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Uncertainty Analyses in the Finite-Difference
Time-Domain Method

Robert S. Edwards, Andrew C. Marvin, Senior Member, IEEE, and Stuart J. Porter, Member, IEEE

Abstract—Providing estimates of the uncertainty in results ob-
tained by Computational Electromagnetic (CEM) simulations is
essential when determining the acceptability of the results. The
Monte Carlo method (MCM) has been previously used to quan-
tify the uncertainty in CEM simulations. Other computationally
efficient methods have been investigated more recently, such as
the polynomial chaos method (PCM) and the method of moments
(MoM). This paper introduces a novel implementation of the PCM
and the MoM into the finite-difference time -domain method. The
PCM and the MoM are found to be computationally more efficient
than the MCM, but can provide poorer estimates of the uncertainty
in resonant electromagnetic compatibility data.

Index Terms—Computational electromagnetism, finite-
difference time domain (FDTD), method of moments (MoM),
Monte Carlo, polynomial chaos, uncertainty analysis.

I. INTRODUCTION

C
OMPUTATIONAL electromagnetic (CEM) simulations

rely on sets of input parameters, which often have an as-

sociated uncertainty. These uncertainties may arise from a lack

of precise knowledge of the material parameters or geometries

that are being modeled. Uncertainties in these input parameters

lead to uncertainties in the output of the CEM simulations. This

type of uncertainty is often known as parameter uncertainty. In

this paper, a determination of the parameter uncertainty in the re-

sults of finite-difference time-domain (FDTD) simulations will

be made. Quantifying the uncertainty in the output of interest

amounts to quantifying the standard deviation of the output. Un-

certainty analyses provide the quantitative level of confidence

that may be held in the results of CEM simulations. This in-

formation is essential when determining whether the results are

acceptable or useful.

Previous research has already highlighted the importance of

quantifying uncertainty in CEM [1]–[4]. This research uses the

Monte Carlo method (MCM), which is generally accepted as

being an accurate uncertainty analysis (UA) method, to test the

performance of other computationally efficient UA methods.

Chauvière published work involving the implementation of the

polynomial chaos method (PCM) into a higher order discontinu-

ous Galerkin solution of Maxwell’s equations [1]. The PCM was

found to accurately quantify the output uncertainty, while be-

ing more computationally efficient than the MCM. Chauvière’s

work, however, only estimated the output uncertainty due to

one uncertain input parameter. The accuracy and computational
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efficiency of this method with increased numbers of uncertain

input parameters needs to be analyzed.

More recently, Ajayi has discussed the use of a direct solu-

tion technique (DST) to quantify uncertainty [2]. This technique

applies the probabilistic method of moments (MoM) [5], [6] to

different CEM schemes, such as the transmission line matrix

(TLM) method. Ajayi used the DST to estimate the uncertainty

in the frequency of the first resonance for simple electromag-

netic problems [2]. The DST was found to work well for small

parameter variations, giving results that are in agreement with

results obtained from the MCM [2].

This paper outlines novel implementations of the PCM and

the MoM into the FDTD method. It is possible to implement

these statistical methods into other CEM techniques. The un-

certainty in the output of simulations performed using different

CEM methods and different levels of accuracy will be of a

similar size. However, with the results of different simulations

formed by different CEM techniques, the uncertainty in the out-

put will have a dependence on the method used and the accuracy

with which the simulation is performed. This paper considers

only the FDTD method so that a fair analysis of the PCM, the

MoM, and the MCM can be formed.

In this paper, the UA methods are used to obtain the un-

certainty in the output electric field viewed in the frequency

domain. In the first of two examples, the UA methods are used

to estimate the uncertainty in the electric field that penetrates a

shielded enclosure containing a printed circuit board (PCB), at

around 1.8 GHz. This example is fairly simple, having only one

uncertain input parameter and encompassing only a few resonant

features. The second electrically large example considers three

uncertain inputs, encompassing many more resonant modes.

The PCM and the MoM are compared to the MCM in terms of

their ability to accurately quantify the uncertainty and their com-

putational expense. The uncertain input parameters considered

in this paper are all assumed to be uncorrelated. When consider-

ing correlated variables, United Kingdom Accreditation Service

(UKAS) [6] suggests grouping all correlated variables into one

single grouped variable, which will subsequently be uncorre-

lated with all other uncertain variables in the sample.

In this paper, the uncertainty in the output of interest is a fre-

quency response curve. The feature selective validation (FSV)

method [7], [8] is used in this paper to determine the similarity

of the uncertainty curves formed from the different UA meth-

ods. This method is a numerical technique, which determines

how similar two curves are in terms of their amplitude and fea-

ture differences. The amplitude and feature differences between

the curves are combined to give a general difference measure

(GDM). This method currently forms part of a draft standard

for the verification and validation of CEM models [9].

0018-9375/$26.00 © 2009 IEEE
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II. UA METHODS

A. Monte Carlo Method

To determine the uncertainty in an FDTD simulation via the

MCM, the probability density functions (PDFs) associated with

the uncertain input parameters must first be sampled many times.

In this paper, latin hypercube sampling (LHS) [10] is chosen as

the preferred sampling method. This has been shown to produce

a converged solution more quickly than other sampling methods

[10]. The samples, obtained from the PDFs, form sets of input

parameter values: one FDTD simulation is performed for each

set. The outputs formed from each simulation are combined to

form the output mean and standard deviation. The uncertainty

in the output is represented by the standard deviation.

It is well known that the MCM has slow convergence, and

as such, it is a computationally expensive method. The mean

and uncertainty, formed using the MCM, converge for large

numbers of samples. Once convergence has been reached, the

use of more samples does not change the mean and uncertainty

significantly. In this paper, the FSV method is used, in a novel

way, to determine when the MCM has reached convergence.

The mean and uncertainty formed in this paper are frequency

response curves. The FSV method is used to compare the re-

spective mean and uncertainty frequency response curves after

every N simulations. Convergence is reached when the mean

and uncertainty curves are determined to be “excellent” matches

to the respective mean and uncertainty curves produced after N
simulations previously. In the examples in this paper, N = 50
and convergence is reached when the comparisons of the re-

spective mean and uncertainty curves produce a GDM < 1.5.

This novel way of using FSV provides an accurate, consistent,

and impartial way of determining convergence, when the output

of interest is a curve.

B. Polynomial Chaos Method

The concept of homogeneous chaos was first introduced by

Wiener [11]. Homogeneous chaos uses Hermite polynomials to

represent stochastic processes that depend on uncertain input

parameters, which follow normal distributions [12]. The PCM

is a more generalized method for dealing with inputs that are not

necessarily normally distributed. In the PCM, certain orthogonal

basis polynomials are selected, depending on the distributions

of the random input variables [12]. A function depending on

the uncertain random variables can be expanded in terms of the

selected polynomials. This expansion, which is known as the

Wiener–Askey chaotic expansion [12], casts the uncertainty in

the output into the orthogonal polynomials alone. The orthogo-

nality of the polynomial basis set can reduce stochastic differ-

ential equations to a set of deterministic differential equations

that can be solved numerically [12].

Xiu and Karniadakis [12] found the PCM to be computa-

tionally cheaper than the MCM. However, they noted that the

method’s efficiency is problem specific [13].

1) Wiener–Askey Chaos: Any second-order random process

X, depending on some random event θ, can be represented

as [12]

X(θ) =

∞
∑

i=0

ciψi(ζ(θ)) (1)

where ci are constant coefficients and

ζ(θ) = (ζ1(θ), ζ2(θ), . . .) (2)

represents a vector containing an infinite number of indepen-

dent random variables [12]. The polynomial basis sets {ψi},

corresponding to the random variables ζ(θ), are chosen from

the Askey-scheme, which can be found in [12].

The polynomial basis sets are all orthogonal, which implies

that

〈ψiψj 〉 = 〈ψ2
i 〉δij (3)

where δij is the Kronecker delta and the inner product 〈., .〉 is

defined as [12]

〈f(ζ)g(ζ)〉 =

∫

f(ζ)g(ζ)w(ζ)dζ. (4)

The weighting function w(ζ) corresponds to the choice of poly-

nomial basis {ψj}.

2) General Polynomial Chaos: The Weiner–Askey chaotic

expansion (1) can be used to solve stochastic differential equa-

tions [12]. Let u(x, t, θ) be a solution of the stochastic differ-

ential equation

L(x, t, θ)u(x, t, θ) = f(x, t, θ) (5)

where x, t, and θ represent position, time and some random

event, respectively. The symbol L represents some differential

operator and f is a source term [12]. The solution u may be

regarded as a random process and expanded as [12]

u(x, t, θ) =

P
∑

i=0

ui(x, t)ψi(ζ(θ)). (6)

For practical applications, the infinite sum in (1) has been trun-

cated at P here. If d is the order of the highest order polynomial

used in the expansion and n is the dimension of the random

variable ζ, then

P + 1 =
(n + d)!

n!d!
. (7)

Substituting the expansion of u into (5) yields

L(x, t, θ)

P
∑

i=0

ui(x, t)ψi(ζ(θ)) = f(x, t, θ). (8)

The inner product of both sides of this equation can be formed

with ψk to give
〈

L(x, t, θ)

P
∑

i=0

ui(x, t)ψi(ζ(θ)), ψk

〉

= 〈f(x, t, θ), ψk 〉. (9)

The orthogonality of the basis polynomials reduces (9) to a set

of (P + 1) differential equations: one for each ui [12]. These

equations are deterministic [12] and can, therefore, be solved
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numerically. Once each ui is found, the mean and variance of

u(x, t, θ) can be calculated. The mean is calculated as [1]

ū(x, t, θ) = 〈u(x, t, θ), 1〉 =
P

∑

i=0

ui〈ψi , 1〉

=

P
∑

i=0

ui〈ψi , ψ0〉 =

P
∑

i=0

uiδi0 = u0 (10)

using the fact that ψ0 = 1 for all polynomial bases. The variance

can be obtained in a similar way by first calculating

〈u(x, t, θ), u(x, t, θ)〉 =

P
∑

i=0

P
∑

j=0

uiuj 〈ψi , ψj 〉

=

P
∑

i=0

P
∑

j=0

uiujδij 〈ψ
2
i 〉 =

P
∑

i=0

u2
i 〈ψ

2
i 〉.

(11)

The variance of u(x, t, θ) is therefore [1]

σ2 = 〈u(x, t, θ), u(x, t, θ)〉 − 〈u(x, t, θ), 1〉2

=
P

∑

i=0

u2
i 〈ψ

2
i 〉 − u2

0 =
P

∑

i=1

u2
i 〈ψ

2
i 〉. (12)

The uncertainty in u(x, t, θ) is the standard deviation σ.

3) General Polynomial Chaos in FDTD: General polyno-

mial chaos has already been successfully applied to computa-

tional fluid dynamics (CFD) [14], [15] and specific areas of

CEMs [1]. The application of general polynomial chaos to 1-D

FDTD is given here, and these arguments can be easily gener-

alized to three dimensions.

Maxwell’s equations for a wave propagating in a linear

isotropic homogeneous material along the x-axis in 1-D are

∂Hz

∂t
= −

1

µ

∂Ey

∂x
(13)

∂Ey

∂t
= −

1

ǫ

(

∂Hz

∂x
+ σEy

)

. (14)

As usual, Hz (x, t) represents the magnetic field oriented in the

z-direction, at a position x and time t. Similarly, Ey represents

the electric field oriented in the y-direction. The symbols µ, ǫ,
and σ represent the permeability, permittivity, and conductivity

of the medium in which the electromagnetic fields propagate.

CEM models seek to solve these two coupled equations to find

approximations for Hz (x, t) and Ey (x, t). If there are uncer-

tain input parameters, then the solutions will depend on some

random event θ. The uncertain field solutions can, therefore,

be represented as Hz (x, t, θ) and Ey (x, t, θ). The solutions to

Maxwell’s equations may be found by using the FDTD scheme,

first proposed by Yee [16].

In Yee’s scheme, the temporal and spatial partial derivatives in

Maxwell’s equations are approximated using central difference

approximations. The problem space is discretized into cells of

length ∆x, and the time is split into discrete intervals ∆t. This

yields two update equations, which form the basis of the 1-D

FDTD solution. The update equations formed are

Hn+(1/2)
z

(

j +
1

2
, θ

)

= Hn−(1/2)
z

(

j +
1

2
, θ

)

− γ[En
y (j + 1, θ) − En

y (j, θ)] (15)

and

En+1
y (j,θ) = αEn

y (j, θ) + β

[

Hn+(1/2)
z

(

j −
1

2
, θ)

)

−Hn+(1/2)
z

(

j +
1

2
, θ

)]

. (16)

The shorthand notation Hn
z (j, θ) = Hz (j∆x, n∆t, θ) is used in

the previous equations, where j and n are positive integers. The

material properties of the medium in which the fields propagate

are represented by

α = α(x, θ) =
1 − σ(x, θ)∆t/2ǫ(x, θ)

1 + σ(x, θ)∆t/2ǫ(x, θ)
(17)

β = β(x, θ) =
∆t

∆xǫ(x, θ)(1 + σ(x, θ)∆t/2ǫ(x, θ)
(18)

and

γ = γ(x, θ) =
∆t

∆xµ(x, θ)
. (19)

The material properties µ, ǫ, and σ, all depend on the uncertain

parameter θ. This dependence is defined by the PDFs of the

input parameters.

The 1-D FDTD update equations defined above are used to

obtain solutions for the electric and magnetic fields, subject to

some electric field source. The field solutions can be expanded

in terms of the appropriate orthogonal polynomials {ψi} to

separate the dependence of the field on the random parameter θ
from the dependence on time and position. The field solutions

are expanded as

En
y (j, θ) =

P
∑

i=0

en
i (j)ψi(ζ(θ)) (20)

and

Hn
z (j, θ) =

P
∑

i=0

hn
i (j)ψi(ζ(θ)). (21)

The coefficients en
i (j) and hn

i (j) must be found so that the

mean and uncertainty of the output fields can be formed. The

following discussion outlines how to obtain the field coefficients

en
i (j) and hn

i (j).
Expansions (20) and (21) can be substituted into (15) and (16)

to obtain

P
∑

i=0

h
n+(1/2)
i (j + 1/2)ψi(ζ(θ)) =

P
∑

i=0

[

h
n−(1/2)
i (j + 1/2)

× ψi(ζ(θ)) − γ (en
i (j + 1) − en

i (j)) ψi(ζ(θ))
]

(22)
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and

P
∑

i=0

en+1
i (j)ψi(ζ(θ)) =

P
∑

i=0

[

αen
i (j)ψi(ζ(θ))

+ β
(

h
n+(1/2)
i (j − 1/2) − h

n+(1/2)
i (j + 1/2)

)

ψi(ζ(θ))
]

.

(23)

At this point, the electric field source Es may be added into

(23). If this field source has some associated uncertainty, then it

may be expanded as

En
s (j, θ) =

P
∑

i=0

en
i,s(j)ψi(ζ(θ)). (24)

Adding this source term into (23) yields

P
∑

i=0

en+1
i (j)ψi =

P
∑

i=0

[

αen
i (j)ψi + en

i,s(j)ψi

+β
(

h
n+(1/2)
i (j − 1/2) − h

n+(1/2)
i (j + 1/2)

)

ψi

]

. (25)

Taking the inner product of both sides of (22) and (25) with

some test polynomial ψk , where k is an integer in the range

0 ≤ k ≤ P , reduces the equations to

h
n+(1/2)
k (j + 1/2) = h

n−(1/2)
k (j + 1/2)

−
1

〈ψ2
k 〉

P
∑

i=0

[(en
i (j + 1) − en

i (j)) 〈γψiψk 〉] (26)

and

en+1
k (j) = en+1

k,s (j) +
1

〈ψ2
k 〉

P
∑

i=0

[

en
i (j)〈αψiψk 〉

+
(

h
n+(1/2)
i (j − 1/2) − h

n+(1/2)
i (j + 1/2)

)

〈βψiψk 〉
]

.

(27)

The previous two equations make use of the orthogonality rela-

tion set out in (3). The material properties α, β, and γ remain

in the inner products due to their dependence on θ.

Equations (26) and (27) can be used to calculate en
k (j) and

h
n+1/2
k (j + 1/2) for all n and j, and k = 0, . . . , P . In order

to do this, the inner products 〈αψiψk 〉, 〈βψiψk 〉, and 〈γψiψk 〉
must first be calculated for all i, k = 0, . . . , P . These can be cal-

culated using numerical integrations as a preprocess; the update

equations can then be used in a similar manner to the leapfrog

scheme used in conventional FDTD. The source term must also

be calculated at each time step as

en
k,s(j) =

1

〈ψ2
k 〉

〈En
s (j, θ)ψk (ζ(θ))〉. (28)

To complete the scheme, update equations are required at the

boundary. The examples in this paper consider the scattering of

electromagnetic fields in free space, and therefore, the first-order

Mur absorbing boundary condition [17] is chosen as a relevant

boundary condition. At the lower boundary (where j = 0), the

usual Mur update equation is

En+1
y (0) = En

y (1) +

√

β(1)γ(1) − 1

β(1)γ(1) + 1

(

En+1
y (1) − En

y (0)
)

.

(29)

Introducing uncertainty into this equation via dependence on θ
yields

En+1
y (0, θ) = En

y (1, θ)

+

√

β(1, θ)γ(1, θ) − 1

β(1, θ)γ(1, θ) + 1

(

En+1
y (1, θ) − En

y (0, θ)
)

. (30)

As before, the field terms can be expanded using the chaotic

expansion, and an inner product of both sides of the resulting

equation can be taken with ψk . Carrying out these two steps

gives

en+1
k (0)= en

k (1)+
1

〈ψ2
k 〉

P
∑

i=0

(

en+1
i (1)− en

i (0)
)

〈ξ(1, θ)ψiψk 〉

(31)

where ξ is defined as

ξ(1, θ) =

√

β(1, θ)γ(1, θ) − 1

β(1, θ)γ(1, θ) + 1
. (32)

Usually, at the boundaries, the properties of the medium are

those of free space: there is no uncertainty in the parameter

values near the boundary. Thus, ξ has no θ dependence and

〈ξψiψk 〉 = ξδik 〈ψ
2
k 〉. The update equation for the electric field

at the lower boundary reduces to

en+1
k (0) = en

k (1) + ξ(1)
(

en+1
k (1) − en

k (0)
)

(33)

for k = 0, . . . , P . Using a similar argument, the electric field

update equation at the upper boundary (j = N ) is

en+1
k (N) = en

k (N − 1) + ξ(N − 1)
(

en+1
k (N − 1) − en

k (N)
)

.
(34)

The coefficients en
k (j) may now be calculated using (26), (27),

(33), and (34). Similar equations to (10) and (12) are formed for

the mean value of En
y (j, θ)

Ēy = en
0 (j) (35)

and the variance

σ2 =

P
∑

i=1

(en
i (j))2〈ψ2

i 〉. (36)

The PCM is easily applied to FDTD because the update equa-

tions follow a very similar form to those in conventional FDTD.

The only extra step comes in calculating the integrals that cor-

respond to the inner products in the update equations (26) and

(27). The application of the PCM to FDTD given here may be

easily generalized to 3-D.

One problem with the PCM arises when trying to form the

mean and uncertainty of some related quantity, which does not

depend linearly on En
y (j, θ). For example the output of interest
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may be the absolute value of En
y (j, θ). The mean µ of this output

is formed as

µ = 〈|En
y (j, θ)|, 1〉 =

〈
∣

∣

∣

∣

∣

P
∑

i=0

en
i (j)ψi(ζ(θ))

∣

∣

∣

∣

∣

ψ0

〉

. (37)

The absolute value within the inner product prevents the or-

thogonality of the basis polynomials from being used to form

a simple relationship for the mean. The mean will have to be

calculated using a numerical integration over the uncertain pa-

rameter space θ. This presents a problem with the PCM: the

calculation of the mean of the output of interest is not always

trivial. Some of the mathematical simplicity of the PCM has

been lost by trying to form the mean of the quantity |En
y (j, θ)|.

The mean must be calculated using a numerical integration at

each frequency point, which requires extra computational time.

This extra computational expense is, however, small compared

to the PCM simulation runtime. Once this mean has been cal-

culated, the variance σ2 may be calculated using the standard

definition

σ2(|En
y (j, θ)|) = 〈(|En

y (j, θ)| − µ)2〉. (38)

Further numerical integrations are required to obtain this vari-

ance. The uncertainty in |En
y (j, θ)| is the square root of this

variance.

The PCM performs one large simulation, storing a factor

(P + 1) more field coefficients and (P + 1)2 more material

parameter values (via the inner products) than the MoM and

the MCM. If there are, for example, three uncertain inputs and

the Wiener–Askey chaos expansion is truncated at first order,

then P = 3, and the PCM will require around 16 times more

memory than the MoM and the MCM to store the material inner

products.

The computational time required by the PCM is somewhat

more difficult to analyze. Since there are (P + 1) field coeffi-

cients to solve for and each calculation requires the sum of the

product of (P + 1) field coefficients with (P + 1) material inner

products [see (26) and (27)], the computational time required

by the PCM will be approximately (P + 1)2 greater than that

of a single FDTD simulation. In addition to this, extra compu-

tational time is required to calculate the material inner products

at each point in the problem space and the output variance from

the field coefficients. These extra numerical integrations add to

the overall computational effort of the PCM; however the com-

putational time will scale approximately with (P + 1)2 . This

computational time will be greater than that required for the

MoM, but should be less than that required for the MCM.

C. Method of Moments

The MoM is another approximate UA method, which is sim-

ilar to the method outlined in [6] for the determination of uncer-

tainty in practical electromagnetic compatibility (EMC) mea-

surements. It is the internationally accepted method outlined

in [5] for the propagation of uncertainties through a model.

The MoM uses a first-order Taylor series expansion of the

output electric field Ey about the mean input parameter values

Ey (p1 , . . . , pn ) = c1p1 + · · · + cnpn (39)

where ci represent the sensitivity derivatives of each parameter

pi evaluated at the mean parameter values p̄i . For the purposes

of this discussion, it is assumed that there are n input parameters

for the FDTD simulation.

The mean output electric field Ēy is calculated by performing

one simulation with all input parameters taking on their mean

values [5], [6]. To calculate the sensitivity derivative ci , in (39),

an FDTD simulation must be performed with all parameters

taking on their mean values, except for the parameter pi . In

this simulation, the parameter pi is perturbed slightly from its

mean value to give pi = p̄i + ∆. This simulation will produce a

perturbed output electric field Ei
y . The sensitivity derivative ci

is calculated using the finite-difference approximation

ci =
Ei

y − Ēy

∆
. (40)

If ui is the uncertainty in the parameter pi , determined from the

PDF of pi , then the uncertainty in the mean output of the FDTD

simulation is calculated as [5], [6]

σ =

(

n
∑

i=1

c2
i u

2
i

)1/2

. (41)

The accuracy of the uncertainty estimate relies on the relation-

ship between the uncertain inputs and the output of interest

being linear. The method is also dependent on the size of the

perturbation ∆ that is used. It has been previously suggested

that using a perturbation ∆ = ui is appropriate [5], [6].

The MoM requires the same amount of computational mem-

ory as the MCM. For a simulation with n uncertain input pa-

rameters, the MoM requires n + 1 FDTD simulations.

In the next section, the UA methods described earlier are

used to determine the mean and uncertainty in the output of an

EMC example. The output of interest in the following examples

is the frequency response of the normalized electric field. This

normalized field is formed by taking the ratio of the absolute

value of the specified electric field to the input excitation in the

frequency domain. The FDTD simulations are all performed

with 100 × 100 × 100 cells and 10 000 time steps.

III. EXAMPLE 1: AN EMC EXAMPLE

Fig. 1 shows the setup of the EMC example. An electric

field is excited from a dipole (oriented in the z-direction) and

scattered off a shielded enclosure, with an aperture in the front

face. To describe the coordinates of the shielded enclosure and

the aperture, the origin is assigned to the bottom right-hand

corner of the front face, which itself is in the y–z plane. The

width of the box is y = 38 cm, the depth is x = 40 cm, and

the height is z = 15 cm. For the purposes of the following

discussion, the points in this coordinate system have units of

centimeters, referenced from the origin. The bottom right-hand

corner of the aperture is at the point (0, 19, 5) and extends by a

width ay = 15 cm and a height az = 4 cm. Using this coordinate
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Fig. 1. FDTD simulation of shielded enclosure with an aperture containing a
PCB.

system, the center of the dipole is at (−20, 26, 7), this is 20 cm

away (in the x-direction) from the center of the aperture. The

arms of the dipole are each 7 cm in length, with a radius of

1 mm. The voltage source at the center of the dipole has an

amplitude of V0 = 2 V over a load of 50 Ω. The input excitation

is a Gaussian of the form

V = V0 exp

(

−
4 ln 2(t − t0)

2

fwhh2

)

(42)

where t0 = 6.67 × 10−10 s is the onset time and fwhh =
2.78 × 10−10 s is the full width of the Gaussian pulse at half the

height of the maximum amplitude.

The enclosure represents the shielding exterior of a typical

electronic system containing a PCB. Using the coordinate sys-

tem outlined before, the PCB is oriented in the x–z plane, ex-

tending from the point (5, 14, 2) a distance xb = 30 cm in

the positive x-direction and a distance 10 cm in the positive

z-direction. The components on the PCB will absorb some of

the electric field that penetrates the enclosure and is incident

upon the board. The PCB may, therefore, be modeled as a thin

dielectric block with a reflection coefficient [18]. For this exam-

ple, the reflection coefficient Γ is uniformly distributed in the

interval

Γ = [−0.91,−0.97]. (43)

This reflection coefficient is optimized for a frequency of 1.8

GHz by changing the material parameters of the PCB. The

reflection coefficient will, however, be accurate for a small fre-

quency range around 1.8 GHz. Note that the reflection coeffi-

cient described by (43) is uncertain, and it follows a uniform

distribution. The uncertainty in this input will cause there to be

an uncertainty in the output.

The output z-component of the electric field is observed at

the center of the box. An FDTD simulation was used to obtain

the normalized electric field at this point using a uniform cell

size of 0.01 m.

Fig. 2 shows the mean output electric field with 95% confi-

dence intervals (CIs), as predicted by the MCM. Figures, such

as this one, are extremely useful when determining the quan-

titative level of confidence that may be held in the results of

a simulation. At 1.8 GHz, the 95% CI are Ez = [0.418, 0.444]
V/m. Thus, 95% of the sampled data was within about ±3% of

the mean value.

The uncertainty in the output electric field is shown in Fig. 3.

The uncertainties predicted by all three methods are in very

Fig. 2. Mean normalized electric field at the center of the shielded enclosure
and the 95% CI.

Fig. 3. Uncertainty in the normalized electric field, at the center of the shielded
enclosure, formed via the three UA methods.

good agreement. The uncertainty curves were compared using

the FSV method over frequencies up to 3 GHz. The uncertainty

predicted by the PCM is a “very good” match to the uncertainty

predicted by the MCM, with a GDM of 2.3568. The MoM per-

forms even better, and the frequency response of the uncertainty

formed from the MoM and the MCM is an “excellent” match,

having a GDM of 1.4755. Therefore, for this example, both ef-

ficient UA methods provide uncertainty estimates that are very

close to the uncertainty formed using the MCM.

IV. EXAMPLE 2: A DIELECTRIC SPHERE

This example considers the reflection of a uniform plane wave

off a dielectric sphere in free space. The incident electric field

Ei
y propagates in the positive x-direction, and is polarized in the

y-direction with a magnitude E0 = 1 V/m. The y-component

of the backscattered field Er
y is calculated at a distance R =

0.2 m from the center of the sphere. This backscattered electric

field is normalized relative to the input excitation to form the

normalized electric field. This backscattered field may be solved

analytically using the Mie series [19].

In this example, the sphere parameters are uncertain: the ra-

dius is normally distributed with a mean ā = 0.1 m and an

uncertainty σa = 0.005 m, the relative permittivity is uniformly

distributed in the interval ǫr = [3.7, 4.3], and the relative perme-

ability is uniformly distributed in the interval µr = [0.95, 1.05].
These uncertain input parameters will produce an uncertainty in
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Fig. 4. Three-dimensional problem space containing a dielectric sphere. A
uniform plane wave is reflected off the sphere and observed at X.

Fig. 5. Uncertainty in the normalized field backscattered from a dielectric
sphere.

the output normalized electric field. The setup of this example

is shown in Fig. 4.

The normalized electric field in the frequency domain was

calculated using FDTD simulations, with a uniform broad

Gaussian incident plane wave and a uniform cell size of 0.005 m.

Fig. 5 shows the uncertainty in the FDTD simulations calculated

using the three UA methods. At the lower frequencies, the uncer-

tainties produced by the three methods are in good agreement.

However, at the higher frequencies, both the PCM and the MoM

overestimate the uncertainty, when compared to the uncertainty

produced by the MCM. These qualitative comparisons are con-

firmed using the FSV method. The PCM gives a “fair” estimate

of the MCM uncertainty up to 1.02 GHz, and a “poor” estimate

of the uncertainty between 1.02 and 3 GHz. The MoM does

slightly better at the lower frequencies, providing a “fair” esti-

mate of the MCM uncertainty up to 1.21 GHz. At the higher

frequencies, however, the MoM performs less well, with a “very

poor” estimate of the uncertainty between 1.21 and 3 GHz.

Fig. 6 shows the normalized electric field produced from an

FDTD simulation using the mean input parameter values and

a simulation with the sphere radius perturbed by 5 mm. The

two curves in this figure have similar resonant features, but are

shifted slightly in the frequency domain. At 1 GHz, the fre-

quency response curve is less resonant in nature. Changing the

radius of the sphere causes a frequency shift, which, in turn,

changes the value of the normalized electric field in a quasi-

linear fashion, at this frequency. Changing the radius of the

sphere at a more resonant frequency (e.g., 2.71 GHz) results

in a frequency shift that causes a large nonlinear change in

the normalized electric field. Fig. 7 shows the relationship be-

tween the normalized electric field and the radius of the sphere

at 1 and 2.71 GHz (calculated using the Mie series solution),

Fig. 6. Normalized field backscattered from two dielectric spheres with dif-
ferent radii.

Fig. 7. Normalized electric field backscattered from dielectric spheres with
different radii at 1 and 2.71 GHz.

respectively. At 1 GHz, the normalized electric field depends on

the radius in a relatively linear fashion, whereas at 2.71 GHz,

the normalized electric field depends on the radius in a highly

nonlinear manner. Similar nonlinear relationships between the

output electric field and the other uncertain inputs arise at fre-

quencies where there is a high modal density.

In this example, the chaotic expansion used by the PCM is

truncated at P = 3; the output is, therefore, assumed to depend

linearly on the uncertain inputs. The MoM also assumes a linear

relationship between the output and the uncertain inputs. At

subresonant frequencies (e.g., at 1 GHz), the linear assumption

is valid and the subsequent predictions of the uncertainty formed

via the PCM and the MoM are similar to the uncertainty formed

via the MCM. The linear assumption used by the PCM and the

MoM is poorer at frequencies where the frequency response

of the electric field is more nonlinear (e.g., at 2.71 GHz). This

explains the poor estimations of the uncertainty produced by

the PCM and the MoM at such frequencies. The resonant nature

of EMC data may prevent efficient UA methods, such as the

PCM and the MoM, from being used to accurately quantify

the uncertainty in the frequency response of the electric field

formed from CEM simulations of EMC examples. The MoM

and the PCM may still be useful for quantifying the uncertainty

at subresonant frequencies.
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TABLE I
COMPUTATIONAL REQUIREMENTS OF THE THREE METHODS

V. COMPUTATIONAL REQUIREMENTS

Table I shows the computational performance of the three

methods. All FDTD simulations were performed on a computer

with a Pentium 4 processor running at 3.0 GHz. The table shows

that the MoM requires the least amount of computational ex-

pense. The MCM requires much more computational runtime

than the PCM and the MoM, highlighting the need for efficient

methods of quantifying the uncertainty in CEM simulations.

Table I displays the extra computational memory required by

the PCM, compared to that required by the MCM and the MoM.

In the second example, significantly, more memory is required

for the PCM. The MCM and the MoM use an optimized FDTD

method; the material parameter values are not stored at each

point in the problem space, but a reference to the parameter

value is stored. Conversely, for the PCM, material values need

to be stored at all points in the problem space. The uncertainty

in the sphere radius causes the material parameter inner product

values, used by the PCM, to be different at different points in

the problem space. This means that the full inner product values

have to be stored at each point in the problem space, requiring

significantly more memory. In more complex examples, the

computational memory requirements may be too large to allow

the PCM to be used.

To obtain the uncertainty of these (and any other) CEM sim-

ulations, extra computational runtime is needed. This extra run-

time will be significant for complex problems with many un-

certain input parameters. Uncertainty budgets provide essential

information to help determine whether the results of a mea-

surement are acceptable, and should not be discounted because

of the extra computational expense. This paper has investigated

two efficient UA methods (the PCM and the MoM), highlighting

some of the strengths and limitations of these methods.

The efficient MoM and the PCM provided poor estimates

of the output uncertainty when the relationship between the

output and the uncertain inputs was nonlinear. It is generally

accepted that the MCM provides a benchmark method of deter-

mining output uncertainty with a good degree of accuracy. This

method does not rely on any assumption on the relationship

between the uncertain inputs and the output of the computa-

tional simulations. The MCM, therefore, does not suffer from

the nonlinear nature of EMC data. The MCM is, however, more

computationally expensive than the MoM and the PCM. Since

the uncertainty in the output of a computational scenario should

be similar despite the CEM technique used, it may be possible

to use a computationally efficient CEM technique (such as the

intermediate-level circuit model (ILCM) [20]), along with the

MCM to provide an accurate estimate of the output uncertainty

with relatively little computational expense. The ILCM method,

for example, was able to find the shielding effectiveness of an

enclosure over 3900 times faster than TLM simulations. To de-

termine whether an accurate and efficient UA can be formed in

this way, the uncertainty in the output of an EMC scenario must

be shown to be relatively independent of the CEM technique

used to model the scenario. This provides a promising avenue

for future work in this area.

VI. CONCLUSION

Estimates of the uncertainty in the results of CEM simulations

provide the scientific community with the quantitative level of

confidence that may be held in the results. In the first example of

this paper, it may be concluded that there is a 95% chance that

the output value lies within 3% of its mean value. It is impossible

to determine this level of confidence without performing an UA.

This paper introduced three UA methods that were used to

quantify the uncertainty in FDTD simulations. The novel im-

plementation of the PCM required a modification of the FDTD

algorithm. Of the three methods, the MoM was shown to be the

computationally cheapest method. The PCM was shown to be

computationally faster than the MCM, but required significantly

more computational memory.

The MCM has been previously used to provide reliable esti-

mates of uncertainty. The first example in this paper highlighted

that the computationally cheaper MoM and PCM can give very

good estimations of the uncertainty formed via the MCM. The

efficient MoM and PCM, implemented in this paper, both rely on

the assumption that the output of interest depends linearly on the

uncertain inputs. In the second example, it was shown that this

assumption is valid at subresonant frequencies, but poorer at fre-

quencies with a higher density of resonant modes. This reflected

the uncertainty estimates formed by the PCM and the MoM, for

this example, which were better at subresonant frequencies. In

conclusion, the MoM and the PCM may only provide moderate

estimates of the uncertainty in resonant EMC data. However,

the efficient methods have also been shown to work well at sub-

resonant frequencies, for an example, with multiple uncertain

inputs.

The MCM is generally accepted as being an accurate method

for quantifying output uncertainties. The method does not rely

on an assumed relationship between the uncertain inputs and

the output of computational simulations, and therefore does not

suffer from the resonant nature of EMC data. The MCM is also,

however, known to be computationally expensive. It has been

suggested that a fruitful avenue for future work may be to use the

MCM with a computationally efficient CEM technique (such as

the ILCM [20]) to provide an accurate estimate of the output

uncertainty with relatively little computational expense.
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used in CEM. Both of these methods are statistical methods that

may be used to quantify uncertainty.
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