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Chevreuils 1, B-4000 Liège 1, Belgium

Abstract

This paper presents two novel numerical procedures to determine upper and

lower bounds on the actual collapse load multiplier for plates in bending. The

conforming Hsieh-Clough-Tocher (HCT) and enhanced Morley (EM) elements

are used to discrete the problem fields. A Morley element with enhanced mo-

ment fields is used. The constant moment fields is added a quadratic mode

in which the pressure is equilibrated by corner loads only, ensuring that exact

equilibrium relations associated with a uniform pressure can be obtained. Once

the displacement or moment fields are approximated and the bound theorems

applied, limit analysis becomes a problem of optimization. In this paper, the op-

timization problems are formulated in the form of a standard second-order cone

programming which can be solved using highly efficient interior point solvers.

The procedures are tested by applying it to several benchmark plate problems

and are found good agreement between the present upper and lower bound

solutions and results in the literature.
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1. Introduction

The yield line theory has been proved to be an effective method to perform

plastic analysis of slabs and plates [1, 2]. This well-known method can predict

very good upper-bound of the actual collapse multiplier for many practical en-

gineering problems. However, this hand-based analysis method encounters dif-

ficulties in problems of arbitrary geometry, especially in the problems involving

columns or holes. Consequently, over last few decades various numerical ap-

proaches based on bound theorems and mathematical programming have been

developed [3, 4, 5, 6, 7, 8, 9, 10]. Numerical limit analysis generally involves

two steps: (i) numerical discretization; and (ii) mathematical programming to

enable a solution to be obtained. The finite element method, which is one of

the most popular numerical methods, is often employed to discrete velocity or

stress fields. Of several displacement and equilibrium elements that have been

developed for Krichhoff plates in bending, the conforming Hsieh-Clough-Tocher

(HCT) [11] and equilibrium Morley elements [12] are commonly utilized in prac-

tical engineering. The original HCT element will be used in the paper without

any modification while the Morley element will be modified by adding a com-

plementary field. Once the stress or displacement fields are approximated and

the bound theorems applied, limit analysis becomes a problem of optimization

involving either linear or nonlinear programming. Problems involving piecewise

linear yield functions or nonlinear yield functions can respectively be solved us-

ing linear or non-linear programming techniques [13, 14, 5, 15, 16]. However,

difficulty exists in the upper-bound optimization problem is that the objective

function is convex, but not everywhere differentiable. One of the most efficient

algorithms to overcome this singularity is the primal-dual interior-point method

presented in [17, 18] and implemented in commercial codes such as the Mosek

software package [19], such as second-order cone programming. The algorithm

is also suitable for solving lower-bound limit analysis since most of yield condi-

tions can be cast as a conic constraint [20]. These limit analysis problems can

then be solved by this efficient algorithm [21, 22, 23].
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In this paper two numerical procedures for upper and lower bound limit

analysis of rigid-perfectly plastic plates governed by the von Mises criterion is

proposed. A second degree moment field proposed by Debongnie and Nguyen-

Xuan [24, 25, 26] is added to Morley moment fields to achieve exact equilibrium

relations when applying a uniform pressure to plates. The enhanced Morley

(EM) element will be adopted in the lower-bound limit analysis of plate prob-

lems. Attention is also focused on treating the performance of yield condition

in numerical limit analysis. The criterion of mean proposed in [27] will be used

instead of the exact criterion which is required to strictly satisfy. Due to this

weakness of the yield condition we expect to obtain only an approximation of

lower-bound in the statically admissible limit analysis. Attempts are also made

by formulating both upper and lower bound limit analysis problems in terms of

a standard second-order cone programming (SOCP). To illustrate the method it

is then applied to a series of plate bending problems, including those for which

solutions already exist in the literature.

2. Limit analysis formulations

2.1. Limit analysis duality theorems

Consider a rigid-perfectly plastic body of volume Ω ∈ R3 with boundary Γ.

Let Γu and Γg denote, respectively, an essential boundary (Dirichlet condition)

where displacement boundary conditions are prescribed and a natural boundary

(Neumann condition) where stress boundary conditions are assumed, Γu∪Γg =

Γ. The external loads which are denoted by g and f , respectively subject to

surface and volume of the body. Let u̇ be a plastic velocity or flow field that

belongs to a space Y of kinematically admissible velocity fields and σ be a

stress field belonging to an appropriate space of symmetric stress tensor X.

The mathematical formulations for limit analysis will be briefly described in

this section. More details can be found in [28, 22, 23].

The external work rate of forces (g, f) associated with a virtual plastic flow
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u̇ is expressed in the linear form as

F (u̇) =
∫

Ω

f u̇ dΩ +
∫

Γg

gu̇dΓ (1)

The internal work rate for sufficiently smooth stresses σ and velocity fields u̇ is

given by the bilinear form

a(σ, u̇) =
∫

Ω

σT ε̇(u̇) dΩ (2)

where ε̇(u̇) are strain rates.

The equilibrium equation is then described in the form of virtual work rate

as follows

a(σ, u̇) = F (u̇), ∀u̇ ∈ Y and u̇ = 0 on Γu (3)

Furthermore, the stresses σ must satisfy the yield condition for assumed

material. This stress field belongs to a convex set, B, obtaining from the used

field condition. For the von Mises criterion,

B = {σ ∈ X | sijsij ≤ 2k2} (4)

where sij denotes stress deviator tensor and k is a parameter depending on

material properties.

If defining C = {u̇ ∈ Y |F (u̇) = 1}, the exact collapse multiplier λexact can

be determined by solving any of the following optimization problems

λexact = max{λ | ∃ σ ∈ B : a(σ, u̇) = λF (u̇), ∀u̇ ∈ Y } (5)

= max
σ∈B

min
u̇∈C

a(σ, u̇) (6)

= min
u̇∈C

max
σ∈B

a(σ, u̇) (7)

= min
u̇∈C

D(u̇), (8)

where D(u̇) = max
σ∈B

a(σ, u̇) is the plastic dissipation rate. Problems (5) and (8)

are knows as static and kinematic principles of limit analysis, respectively. The
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limit load of both approaches converges to the exact solution. Herein, a saddle

point (σ∗, u̇∗) exists such that both the maximum of all lower bounds λ− and

the minimum of all upper bounds λ+ coincide and are equal to the exact value

λexact.

2.2. Formulations for plates

Considers a plate bounded by a curve enclosing a plane area A with kine-

matical boundary Γw ∪Γwn and static boundary Γm∪Γmn , where the subscript

n stands for outward normal. The general relations for limit analysis of thin

plates associated with Kirchhoff’s hypothesis are given as follows.

Equilibrium: Collecting the bending moments in the vector mT = [mxx myy mxy],

the equilibrium equations can be written as

(∇2)T m + λp = 0 (9)

where p is the transverse load and the differential operator ∇2 is defined by

∇2 = [
∂2

∂x2

∂2

∂y2
2

∂2

∂x∂y
]T .

Compatibility: If w denotes the transverse displacement, the curvature rates

can be expressed by relations

κ̇ = −[κ̇xx κ̇yy 2κ̇xy]T = −∇2ẇ (10)

Flow rule and yield condition: In framework of a limit analysis problem,

only plastic strains (curvatures) are considered and are assumed to obey the

normality rule κ̇ = µ̇
∂ψ

∂m
, where the plastic multiplier µ̇ is non-negative and the

yield function ψ(m) is convex. In this study, the von Mises failure criterion in

the space of moment components is used

ψ(m) =
√

mT P m−mp ≤ 0 (11)
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where mp = σ0t
2/4 is the plastic moment of resistance per unit width of a plate

of uniform thickness t, σ0 is the yield stress and

P =
1
2




2 −1 0

−1 2 0

0 0 6


 (12)

The dissipation rate: The internal dissipation power of the two-dimensional

plate domain A can be written as a function of curvature rates as

D(κ̇) =
∫

A

∫ t/2

−t/2

σ0

√
ε̇

T Qε̇ dz dA = mp

∫

A

√
κ̇

T Q κ̇ dA (13)

where

ε̇ =




ε̇xx

ε̇yy

γ̇xy


 = zκ̇ (14)

Q = P−1 =
1
3




4 2 0

2 4 0

0 0 1


 (15)

Details on the derivation of the dissipation for plate problems can be found

in [6, 29].

3. Finite element discretezation

3.1. Lower-bound formulation

In numerical lower-bound limit analysis problem, a statically admissible

stress or moment field for an individual element is chosen so that equilibrium

equations and stress continuity requirements within the element and along its

boundaries are met. The well-known equilibrium Morley element with constant

varying moment is the simplest model for practical engineering. It is, therefore,

advantage to extent the use of the element to lower-bound limit analysis prob-

lem in this paper. The moment field m is assumed to vary constantly within
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an element and expressed as

m = Iβ (16)

where I is a identity matrix and β = [β1 β2 β3]T is an unknown vector.

The generalized loads comprise three corner loads Z1, Z2, Z3 and three nor-

mal moments bending along edges m12, m23, m31 as shown in Figure 1. All

generalized loads can be expressed in terms of moment parameters, if G de-

notes the generalized vector, the relations are written as

G = Cβ (17)

where

G =
[

Z1 Z2 Z3 m12 m23 m31

]T

(18)

C =




c3s3 − c1s1 c1s1 − c3s3 c2
1 − s2

1 − c2
3 + s2

3

c1s1 − c2s2 c2s2 − c1s1 c2
2 − s2

2 − c2
1 + s2

1

c2s2 − c3s3 c3s3 − c2s2 c2
3 − s2

3 − c2
2 + s2

2

c2
1L12 s2

1L12 c1s1L12

c2
2L23 s2

2L23 c2s2L23

c2
3L32 s2

3L32 c3s3L32




(19)

in which the direction cosines of the outward normal to the element boundary

(ci, si) are determined as

ci =
yj − yi

Lij
, si =

xi − xj

Lij
, ij = 12, 23, 31 (20)

and Lij is the length of edge ij.

It is important to note that, in the case when a uniform pressure is applied,

the Morley element does not result in a exact equilibrium relation. This is

because the equation (9) does not hold with the use of the constant moment

fields. It is, therefore, necessary to add to the constant moment fields by a

particular higher degree solution which has to be such chosen that side loads
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L23
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L31

Z1

Z2

Figure 1: Morley equilibrium element

are compatible with the original element. A second degree moment field which

can be added to equilibrium elements of either degree one or degree zero has

been proposed by [24, 25, 26] and can be expressed as

mc = λp ae T (21)

where ae is the area of an element and T = [Txx Tyy Txy]T and is given as

T = −1
3




−X3

Y3
k1 +

X3 −X2

Y3
k2 − X3(X3 −X2)

Y3X2
k3 +

1
2ae

(X2 −X2
2k2 −X2

3k3)

−Y3

X2
k3 +

1
2ae

(Y2 −Y2
3k3)

−1
2
k1 +

1
2
k2 − 2X3 −X2

2X2
k3 +

1
2ae

(XY −X3Y3k3)




(22)

This complementary mode is constructed based on a particular system of axes

as shown in Figure 2, in which the side 1-2 is chosen to be the X axis and Y

must go through node 1 and is orientated so that Y3 is positive. Three area

coordinates are denoted by k1(X,Y), k2(X,Y) and k3(X,Y). The modified Morley

element was called as enhanced Morley (EM) element by [26].

Similarly, the three generalized loads at corners of the triangular element
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y

x

0

1 (x1, y1)

2 (x2, y2)

3 (x3, y3)

X

0

Y

1

Y3

X3

3

2
X2

Figure 2: Relations between global system (Oxy) and local system (OXY)

are added by −aep
3 . The equilibrium equation Eq. (17) is then rewritten as

G = C β (23)

where

β =
[

β1 β2 β3 λ
]

C =




c3s3 − c1s1 c1s1 − c3s3 c2
1 − s2

1 − c2
3 + s2

3 −p ae

3

c1s1 − c2s2 c2s2 − c1s1 c2
2 − s2

2 − c2
1 + s2

1 −p ae

3

c2s2 − c3s3 c3s3 − c2s2 c2
3 − s2

3 − c2
2 + s2

2 −p ae

3

c2
1L12 s2

1L12 c1s1L12 0

c2
2L23 s2

2L23 c2s2L23 0

c2
3L32 s2

3L32 c3s3L32 0




(24)

The overall equilibrium for the structure can be obtained by assembling all local

equilibrium equations of elements and expressed as

Cs βs = 0 (25)

with βs = [β1 β2 . . . β3∗nele λ], nele is the number of elements. Notes that
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boundary conditions are also imposed here in the assemble scheme.

Furthermore, the modified moment field m is not allowed to violate the yield

condition

ψ(m) =
√

mT P m−mp ≤ 0 (26)

where

m = β + λp aeT (27)

However, in numerical analysis it is not always possible to satisfy this re-

quirement since the yield condition is commonly fulfilled at Gauss points or

nodes. Instead of strictly satisfying the exact criterion, Nguyen-Dang proposed

the criterion of mean [27, 30] which is satisfied locally within element domains.

For plate problem the criterion of mean can be expressed as

1
ae

∫

ae

√
mT P m da−mp ≤ 0 (28)

Introducing the smoothed value of m the Eq. (28) can be rewritten as

ψ(ρ) =
√

ρT P ρ−mp ≤ 0 (29)

where ρ is the smoothed version of m and given by

ρ =
1
ae

∫

ae

m da = β + λp

∫

ae

T da = β + λpS (30)

in which S is the exact integration of
∫

ae
T da in the local coordinate OXY.

If defining Bi = {ρi | ψ(ρi) ≤ 0} is the set of admissible discrete moments

for each element, the lower-bound limit analysis (5) can be now written in terms

of discrete moment space as

λ− = max λ

s.t





Cs βs = 0

ρi = βi + λpSi

ρi ∈ Bi, i = 1, 2, . . . , nele

(31)
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and accompanied by appropriate boundary conditions.

3.2. Upper-bound formulation

In numerical upper-bound limit analysis of plate problem, the velocity field

with an element is represented by a continuous function expressed in terms of

spatial coordinates and nodal values. For Krichhoff plates, an element of class

C1 should be employed to approximate the velocity field. The conforming Hsieh-

Clough-Tocher (HCT) triangular element will be utilized and briefly summarized

in this section. A triangular element is subdivided into 3 sub-elements using

individual cubic expansions over each sub-element as shown in Figure 3. The

element has 12 degrees of freedom: the transverse displacements and 2 the rota-

tion components at each corner node (wi, θxi = ∂wi/∂x |i, θyi = ∂wi/∂y |i, i =

1, 2, 3) and normal rotations at 3 mid-side nodes (θi = ∂wi/∂n |i, i = 4, 5, 6).

1

2

3 3 (2) 

 (3) 0 

2 (1) 

1

3

2

0

6∂

∂

n

w

0 5∂

∂

n

w

5∂

∂

n

w

4∂

∂

n

w

6∂

∂

n

w

4∂

∂

n

w

5∂

∂

n

w8

7

9
2

1

3

1 1
2

3

Figure 3: HCT element

The displacement expansion w(k) can be expressed in terms of area coordi-

nates ζ = (ζ1, ζ2, ζ3) over each sub-triangle as

w(k)(ζ) =
(
N(k)

e (ζ) + N(k)
0 (ζ)F

)
qe, k = 1, 2, 3 (32)

where the partitions N(k)
e (ζ) and N(k)

0 (ζ) respectively represent the interpo-

lation functions associated with element displacements qe and internal nodal

displacements and F is the matrix of elimination obtained by applying compat-

ible requirements at internal nodes 7, 8, 9.
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The plastic dissipation for a sub-element is now formulated as

D(k)(κ(k)) = mp

∫

Ase

√
κ̇

T Q κ̇ dA = mp

ng∑

j=1

ξj

√
κ̇

T (ζj)Q κ̇(ζj) (33)

where ng = 3 is the number of Gauss integration points in each sub-element

A(k), ξj is the weighting factor of the Gauss point ζj and κ(k)(ζj) are curvatures

at the Gauss point ζj

κ̇
(k)(ζj) =




κ̇
(k)
xx (ζj)

κ̇
(k)
yy (ζj)

κ̇
(k)
xy (ζj)




=




N(k)
e,xx(ζj) + N(k)

0,xx(ζj)F

N(k)
e,yy(ζj) + N(k)

0,yy(ζj)F

N(k)
e,xy(ζj) + N(k)

0,xy(ζj)F




q̇e (34)

By summing all dissipations of all sub-elements and elements, the plastic dissi-

pation of the whole plate is

D = mp

nele∑ 3∑ ng∑

j=1

ξj

√
κ̇

T (ζj)Q κ̇(ζj) (35)

Similarly, the work rate of applied loads can be expressed as

F =
nele∑ 3∑ ng∑

j=1

ξjp ẇ(k)(ζj) (36)

The upper-bound limit analysis of plate bending is now written as

λ+ = min mp

nele∑ 3∑ ng∑

j=1

ξj

√
κ̇

T (ζj)Q κ̇(ζj)

s.t





nele∑ 3∑ ng∑

j=1

ξjp ẇ(k)(ζj) = 1

q̇ = 0 on Γw

(37)
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4. Second-order cone programming

4.1. Conic programming

The general form of a Second-Order Cone Programming (SOCP) problem

with N sets of constraints is written as follows

min fT x

s. t. ‖Hix + vi‖ ≤ yT
i x + zi for i = 1, . . . , N (38)

where x ∈ Rn are the optimization variables, and the problem coefficients are

f ∈ Rn, Hi ∈ Rm×n, vi ∈ Rm, yi ∈ Rn, and zi ∈ R. For optimization

problems in 2D or 3D Euclidean space, m = 2 or m = 3. When m = 1 the

SOCP problem reduces to a linear programming problem. In framework of limit

analysis problems, the two most common second-order cones are the quadratic

cone

Cq =



x ∈ Rk+1 | x1 ≥

√√√√
k+1∑

j=2

x2
j = ‖x2→k+1‖



 (39)

and the rotated quadratic cone

Cr =



x ∈ Rk+2 | x1x2 ≥

k+2∑

j=3

x2
j = ‖x3→k+2‖2, x1, x2 ≥ 0



 (40)

4.2. Lower-bound programming

Since the matrix P is a positive definite matrix, the constraint (29) can be

cast in terms of a conic quadratic constraint as

ρ ∈ Cq, Cq =
{
ρ ∈ R4 | ρ4 ≥ ‖JT

1 ρ1→3 ‖, ρ4 = mp

}
(41)
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where J1 is the so-called Cholesky factor of P

J1 =
1
2




2 0 0

−1
√

3 0

0 0 2
√

3


 (42)

The lower-bound limit analysis of plates is then cast in the form of a second-

order cone programming as

λ− = max λ

s.t





Cs βs = 0

ρi = βi + λpSi

ρi ∈ C i
q , i = 1, 2, . . . , nele

(43)

and accompanied by appropriate boundary conditions.

4.3. Upper-bound programming

In order to cast the optimization problem (37) in the form of a standard

second-order cone programming, its objective function is firstly formulated in a

form involving a sum of norms as

mp

nele∑ 3∑ ng∑

j=1

ξj

√
κ̇

T (ζj)Q κ̇(ζj) = mp

nele∑ 3∑ ng∑

j=1

ξj‖JT
2 κ̇(ζj)‖ (44)

where J2 is the Cholesky factor of Q

J2 =
1√
3




2 0 0

1
√

3 0

0 0 1


 (45)

By introducing auxiliary variables t1, t2, . . . , tnele×3×ng the present upper-

bound optimization problem can be rewritten in the form of a standard SOCP

14



problem as

λ+ = min mp

nele×3×ng∑

k

ξktk

s.t





nele∑ 3∑ ng∑

j=1

ξjp ẇ(k)(ζj) = 1

q̇ = 0 on Γw

ri = JT
2 κ̇

‖ri ‖≤ ti, i = 1, 2, . . . , nele× 3× ng

(46)

in which ‖ri ‖≤ ti expresses quadratic cones and ri are additional variables,

where every ri is a 3×1 vector. The total number of variables of this optimization

problem is sdof + 4× 3× ng × nele; sdof is the degrees of freedom of system.

5. Numerical examples

The numerical performance of the procedures are illustrated by applying it

to uniformly loaded plate problems for which, in most cases, solutions already

exist in the literature (the method is applicable to problems of arbitrary ge-

ometry). For all the examples considered the following was assumed: length

L = 10 m; plate thickness t = 0.1 m; yield stress σ0 = 250 MPa. Quarter

symmetry was assumed when appropriate. Note that, solutions obtained in the

static problems are approximations of lower-bound due to criterion of the mean

was used. However, as the discretization is sufficiently fine, increasingly close

approximations of the true plastic collapse load multiplier can be expected to

be obtained.

The first examples is a square plate with clamped supports and subjected to

uniform out-of-plane pressure loading. This problem was solved by the top-right

quarter of the plate and uniform mesh generation was used, see Figure 4. Matlab

optimization toolbox 3.0 and Mosek version 5.0 optimization solvers were used

to obtain solutions (using a 2.8 GHz Pentium 4 PC running Microsoft XP).

The efficacy of various optimization algorithms was firstly considered. The
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Figure 4: Square plate clamped along edges and loaded by a uniformly pressure
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Figure 5: Comparison the performance of SQP and SOCP
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limit analysis problems (31) and (37) are typically non-linear optimization prob-

lems and it can be solved using a general non-linear optimization solver, such as

a sequential quadratic programming (SQP) algorithm (which is generalization

of Newton’s method for unconstrained optimization) [31]. Figure 5 shows that

solutions obtained using SQP and SOCP algorithms are in very good agreement.

However, the SOCP algorithm produced solutions very much more quickly and

somewhat more accurate, despite the fact that the number of variables involved

was much greater (sdof + 4 × 3 × ng × nele cf. sdof when using SQP). To

compute solutions for a mesh of 288 elements, the SOCP algorithm typically

took only 5 ∼ 30 seconds, compared with 1280 ∼ 7000 seconds when using

SQP. Moreover, the SOCP algorithm is able to solve problems up to 152148 of

variables with less than 400 seconds CPU time (for the mesh of 4050 elements).

It is also important to note that the SOCP algorithm can be guaranteed to

identify globally optimal solutions, whereas SQP cannot.

0 500 1000 1500 2000 2500 3000 3500 4000
25
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35
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45

50

55

60

number of elements

λ
(m

p

L
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)

 

 

*
**
***

(*)   Upper−bound in [6]
(**)  Mixed approach [5]
(***) Lower−bound in [3]

λ+ (HCT element)

λ− (EM element)
The average value

Figure 6: Bounds on the collapse multiplier vs number of elements using SOCP

The performance of the presented numerical limit analysis procedures is

further investigated in convergence analysis as shown in Figure 6. It can be

observed that both upper and lower bounds converge to the actual collapse

multiplier when the size of elements tends to zero. A upper-bound of 45.12 was
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achieved by present method, which is slightly smaller than the solution previ-

ously obtained in [6]. In comparison with previously obtained lower-bound so-

lution, the present method provides higher solutions than in [3] where quadratic

moment fields were used, by 0.6 %.

The next example comprises a square plate with simply supported on all

edges. Convergence analysis of collapse load multipliers is shown in Figure 7. It

can be seen from the figure that the upper-bound converges to the actual col-

lapse multiplier when relatively small number of elements was used; and the gap

between upper and lower bound is considerably smaller than the clamped case.

This may be explained by the fact that the displacement filed in this problem

does not exhibit a singularity in the form of a so-called hinge along boundary.

The solutions obtained by the proposed method are in good agreement with

previously achieved bounds. Considering previously obtained upper-bound so-

lutions, the present method provides lower solutions than in [3, 6], by 6.16 % and

0.01 %, respectively. Furthermore, a computed lower-bound of 24.93 was found,

which is 0.3 % higher than the best lower-bound found in [3] where quadratic

moment fields were used.
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(*)  Upper−bound in [6]
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Figure 7: Bounds on the collapse multiplier vs number of elements using SOCP

In the two examples examined above, the computed upper-bounds are slightly
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higher than solution in [29] where the Element-Free Galerkin method was used

to approximate the displacement filed. However, the presented method can pro-

vide very tight lower-bound solutions and based on the computed bounds the

actual collapse multiplier can be estimated, e.g. taking the mean value of the

obtained upper and lower bounds. For these examples, the computed mean

values are in excellent agreement with solutions in [5].

(a) 18 elements (b) 50 elements

(c) 450 elements (d) 1800 elements

Figure 8: Mesh refinements for a quarter of the circular plate

Further illustration of the method can be made by examining a clamped

circular plate, for which the exact solution exists [32], λ = 12.5 mp

R2 where R is

the radius. Mesh refinements for a quarter of the plate are shown in Figure 8.

Figure 9 shows the improvement in the computed collapse load as the prob-

lem is refined uniformly. Due to the singularity of the displacement field along

the boundary of the plate, the displacement model (HCT) results in a slower

convergence than when using the equilibrium model (EM). When 4050 elements

were used, the lower-bound was found to be 12.42, just 0.64 % different to the
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Figure 9: Bounds on the collapse multiplier vs number of elements using SOCP (circular
plate)

exact solution.

Finally, an L-shape plate subject to a uniform load was considered. The

plate geometry and uniform mesh refinements are shown in Figure 10 and Fig-

ure 11, respectively. Collapse load multipliers for various numbers of elements

are plotted in Figure 12. The L-shape plate problem exhibits both stress and

displacement singularities at the re-entrant corner. This evidently results in a

slow convergence and the gap between upper and lower bounds are large despite

that fact that a large number of elements was used. For this example, the com-

puted upper-bound was found to be 6.289 which is lower than the best solution

obtained previously in [29].

6. Conclusions

The performance of the two novel numerical limit analysis procedures using

finite element method in conjunction with second-order cone programming has

been investigated. It has been shown that when limit analysis problems are

cast in the form of a SOCP, the resulting optimization problems can be solved

rapidly by such a efficient interior point algorithm, even though for cases when a

very large number of variables involves. The proposed procedures are enable to
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free edge 
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q

L / 2 L / 2

L / 2
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Figure 10: L-shaped geometry

(a) 36 elements (b) 196 elements

(c) 900 elements (d) 2500 elements

Figure 11: Mesh refinement for L-shape plate

provide relatively good bounds on the actual collapse load multiplier since most

solutions in existing references were improved. Moreover, the proposed proce-

dures can handle efficiently problems of arbitrary geometry. The only drawback

is that the solutions are highly sensitive to the geometry of the finite element
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Figure 12: Bounds on the collapse multiplier vs number of elements using SOCP (L-shape
plate)

mesh, particularly in the region of stress or displacement singularities. An au-

tomatically adaptive mesh refinement scheme can be performed to increase the

accuracy of solutions. A well-known benefit from dual structure of limit analysis

is that both the stress and velocity fields of the upper and lower bound problem

can be determined. It is, therefore, relevant to investigate the performance of

an adaptive scheme based on a posteriori error estimate using elemental and

edge contributions to the bound gap [22, 23].

References

[1] K. W. Johansen, Yield-line theory, London: Cement and Concrete Associ-

ation, 1962.

[2] R. H. Wood, Plastic and elastic design of slabs and plates, London: Thames

and Hudson, 1961.

[3] P. G. J. Hodge, T. Belytschko, Numerical Methods for the Limit Analysis

of Plates, Trans. ASME, Journal of Applied Mechanics 35 (1968) 796–802.

[4] E. Christiansen, S. Larsen, Computations in limit analysis for plastic plates,

22



International Journal for Numerical Methods in Engineering 19 (1983) 169–

184.

[5] K. D. Andersen, E. Christiansen, M. L. Overton, Computing limit loads

by minimizing a sum of norms, SIAM Journal on Scientific Computing 19

(1998) 1046–1062.

[6] A. Capsoni, L. Corradi, Limit analysis of plates - a finite element formula-

tion, Structural Engineering and Mechanics 8 (1999) 325–341.

[7] K. Krabbenhoft, L. Damkilde, Lower bound limit analysis of slabs with

nonlinear yield criteria, Computers and Structures 80 (2002) 2043–2057.

[8] A. M. Yan, H. Nguyen-Dang, Limit analysis of cracked structures by math-

ematical programming and finite element technique, Computational Me-

chanics 24 (1999) 319–333.

[9] A. M. Yan, R. J. Jospin, H. Nguyen-Dang, An enhance pipe elbow element -

application in plastic limit analysis of pipe structures, International Journal

for Numerical Methods in Engineering 46 (1999) 409–431.

[10] Q. Phan-Hong, H. Nguyen-Dang, Limit analysis of 2D structures using

gliding line mechanism generated by rigid finite elements, Collection of

papers from Prof. Nguyen-Dang Hungs former students, Vietnam National

University, Ho Chi Minh City Publishing house, 2006, pp. 447–460.

[11] R. Clough, J. Tocher, Finite element stiffness matrices for analysis of plates

in bending, In: Proceedings of the Conference on Matrix Methods in Struc-

tural Mechanics, Ohio,Wright Patterson A.F.B., 1965.

[12] L. S. D. Morley, The triangular equilibrium problem in the solution of plate

bending problems, Aero. Quart. 19 (1968) 149–169.

[13] V. F. Gaudrat, A Newton type algorithm for plastic limit analysis, Com-

puter Methods in Applied Mechanics and Engineering 88 (1991) 207–224.

23



[14] N. Zouain, J. Herskovits, L. A. Borges, R. A. Feijoo, An iterative algorithm

for limit analysis with nonlinear yield functions, International Journal of

Solids and Structures 30 (1993) 1397–1417.

[15] A. M. Yan, H. Nguyen-Dang, Kinematical shakedown analysis with

temperature-dependent yield stress, International Journal for Numerical

Methods in Engineering 50 (2001) 1145–1168.

[16] H. Nguyen-Dang, A. M. Yan, D. K. Vu, Duality in kinematical approaches

of limit and shakedown analysis of structures, Complementary, duality and

symmetry in nonlinear mechanics, Shanghai IUTAM Symposium, Edited

by David Gao, 2004, pp. 128–148.

[17] K. D. Andersen, E. Christiansen, M. L. Overton, An efficient primal-dual

interior-point method for minimizing a sum of euclidean norms, SIAM Jour-

nal on Scientific Computing 22 (2001) 243–262.

[18] E. D. Andersen, C. Roos, T. Terlaky, On implementing a primal-dual

interior-point method for conic quadratic programming, Mathematical Pro-

gramming 95 (2003) 249–277.

[19] Mosek, The MOSEK optimization toolbox for MATLAB manual.

http://www.mosek.com, Mosek ApS (2008).

[20] K. Krabbenhoft, A. V. Lyamin, S. W. Sloan, Formulation and solution of

some plasticity problems as conic programs, International Journal of Solids

and Structures 44 (2007) 1533–1549.

[21] A. Makrodimopoulos, C. M. Martin, Upper bound limit analysis using

simplex strain elements and second-order cone programming, International

Journal for Numerical and Analytical Methods in Geomechanics 31 (2006)

835–865.

[22] H. Ciria, J. Peraire, J. Bonet, Mesh adaptive computation of upper and

lower bounds in limit analysis, International Journal for Numerical Meth-

ods in Engineering 75 (2008) 899–944.

24



[23] J. Munoz, J. Bonet, A. Huerta, J. Peraire, Upper and lower bounds in limit

analysis: adaptive meshing strategies and discontinuous loading, Interna-

tional Journal for Numerical Methods in Engineering 77 (2009) 471–501.

[24] J. F. Debongnie, Applying pressures on plate equilibrium elements, Tech-

nical report, University of Liege, Belgium.

[25] H. Nguyen-Xuan, J. F. Debongnie, The equilibrium finite element model

and error estimation for plate bending, International Congress ”Engineer-

ing Mechanics Today 2004”, Ho Chi Minh City, Vietnam, August 16-20,

2004.

[26] J. F. Debongnie, H. Nguyen-Xuan, C. Nguyen-Hung, Dual analysis for finite

element solutions of plate bending, Proceedings of the Eighth International

Conference on Computational Structures Technology, B.H.V. Topping, G.

Montero and R. Montenegro (Editors), Civil-Comp Press, Stirlingshire,

Scotland., 2006.

[27] H. Nguyen-Dang, Direct limit analysis via rigid-plastic finite elements,

Computer Methods in Applied Mechanics and Engineering 8 (1976) 81–

116.

[28] E. Christiansen, Limit analysis of collapse states, Handbook of Numeri-

cal Analysis, vol IV, volume IV, chapter II, pages 193312. North Holland

Amsterdam, 1996.

[29] C. V. Le, M. Gilbert, H. Askes, Limit analysis of plates using the EFG

method and second-order cone programming, International Journal for Nu-

merical Methods in Engineering 78 (2009) 1532–1552.

[30] H. Nguyen-Dang, J. A. Konig, A finite element formulation for shakedown

problems using a yield criterion of the mean, Computer Methods in Applied

Mechanics and Engineering 8 (1976) 179–192.

25



[31] C. V. Le, H. Nguyen-Xuan, H. Nguyen-Dang, Dual limit analysis of bending

plates, Proceeding of Third International Conference On Advanced Com-

putational Methods In Engineering, Ghent - Belgium, 2005.

[32] H. Hopkins, A. Wang, Load-carrying capacities for circular plates of

perfectly-plastic material with arbitrary yield condition, Journal of the Me-

chanics and Physics of Solids 3 (1954) 117–129.

26


