduced into AHA27
and candidate BCAL1709 mutants were selected by screening trimethoprim-resistant
exconjugants for the absence of GFP-mediated fluorescence. Among 50 ex-conjugants that
were screened in this way, 6 non-fluorescent recombinants were identified which were
subsequently verified as BCAL1709 mutants by PCR, as indicated by a ~900 bp increase in
the size of the DNA fragment amplified from the BCAL1709 locus due to the presence of the
TpR cassette (Figure 3C).

It should also be noted that use of the TpR cassette in allelic replacement
experiments is also applicable to \textit{Burkholderia} strains that exhibit higher levels of intrinsic
resistance to trimethoprim, such as members of the \textit{B. cenocepacia} ET-12 lineage, i.e.
strains J2315 and K56-2. Due to the highly active promoter located upstream of the \textit{dfrB2}
ORF, expression of the gene is sufficiently strong to allow its selection in such strains by
increasing the concentration of trimethoprim in the medium, and we have used pSHAFT2 to
transfer TpR cassette-disrupted iron acquisition and type VI secretion system genes into

4. Conclusion

To conclude, we have constructed a series of versatile suicide vectors and antibiotic
resistance cassettes that allow for the efficient and simple generation of marked mutants in
\textit{Burkholderia} species. We have improved upon our original vector pSHAFT by reducing the
size of the CmR marker and increasing the availability of unique restriction site for cloning in
vectors pSHAFT2 and pSHAFT3. The versatility of this plasmid series has been further
enhanced by incorporating a fluorescent marker in pSHAFT-GFP to provide an alternative
means of distinguishing recombinants that have undergone allelic replacement events from
those in which the suicide vector remains integrated in the genome. All vectors described
here are a useful addition to the molecular toolkit required for the manipulation and
subsequent characterisation of important genes in not only *Burkholderia* species, but
potentially other Proteobacteria, such as enterobacteria and pseudomonads, where they
may be used in combination with the antibiotic-resistance cassettes described herein or
other available antibiotic-resistance markers.

5. Acknowledgements

This work was supported by a BBSRC Doctoral Training Grant (BB/F016840/1) awarded to H.L.S., a BBSRC research grant (BB/M003531/1) awarded to M.S.T. and a scholarship from the University of Umm Al-qura awarded to A.H.A. that was administered through the Saudi Arabian Ministry of Higher Education.

6. Bibliography

pp.772–4, 776.

Schrecke, K., Jordan, S. & Mascher, T., 2013. Stoichiometry and perturbation studies of the

Tait, R.C., Close, T.J., Rodriguez, R.L. & Kado, C.I., 1982. Isolation of the origin of

Figure 1 Maps of novel antibiotic-cassette vectors. The location of antibiotic resistance-conferring genes, *bla* (ampicillin-resistance), *aphA2* (kanamycin-resistance), *catA2* (chloramphenicol-resistance) and *dfrB2* (trimethoprim-resistance), and the plasmid ColE1 origin of replication (oriR) are indicated for plasmids p34E-Km (top), p34E-Cm2 (left) and p34E-TpTer. Dual-cutting restriction sites that can be utilised to excise the antibiotic resistance cassette are also shown, as are internal sites that can be used for determination of the orientation of the cassette following insertion into a target gene. Restriction sites that occur only once in each plasmid are shown in bold. Note that additional sites for *Ase*I, *Bsr*GI, *Nhe*I and *Xmn*I occur in the backbone of all three vectors that for clarity are not shown. Promoters for the cassette antibiotic-resistance genes are shown (*P_{aph}$, *P_{cat}$, *P_{cS}$). Maps created with SnapGene® software (from GSL Biotech; available at snapgene.com).

Figure 2 Maps of the gene replacement vectors of the pSHAFT-series utilised for marked mutagenesis in *Burkholderia*. The location of antibiotic-resistance conferring genes, *bla* (ampicillin-resistance) and *catA2* (chloramphenicol-resistance), RP4 origin of transfer (ori*T*), R6K origin of replication (ori*R6K*) and GFP-encoding gene (*gfp*) are indicated for pSHAFT, (left), pSHAFT2 (top right), pSHAFT3 (centre right) and pSHAFT-GFP (bottom right). The transcriptional orientation for each gene and restriction sites within the multiple cloning site of each vector are shown. Additional restriction sites in pSHAFT flanking Ω-Cm (dashed line) are also indicated. Restriction sites that occur only once in each plasmid are shown in bold. Maps created with SnapGene® software (from GSL Biotech; available at snapgene.com).

Figure 3 Generation of marked mutants in *B. cenocepacia* using pSHAFT2 and pSHAFT-GFP derivatives. (A) ≥ 1.0 kb of DNA containing the target gene (or gene fragment) is cloned into a pSHAFT vector and then disrupted by insertion of an antibiotic resistance cassette, ensuring there is at least 0.5 kb of homology between the cloned DNA target region and the chromosome on either side of the cassette. Following transfer of the pSHAFT-derived construct into *Burkholderia*, double crossover recombinants are selected.
for based on their resistance to the antibiotic specified by the antibiotic resistance cassette, and either sensitivity to chloramphenicol (pSHAFT2 and pSHAFT3) or the absence of fluorescence (pSHAFT-GFP). Candidate mutants are then verified by PCR using primers that anneal to genomic sequences located either side of the region cloned into the allelic replacement vector ('outside' primers), indicated as OPfor and OPrev. Drawn to scale. (B) PCR screening of candidate H111-ΔBCAM0195::Tp mutants following allelic replacement with pSHAFT2-ΔBCAM0195::Tp. (C) PCR screening of candidate AHA27-BCAL1709::TpTer mutants following allelic replacement with pSHAFT-GFP-BCAL1709::TpTer.
Figure 1.
Figure 2.
Figure 3.
Supplemental

Table S1. Bacterial strains and plasmids used in this study

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Genotype or description</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JM83</td>
<td>F^{-} ara Δ(lac-proAB) rpsL $\phi80dlacZ\Delta M15$ (SmR)</td>
<td>Yanisch-Perron et al., 1985</td>
</tr>
<tr>
<td>SM10(λpir)</td>
<td>thi-1 thr leu tonA lacY supE recA::RP4-2-Tc::Mu (KmR)</td>
<td>Simon et al., 1983</td>
</tr>
<tr>
<td>S17-1(λpir)</td>
<td>thi proA hsdR recA RP4-2-tet::Mu-1 kan::Tn7 integrant (TpR, SmR) (λpir)</td>
<td>Simon et al., 1983</td>
</tr>
<tr>
<td>B. cenocepacia strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pc715j</td>
<td>CF isolate, prototroph</td>
<td>McKevitt et al., 1989</td>
</tr>
<tr>
<td>H111</td>
<td>CF isolate, prototroph</td>
<td>Römling et al., 1994</td>
</tr>
<tr>
<td>J2315</td>
<td>CF isolate</td>
<td>Holden et al., 2009</td>
</tr>
<tr>
<td>K56-2</td>
<td>CF isolate, prototroph</td>
<td>Darling et al., 1998; Mahenthiralingam et al., 2000</td>
</tr>
<tr>
<td>AHA27</td>
<td>Pc715j-pobA::mini-Tn5CmlacZYA</td>
<td>Asghar et al., 2011</td>
</tr>
<tr>
<td>H111-</td>
<td>H111 with dfkB2 cassette inserted in</td>
<td>This study</td>
</tr>
<tr>
<td>BCAM0195::Tp</td>
<td>BCAM0195 (TpR)</td>
<td></td>
</tr>
<tr>
<td>AHA27-</td>
<td>AHA27 with dfkB2 cassette containing rmb</td>
<td>This study</td>
</tr>
<tr>
<td>BCAL1709::TpTer</td>
<td>T1T2 terminators inserted in BCAL1709 (TpR)</td>
<td></td>
</tr>
<tr>
<td>B. lata strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>383</td>
<td>Soil isolate, prototroph (also known as 383 (ATCC 17760, NCIB 9087, LMG 22485)</td>
<td>Stanier et al., 1966; Vanlaere et al., 2009</td>
</tr>
</tbody>
</table>
B. thailandensis

strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E264</td>
<td>Rice paddy isolate, prototroph</td>
<td>Brett et al., 1998</td>
</tr>
</tbody>
</table>

Plasmids

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pEA302T</td>
<td>E. coli-specific vector containing phage λ cl under P_{lac} with rRNA T1T2 terminators (Ap(^R), Tc(^R))</td>
<td>Amann et al., 1983</td>
</tr>
<tr>
<td>pBBR1MCS-1</td>
<td>Mobilizable BHR cloning vector, pBBR1-replicon (Cm(^R))</td>
<td>Kovach et al., 1994</td>
</tr>
<tr>
<td>pUC18</td>
<td>E. coli-specific cloning vector (Ap(^R))</td>
<td>Yanisch-Perron et al., 1985</td>
</tr>
<tr>
<td>pUC19</td>
<td>E. coli-specific cloning vector (Ap(^R))</td>
<td>Yanisch-Perron et al., 1985</td>
</tr>
<tr>
<td>pUC18Ter</td>
<td>pUC18 containing rRNA T1T2 terminators (Ap(^R))</td>
<td>This study</td>
</tr>
<tr>
<td>pUC19TpTer</td>
<td>pUC19 containing dfrB2 gene fused to rRNA T1T2 terminators (Ap(^R), Tp(^R))</td>
<td>This study</td>
</tr>
<tr>
<td>pKNOCK-Km</td>
<td>Mobilizable suicide vector containing aphA2 gene (Km(^R))</td>
<td>Alexeyev, 1999</td>
</tr>
<tr>
<td>p34E-Km</td>
<td>p34E containing aphA2 gene from pKNOCK-Km (Ap(^R), Km(^R))</td>
<td>This study</td>
</tr>
<tr>
<td>p34E-Cm2</td>
<td>p34E containing catA2 gene from pSa with synthetic promoter (Ap(^R), Cm(^R))</td>
<td>This study</td>
</tr>
<tr>
<td>p34E-TpTer</td>
<td>p34E containing dfrB2 gene fused to rRNA T1T2 terminators (Ap(^R), Tp(^R))</td>
<td>This study</td>
</tr>
<tr>
<td>pBHR1-GFP</td>
<td>pBHR1 containing gfp gene from pQBI-T7-GFP (Cm<sup>R</sup>, Km<sup>R</sup>) (Stevens et al., 2005)</td>
<td></td>
</tr>
<tr>
<td>pSHAFT</td>
<td>Suicide vector derived from pUTmini-Tn5Cm containing deletion of BglI et al., 2006) fragment harboring tnp gene and I end of mini-Tn5Cm, R6K-derived replicon, oriT<sup>T+</sup>(Ap<sup>R</sup>, Cm<sup>R</sup>) (Shalom, 2002; Agnoli et al., 2006)</td>
<td></td>
</tr>
<tr>
<td>pSHAFT-GFP</td>
<td>pSHAFT with 3.7 kb ω-Cm interposon replaced by gfp gene from pBHR1-GFP This study</td>
<td></td>
</tr>
<tr>
<td>pSHAFT2</td>
<td>pSHAFT with 3.7 kb ω-Cm region replaced by catA2 gene driven by synthetic promoter and additional unique restriction sites at 3’ end (Ap<sup>R</sup>, Cm<sup>R</sup>) This study</td>
<td></td>
</tr>
<tr>
<td>pSHAFT3</td>
<td>pSHAFT2 derivative with deletion of two EcoRI sites, addition of Apal and SpeI sites and removal of the mini-Tn5 O end (Ap<sup>R</sup>, Cm<sup>R</sup>) This study</td>
<td></td>
</tr>
<tr>
<td>pBBR1-BCAM0195’</td>
<td>pBBR1MCS-1 containing B. cenocepacia H111 BCAM0195 gene fragment, lacking 0.55 kbp at the 3’ end (Cm<sup>R</sup>) This study</td>
<td></td>
</tr>
<tr>
<td>pBBR1-BCAM0195’Tp</td>
<td>pBBR1-BCAM0195’ with dfrB2 gene replacing a 1.58 kb segment of BCAM0195’ (Cm<sup>R</sup>, Tp<sup>R</sup>) This study</td>
<td></td>
</tr>
<tr>
<td>pSHAFT2-BCAM0195’Tp</td>
<td>pSHAFT2 containing the XhoI-XbaI fragment from pBBR1-BCAM0195’Tp (Ap<sup>R</sup>, Cm<sup>R</sup>, Tp<sup>R</sup>) This study</td>
<td></td>
</tr>
<tr>
<td>pSHAFT-GFP-BCAL1709</td>
<td>pSHAFT-GFP containing B. cenocepacia BCAL1709 gene (Ap<sup>R</sup>, Cm<sup>R</sup>) This study</td>
<td></td>
</tr>
<tr>
<td>BCAL1709</td>
<td>Pc715j BCAL1709 gene (Ap<sup>R</sup>, Cm<sup>R</sup>)</td>
<td></td>
</tr>
</tbody>
</table>

31
pSHAFT-GFP-BCAL1709 with *dfrB2-rrnB* This study

BCAL1709::TpTer T1T2 cassette inserted in BCAL1709 (*Ap^R^, *Cm^R^, *Tp^R^*)

Abbreviations: *Ap^R^*, ampicillin-resistant; *Cm^R^*, chloramphenicol-resistant; *Km^R^*, kanamycin-resistant; *Sm^R^*, streptomycin-resistant; *Tc^R^*, tetracycline-resistant; *Tp^R^*, trimethoprim-resistant; BHR, broad host range.
Table S2. Primers used in this study

<table>
<thead>
<tr>
<th>Primer ID</th>
<th>Primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>p34E-Cmfor2</td>
<td>5'-GCGCGAATCTGGACAATTAGCCCGTATATACTGGAAT</td>
</tr>
<tr>
<td>p34E-Cmrev</td>
<td>5'-GCGCGGAATTTCGGATACGGTGGCATTTAAAT</td>
</tr>
<tr>
<td>rrnBterfor</td>
<td>5'-CGCAGATACGGTGGCATTTAAAT</td>
</tr>
<tr>
<td>rrnBterrev</td>
<td>5'-GCGCAAGCTTCTGAGGAGTCGAAGTTATAAGGAGGACAGAGGAA</td>
</tr>
<tr>
<td>Tp(forward)</td>
<td>5'-GCGGAATTCATGACGAACCTGATTGAGGACAGAGGAA</td>
</tr>
<tr>
<td>Tp(reverse)</td>
<td>5'-CTGGCAGATACGGTGGCATTTAAAT</td>
</tr>
<tr>
<td>rrn(R)</td>
<td>5'-GACAAGCTTACGGATACGGTGGCATTTAAAT</td>
</tr>
<tr>
<td>pSHOOTERfor2</td>
<td>5'-GCGCGGATCTGGACAATTAGCCCGTATATACTGGAAT</td>
</tr>
<tr>
<td>pSHOOTERrev</td>
<td>5'-GCGCGTCGACAAGATCTAATCTAGGAAGATCTAGGAGGACAGAGGAA</td>
</tr>
<tr>
<td>pSHAFT3MCSfor</td>
<td>5'-GGCCGCAAAACTAGTAAGGGGCCCAAG</td>
</tr>
<tr>
<td>pSHAFT3MCSrev</td>
<td>5'-AATTCTTTGGGCCCTTTAAGGGGCCCAAG</td>
</tr>
<tr>
<td>GFPfor</td>
<td>5'-GCGCGTGCACAACCCGAGGAAAGATCTAATCTAGGAAGATCTAACAAGGACAGGAA</td>
</tr>
<tr>
<td>GFPrev</td>
<td>5'-CTTTGTTAGCAGCGCGGATCC</td>
</tr>
<tr>
<td>BCAM0195for</td>
<td>5'-GCGCAAGCTTATGAGCGGCTGCTGATCA</td>
</tr>
<tr>
<td>BCAM0195rev</td>
<td>5'-GCGCGGATCCAGCCTCACGCGGCTGCTGATCA</td>
</tr>
<tr>
<td>BCAL1709for</td>
<td>5'-GCGCTCTAGAAGCTGCTGACGAGTGTATACG</td>
</tr>
<tr>
<td>BCAL1709rev</td>
<td>5'-CGTCGACATTGCGAGTGTAT</td>
</tr>
<tr>
<td>BCAL1709forOut</td>
<td>5'-CGGAAAACATTCGGGACAGTG</td>
</tr>
</tbody>
</table>
Sequences specifying restriction endonuclease cleavage sites are underlined.

Sequences corresponding to the -35 and -10 elements of the artificial promoters introduced upstream of the catA2 and gfp genes are enclosed in boxes. The former is an ‘extended’ -10 promoter (Bown et al., 1997).