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A sequence learning impairment in dyslexia? It depends on the task. 

 

 

Abstract 

Language acquisition is argued to be dependent upon an individuals’ sensitivity to serial-order 

regularities in the environment (sequential learning), and impairments in reading and spelling in 

dyslexia have recently been attributed to a deficit in sequential learning. The present study examined 

the learning and consolidation of sequential knowledge in 30 adults with dyslexia and 29 typical 

adults matched on age and nonverbal ability using two tasks previously reported to be sensitive to a 

sequence learning deficit. Both groups showed evidence of sequential learning and consolidation on a 

serial response time (SRT) task (i.e., faster and more accurate responses to sequenced spatial locations 

than randomly ordered spatial locations during training that persisted one week later). Whilst typical 

adults showed evidence of sequential learning on a Hebb repetition task (i.e., more accurate serial 

recall of repetitive sequences of nonwords versus randomly ordered sequences), adults with dyslexia 

showed initial advantages for repetitive versus randomly ordered sequences in the first half of training 

trials, but this effect disappeared in the second half of trials. This Hebb repetition effect was positively 

correlated with spelling in the dyslexic group; however, there was no correlation between sequential 

learning on the two tasks, placing doubt over whether sequential learning in different modalities 

represents a single capacity. These data suggest that sequential learning difficulties in adults with 

dyslexia are not ubiquitous, and when present may be a consequence of task demands rather than 

sequence learning per se.  

Keywords: Hebb repetition, serial order memory, serial response time, sequential learning, sequence 
memory 
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Sequential learning, the process through which people become sensitive to serial-order 

regularities in the environment (Berry & Dienes, 1993), has been argued to be important for language 

learning (Conway & Christiansen, 2001). From infancy, sensitivity towards the statistical regularities 

of our native language allows us to develop distributional phonological knowledge (Hepper, Scott & 

Shahidullah, 1993; Saffran, Aslin & Newport, 1996).  Notably, a lack of sensitivity to sequential 

information has recently been reported in adults with dyslexia (Szmalec, Loncke, Page & Duyck, 

2011; Bogaerts, Szmalec, Hachmann, Page & Duyck, 2015a).  

Dyslexia affects about 5% to 10% of the population and is characterised by impairments in 

reading and spelling that persist to adulthood (Snowling, 2008). A strong body of evidence suggests 

that the reading and spelling difficulties are caused by a neurocognitive deficit in phonological 

processing which affects the ability to retrieve, isolate and manipulate speech sounds and hampers the 

learning of associations between the written and spoken forms of words (Hulme, Nash, Gooch, 

Lervåg, & Snowling, 2015; Ramus et al., 2003; Vellutino, Fletcher, Snowling & Scanlon, 2004; 

Snowling & Melby-Lervag, 2016).  More recent studies suggest that this phonological deficit is most 

marked under conditions of high short-term memory (STM) load (Ramus & Szenkovits, 2008) and/or 

with the ability to access, rather than store, phonological representations (Boets et al., 2013).  

Since dyslexia is also associated with a wide array of non-phonological deficits (e.g., in 

procedural learning, e.g., Nicolson, Fawcett & Dean, 2001; working memory, e.g., Gathercole, 

Alloway, Willis & Adams, 2006; STM, e.g., Perez, Majerus, Mahot, & Poncelet, 2012), some 

researchers have put forward theoretical accounts that attempt to explain both the phonological and 

non-phonological deficits. One such account, the “SOLID” (Serial-order Learning Impairment in 

Dyslexia) hypothesis proposed by Szmalec et al (2011), is based on evidence that sequence learning is 

important for language learning (Conway & Christiansen, 2001; Baddeley, Gathercole, & Papagno, 

1998; Page & Norris, 2008, 2009). Within an alphabetic orthography, the acquisition of a novel 

orthographic word-form initially relies upon the reader adopting a serial decoding strategy, before 
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eventually integrating a representation of the entire sequence of sounds into a word-form (e.g., the 

dual route cascaded model, Coltheart, Rastle, Perry, Langdon & Ziegler, 2001). Recurrences of this 

sequence over time leads to an increasingly robust lexical representation, allowing a familiar letter 

string to be automatically retrieved during reading. According to the SOLID hypothesis, individuals 

with dyslexia are less sensitive to such repetitions, and consequentially less likely to learn (and 

automatize) sequences. 

 Evidence for the SOLID hypothesis comes from the ‘Hebb repetition effect’ (Hebb, 1961), 

which has been frequently used to investigate sequence learning (e.g., Couture, Lafond, & Tremblay, 

2008; Gould & Glencross, 1990; Hitch, Flude & Burgess, 2009; Mosse & Jarrold, 2008). Participants 

are required to immediately recall a list of stimuli (e.g., digits/words) in serial order where one 

particular sequence of stimuli is repeated every third trial. Recall accuracy for repeating ‘Hebb’ 

sequences increases considerably compared with nonrepeating ‘Filler’ sequences (the ‘Hebb 

repetition effect’). This effect is argued to reflect the extent to which sequential information in verbal 

STM develops into a long-term memory trace. Thus, the Hebb repetition effect has been argued to be 

analogous to word-form learning (Page & Norris, 2008, 2009; Szmalec, Duyck, Vaniderendonck, 

Barbera Mata & Page, 2009) since it reflects the extent to which a sequence of phonological units is 

learned as a single entity. In line with this, Bogaerts, Szmalec, De Maeyer, Page and Duyck (2016) 

recently reported that Hebb learning is a significant predictor of later nonword reading ability in 

Dutch children, supporting a role for sequential learning in reading development. 

Szmalec, Loncke, Page and Duyck (2011) examined the Hebb repetition effect in 16 Dutch-

speaking adults with dyslexia and 16 typical adults matched on IQ.  Participants recalled verbal 

materials presented visually, verbal materials presented auditorily, and visual materials presented 

visuospatially. Compared with the typical adults, adults with dyslexia showed smaller improvements 

in recall of the Hebb sequences relative to the Filler trials, across all modalities. Performance on the 

nonrepeating Filler trials was comparable for dyslexic and typical groups. Thus, whilst sequential 
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learning was impaired in dyslexia, STM was intact. The authors argued that this suggests that the 

serial order deficit cannot be reduced to a phonological STM problem (see also Hachmann, Bogaerts, 

Azmalec, Woumans, Duyck & Job, 2014, and Perez et al., 2012, for evidence of selective 

impairments of short-term memory for serial order in dyslexia). Furthermore, it is noteworthy that 

87% of the typical adults and 81% of the dyslexic participants reported awareness of the Hebb 

repetitions, suggesting that sequence learning was impaired in dyslexia despite participants having a 

certain degree of explicit knowledge.  

Previous studies have reported that the Hebb repetition effect persists for at least three months 

(Page & Norris, 2008) and undergoes a period of off-line consolidation (the process by which an 

initially unstable memory trace becomes robust and amenable to automatic retrieval; Doyon et al., 

2009; Robertson et al., 2004). This lends support to the analogy between Hebb learning and word-

form acquisition. Individuals with dyslexia have been argued to lack automaticity when retrieving 

familiar word strings during reading (Kirby et al., 2010; Norton & Wolf, 2012); however, as yet, there 

have been few attempts to examine whether these difficulties arise at the acquisition stage, and/or 

during consolidation.  

In one exception, Bogearts, Szmalec, Hachmann, Page & Duyck (2015) investigated the 

acquisition and consolidation of the Hebb repetition effect in 25 Dutch-speaking adults with dyslexia 

and 25 IQ-matched controls.  In a Hebb learning block, sequences of nine consonant-vowel syllables 

(CVs) were presented visually for immediate serial recall. The Hebb sequence was repeated on every 

third trial (cf. Szmalec et al., 2011) and consisted of three three-syllable groups. For Filler trials, the 

same syllables were used but their order was randomised. Adults with dyslexia showed a significantly 

smaller Hebb repetition effect than typical peers and required more repetitions of the Hebb sequence 

to reach the training criterion (i.e., correct recall of two consecutive Hebb trials). The group 

differences remained on the day after initial training, and one month later; nevertheless, both groups 

showed comparable retention when relearning the Hebb sequences 24 hours and 1 month later. 
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Therefore, although sequential learning is weaker and slower in dyslexia, what is learned is 

consolidated over time.  

Despite this converging evidence, Staels and Van den Broeck (2015) failed to replicate the 

significantly reduced Hebb effect in adolescents and children with dyslexia, regardless of whether an 

identical approach to data analysis was taken (i.e., regression gradient analysis; Szmalec et al., 2011) 

or when state trace analysis was used to statistically equate the typical and dyslexic groups on Filler 

performance. The latter analysis showed that serial recall for the Filler sequences was highly 

predictive of serial recall for the Hebb sequences. This suggests that group differences in sequential 

Hebb learning could be a consequence of more general differences in serial recall or STM. Indeed, 

Staels and Van den Broeck (2014) compared 36 dyslexic children and 61 typical peers on an item 

STM task and a serial order STM task, finding that children with dyslexia were impaired on both 

tasks and phonological skills were closely associated with both tasks. Further evidence for the view 

that serial order difficulties may occur as a consequence of poor phonological STM comes from 

Gould and Glencross (1990), who compared children with dyslexia to typically developing peers on 

verbal (repeated digits) and nonverbal (repeated blocks) versions of the Hebb repetition paradigm: 

Whilst the dyslexic group showed poorer performance on the verbal task the two groups were 

comparable on the nonverbal task, suggesting that dyslexia is not characterised by a general deficit in 

sequential learning.  

Sequential learning has also been measured using the serial reaction time (SRT) paradigm (Nissen 

& Bullemer, 1987), in which participants respond to each of a series of stimuli by pressing a 

corresponding button. Sequential learning is revealed by a decline in performance when a predictable 

repeating pattern (the ‘sequenced’ condition) is replaced by a final block of randomly sequenced 

trials. The acquisition of sequence knowledge is argued to occur in the absence of explicit learning 

instructions and is observed in participants who do not have a full awareness of the sequence 

(Cleeremans, Destrebecqz & Boyer, 1998). Despite claims that both Hebb and SRT tasks measure 
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sequential learning, there has been no attempt to examine whether these tasks tap a unified sequence 

learning capacity.  

Word reading ability has been reported to correlate with the sequence learning effects obtained 

from the SRT task (Howard et al., 2006), supporting the notion that sequence learning may be 

reflective of the extent to which phoneme-grapheme mappings are consolidated when learning to 

read. Consistent with this, reduced sequence learning on the SRT task has been found in adults 

(Menghini, Hagberg, Caltagirone, Petrosini & Vicaria, 2006; Stoodley, Harrison & Stein, 2006) and 

children (Hedenius et al., 2013; Jimenez-Fernandez et al., 2011; Vicari et al., 2003, 2005) with 

dyslexia. Furthermore, a recent meta-analysis suggested that, when averaging across studies, 

individuals with dyslexia have procedural learning deficits on SRT tasks (Lum, Ullman & Conti-

Ramsden, 2013). However, a growing number of studies have also reported intact SRT learning in 

dyslexia (Deroost et al., 2010; Kelly, Griffiths, & Frith, 2002; Russeler et al., 2006; Waber et al., 

2003). These inconsistencies may be partly a consequence of participant characteristics. Studies rarely 

control for the presence of co-occurring conditions such as specific language impairment (SLI) which 

has been associated with impairments on this task (e.g., Hedenius et al., 2011; Lukacs & Kemeny, 

2014; Lum, Gelgec, & Conti-Ramsden, 2010; Tomblin, Mainela-Arnold & Zhang, 2007). Other 

studies have reported sequence learning deficits in dyslexia only under specific conditions, including 

when the task taps higher-order sequence learning (i.e., the stimulus on trial n predicted the stimulus 

on trial n + 2) (Howard et al., 2006) or when the task is made more implicit (Jimenez-Fernandez et al., 

2011; Sperling et al., 2004; Vicari et al., 2003; although see Deroost et al., 2010). 

Using a variant of the SRT task (based on Howard et al., 2006), Hedenius et al (2013) examined 

the learning and consolidation of sequential information in 12 children with dyslexia and 17 age-

matched typical peers. Random trials (r) were alternated with sequenced trials throughout the task 

(e.g., 4-r-3-r-2-r-1). The two groups did not differ on overall RT and showed a similar sequence 

learning effect (i.e., faster responses to sequenced than random trials over the course of training). For 
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accuracy, although the groups were matched overall, the children with dyslexia showed a smaller 

sequence learning effect on day 2. The authors concluded that the sequence learning impairment in 

dyslexia may be most pronounced in the learning stages beyond the acquisition phase. This is 

consistent with other data from dyslexic participants showing intact performance initially but 

impairments after a delay in sequentially-demanding finger tapping tasks (Needle, Nicolson and 

Fawcett., 2010). However, the children with dyslexia in Hedenius et al. showed traits of SLI (e.g., 

significantly poorer nonword repetition and a trend for poorer receptive grammar), therefore it is 

possible that the reported group differences in sequence learning were a consequence of language 

impairment. 

The primary aim of this study was to examine the learning and consolidation of sequential 

information in adults with dyslexia and compare their performance to typical adults matched on 

nonverbal IQ and age. Difficulties with the acquisition of written and spoken language persist to 

adulthood in dyslexia (Di Betta & Romani, 2006); if a deficit in sequence learning is causally 

implicated in these difficulties then reduced sequence learning effects should also be persistent 

(Szmalec et al., 2011; Bogaerts et al., 2015a). Sequence learning was assessed via both the Hebb and 

SRT tasks in the same sample. This allowed us to examine whether sequence learning ability is a 

unified capacity, as demonstrated by a correlation between sequence learning on the two tasks. Both 

tasks have revealed sequence learning deficits in dyslexia; hence, if dyslexia is characterised by such 

a deficit then our sample should be universally impaired on both tasks. However, if the sequence 

learning deficit arises as a consequence of task demands such as item-level STM memory (Staels & 

Van den Broeck, 2014) and/or phonological encoding (Gould & Glencross, 1990), group differences 

may be more apparent on the Hebb task.  The second main aim was to examine the extent to which 

performance on SRT and Hebb tasks is associated with key markers of dyslexia (i.e., reading, 

spelling, phonological skills). If sequential learning relies upon the same memory mechanisms that 

serve the acquisition of novel orthographic forms (Page & Norris, 2008, 2009), individuals who are 
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better at learning and consolidating sequential information should also have better word reading 

and/or spelling skills.  

Method 

Participants 

Thirty adults with dyslexia (11 males) and twenty-nine typical adults (12 males) took part in 

this study, recruited from the University of York and York College. Adults with dyslexia confirmed 

they had received a formal diagnosis of dyslexia and did not have any other documented language or 

learning difficulties. Although the adults with dyslexia were well compensated (to the extent they 

were pursuing further/higher education) they nonetheless demonstrated classic behavioural features of 

dyslexia on a suite of standardised tests (see Table 1). At a group level, the adults with dyslexia were 

well matched to typical adults on nonverbal IQ and age, but they performed significantly worse on 

measures of literacy (word and nonword reading accuracy and fluency and spelling), language 

(vocabulary and phoneme awareness), STM and working memory. Twenty-two of the 30 adults with 

dyslexia scored <85 on one or more of the Sight Word Reading Efficiency, Phonemic Decoding 

Efficiency, or Spelling subtests (see Table 1); of the remaining 8 adults with dyslexia, all scored 

within the low average range (<92) on at least one of these measures and had at least a 15 standard 

score discrepancy between one of these measures and nonverbal IQ (as measured by Matrix 

Reasoning). All participants were native English speakers and had normal or corrected to normal 

vision and hearing. This study was ethically approved by the Department of Psychology Ethics 

Committee, University of York, and all participants provided informed consent. 

Design and materials 

Participants completed both the Hebb and SRT tasks, which were presented via DMDX 

(Forster & Forster, 2003). 
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Hebb task. Participants were presented with sequences of six spoken monosyllabic and 

bisyllabic nonwords presented via headphones for immediate (spoken) serial recall. At recall, the 

participants were asked to produce the sequence from memory, by saying the nonwords aloud to the 

experimenter and saying “don’t know” for any omitted item (see Szmalec et al., 2011 for a similar 

recall procedure). On Day 1 each participant heard 26 sequences: 8 repeated sequences of the 

nonwords (i.e., the ‘Hebb’ sequence) and 18 ‘Filler’ sequences which contained the same nonwords in 

a randomised order. We opted to use sequences of nonsense words rather than sequences of nonsense 

syllables (as used in Szmalec et al., 2011; Bogaerts et al., 2015a) in an attempt to maximise demands 

on serial order learning in a sample of well-compensated adult dyslexics. The Hebb list appeared 

every third trial. Two versions of this task were created with two different sets of nonwords, 

counterbalanced across participants (Version A: clodge, glindoon, twamket, sote, thrisp, marmuss; 

Version B: gleich, phleeb, subken, plexfort, twooge, knochsmeeve). On Day 2 and Day 8, participants 

received three trials in a standardised order (Filler, Hebb, Filler), with the order of the nonwords in 

each Filler trial differing to any of the Filler trials of any session. At the end of Day 8 participants 

were asked if they were aware of a recurring sequence across the three sessions. Less than a quarter of 

participants were aware of the repeated sequence (dyslexics mean 23%, SD=5.67%, typical adults 

mean 28%, SD=6.98%; p>.05). 

SRT task (based on Henderson, Weighall, Brown & Gaskell, 2012). Participants were presented 

with four identical squares arranged horizontally on the computer screen. On each trial a smiley face 

appeared in a different square and participants pressed one of four corresponding buttons on a 

keyboard as quickly and accurately as possible. Five blocks of trials were presented on Day 1. Blocks 

comprised 72 trials, with five occurrences of a pre-specified sequence of 8 trials which were 

interleaved between strings of randomly ordered trials. Thus, both sequenced and random trials 

occurred in every block (following Howard et al., 2006), making it possible to measure sequence 

learning continuously throughout training. This deviates from the classic version of the SRT task in 

which learning is not measured until a single random block occurs near the end of training. This more 
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traditional design is confounded by fatigue effects and increases the likelihood of explicit awareness 

of the sequence. The sequence was eight trials in length, with the first two trials considered as 

random. There were an equal number of random and sequenced trials and across the whole task the 

stimulus appeared in each of the four positions 25% of the time. Four practice trials were 

administered.  Participants received a short break between blocks of no more than 30 seconds. On 

Day 2 and Day 8 participants received two blocks of trials: A ‘warm-up’ block followed by a ‘test 

block’.  These blocks were the same as administered in Day 1 (counterbalanced across participants); 

however, the random trials were presented in reverse order. Participants were asked if they were 

aware of a repeating sequence at the end of Day 8 (dyslexia mean 20%, SD=8.13%, typical adults 

mean 21%, SD=6.72%; p>.05).  

A motor tapping task was administered to ascertain whether any observed group differences in 

SRT performance could be attributed to poor motor control.    Participants were asked to tap a key on 

a keyboard as many times as possible in 5 seconds.  The start and end of the 5 second interval was 

signalled both visually and aurally (via a tone).  The task consisted of three conditions with 6 trials in 

each condition.  In condition 1 the participants were instructed to tap one key using the index finger of 

their preferred hand.  In condition 2 participants were instructed to alternately tap 2 keys using the 

index finger of their preferred hand. In condition 3 participants were instructed to alternately tap 2 

keys using the first 2 fingers of their preferred hand.  Across the three conditions, motor processing 

speed in adults with dyslexia (mean ms/tap 267ms, SD=55.54) was significantly slower than for 

typical adults (mean ms/tap 224ms, SD=35.11), F(1, 58)=12.77, p< .001.  

Procedure 

Participants were tested individually across four sessions.  On Day 1, participants completed 

the Hebb task, SRT task and the motor tapping control task in a fixed order.  The same order was used 

to administer the tests on Day 2 and Day 8 (omitting the motor control task).  On Day 8 participants 
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completed the explicit generation tasks at the end of the session.  The standardised measures were 

administered in a separate session prior to the experimental tasks. 

Results 

Is the learning and/or consolidation of sequential information impaired in dyslexia? 

Hebb Repetition   

Day 1. A response was given a score of 1 if it was recalled in its correct serial position. For 

example, if a participant recalled items 1, 2, 5, 6 but omitted items 3 and 4, they received a score of 4.  

Following Mosse and Jarrold (2008, 2010) 1, the data were analysed by collapsing data from the eight 

trials of each Hebb list and the 18 trials from the Filler list into scores for the first and second half of 

trials (see Table 2). Good split half reliability was demonstrated between the first and second halves 

of the Filler lists (r(59)=.77, p< .001) and the Hebb lists (r(59)=.60, p<.001).  

A mixed-design ANOVA was performed on the accuracy data (i.e., proportion correct) with 

Group (typical adults, adults with dyslexia) as the between-subjects variable and List (Hebb, Filler) 

and Half (First, Second) as within-subjects variables. There was a significant main effect of Group: 

The dyslexic adults produced significantly less accurate serial recall responses than the typical peers, 

F(1, 57)=12.16, p<.001, ƾp
2=.18. There were also significant main effects of List (superior recall for 

Hebb versus Filler lists), F(1, 57)=13.79, p<.001, ƾp
2=.20, and Half (superior recall in the second half 

of the trials), F(1, 57)=19.45, p<.001, ƾp
2=.25, and a marginally significant List x Half x Group 

interaction, F(1, 57)=3.99, p=.051, ƾp
2=.07. As predicted, typical adults did not show a significant 

Hebb repetition effect in the first half of trials (mean difference .04, SD=.12, 95% CI -.01-.09, 

                                                           
1
 Szmalec et al (2011) and Bogaerts et al (2015a) analysed the Hebb repetition effect by calculating the gradient 

of the regression line through points representing the performance on successive Hebb repetitions and 
comparing it with the gradient for corresponding Filler lists, for each individual participant. This procedure has 
been criticised by Staels and Van den Broek (2015) on the grounds that if two groups differ in Filler 
performance then it is not meaningful to directly compare the gradients of the Hebb trials. For purposes of 
comparison with Szmalec et al (2011) and Bogaerts et al (2015a) the regression gradient analysis is reported as 
supplementary material, and largely corresponds to the analysis reported in the main text.   
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t(28)=1.79, p>.05), but they did show a significant Hebb repetition effect in the second half of trials 

(mean difference .09, SD=.17, 95% CI .03-.16, t(28)=2.98, p<.01). For the adults with dyslexia, a 

small but statistically significant Hebb repetition effect was observed in the first half of trials (mean 

difference .05, SD=.12, 95% CI .02-.01, t(29)=2.35, p<.05), but not in the second half of trials (mean 

difference .03, SD=.11, 95% CI -.01-.07, t(29)=1.41, p>.05). In sum, the dyslexic adults were less 

accurate at serially recalling the novel word sequences overall, and in contrast to typical adults, they 

showed a significant Hebb repetition effect in the first, but not the second, half of trials.  

Consolidation (Day 1, 2, and 8). The mean proportion of nonwords recalled in their correct 

serial position for Hebb and Filler conditions on Days 1, 2 and 8 of the study are presented in Table 2. 

To examine the influence of off-line consolidation on the Hebb repetition effect the accuracy data 

(i.e., mean proportion nonwords correct per trial) were entered into a 2 (Day: Day 1, Day 2, Day 8) x 

2 (List: Hebb, Filler) x 2 (Group; adults with dyslexia, typical adults) mixed-design ANOVA. Day 1 

data represents performance on the second half of the training trials.  Data for one of the typical adults 

was not available for Day 2 and Day 8 due to attrition.  

There was a significant main effect of List (F(1, 56)=5.48, p<.05, ƾp
2=.09): Recall accuracy 

was significantly better for Hebb than for Filler trials. There was a significant main effect of Session, 

F(2, 112)=17.63, p<.001, ƾp
2=.24: Day 2 recall was significantly better than Day 1 recall (t(57)=-3.49, 

p<.01), and Day 8 recall was significantly better than Day 2 recall (t(57)=-2.40, p<.05). There was 

also a significant main effect of Group, F(1, 56)=10.63, p<.01, ƾp
2=.16: Dyslexics were less accurate 

than the typical adults overall. There were no significant interactions: List X Group (F=1.17), Session 

X Group (F<1), List X Session (F<1), List X Session X Group (F<1). However, to examine the extent 

to which the Hebb repetition effect was consolidated across the week of the experiment, pair-wise t 

tests were performed between Hebb and Filler conditions for each session and group. The typical 

adults showed a significant Hebb repetition effect on Day 1 (t(28)=2.98,p<.01), but not on Day 2 

(t(27)=1.47,p=.15) or Day 8 (t(27)=0.77, p=.45). The adults with dyslexia did not show a significant 
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Hebb repetition effect on Day 1 (t(29)=1.41, p=.17), Day 2 (t(29)=.40, p=.69) or Day 8 (t(29)=0.44, 

p=.66). In sum, although the Hebb repetition effect was significant when collapsing across days, the 

difference between Hebb and Filler trials weakened rather than strengthened for the typical adults by 

Day 2 and remained weak on Day 8. Indeed, as well as showing improvements in Hebb recall 

accuracy over the week, performance improved for Filler recall, which likely accounts for the reduced 

Hebb effect on Days 2 and 8.   

Nevertheless, Figure 1 shows that Hebb performance did increase over the week of the 

experiment, therefore to examine whether Hebb performance increases over the week of the 

experiment to a greater extent than Filler performance, an additional exploratory analysis was 

performed. To produce an index of retention of the Hebb sequence over time, Bogaerts et al (2015a) 

subtracted the proportion correct on the first Hebb trial of their follow-up session from the proportion 

correct on the final Hebb trial of the initial training session for each participant, and divided these 

differences by participants’ final Hebb trial accuracy from the initial training session. Following this 

procedure, we calculated retention scores for the Day 1 and Day 2 interval, and the Day 1 and Day 8 

interval for both Hebb trials and Filler trials, and entered this data into a List (Hebb, Filler) x Session 

(Day 1-2 retention; Day 1-8 retention) x Group (dyslexic, typical adults) mixed-design ANOVA. 

There was a significant main effect of Session, F(1, 56)=9.25, p<.01, ƾp
2=.14, and a significant 

Session x List interaction, F(1, 56)=20.42, p<.001, ƾp
2=.27. Similar retention scores were observed for 

Hebb and Filler sequences between Day 1 and Day 2 (mean Hebb Day 1-2 retention .27, SD=1.06; 

mean Filler Day 1-2 retention .40, SD=.81; t(57)=-.87, p>.05); however, retention scores were 

significantly greater for Hebb sequences between Day 1 and Day 8 (mean Hebb Day 1-8 retention .34, 

SD=0.90) than for Filler sequences between Day 1 and Day 8 (mean Filler Day 1-8 retention =-.14, 

SD=.30; t(57)=3.81, p<.001). Therefore, whilst performance on both Hebb and Filler trials improved 

similarly between Day 1 and Day 2, a significant improvement in recall was observed for Hebb trials 

between Day 1 and Day 8 that was not present for the Filler trials. This demonstrates a longer-term 

sequential learning effect. There were no other significant main effects or interactions (List, F=1.83, 
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Group, F<1, List x Group, F<1, Session x Group, F<1, List x Session x Group, F<1), therefore, 

consistent with the preceding analysis, this suggests that dyslexic and typical adults were showing 

similar consolidation effects across the week of the experiment. Indeed, the pattern of significantly 

larger retention of Hebb than Filler recall between Day 1 and Day 8 held for both typical (mean 

difference = .38, SD=.93, t(27)=2.18, p<.05) and dyslexic adults (mean difference = .58, SD=1.01, 

t(29)=3.14, p<.01).   

SRT task  

 Day 1 Response time (RT).  RT was analysed for correct responses only and RTs <200ms 

and >2.5 SDs from the mean (for each participant, and for each session) were excluded (2.1% of total 

trials for typical adults (SD=.01%); 1.8% of total trials for adults with dyslexia (SD=.01%). To test 

the hypotheses that RTs would be faster for sequenced than random trials and that this effect would 

increase in magnitude across the training blocks the RT data were entered into a 2 (Group: typical 

adults, adults with dyslexia) X 2 (Condition: sequenced, random) X 5 (Block; 1, 2, 3, 4, 5) mixed-

design ANOVA. RT was faster for sequenced than random conditions (Condition, F(1,57)=17.79, 

p<.001, ƾp
2=.24). RT decreased across training blocks (Block, F(4,57)=7.47, p<.001, ƾp

2=.12).  Adults 

with dyslexia were slower to respond overall than typical adults (Group, F(1,57)=5.38, p<.05, 

ƾp
2=.09). There were no significant interactions: Condition X Block (F<1), Condition X Group (F<1), 

Block X Group (F<1), and Condition X Block X Group (F<1). However, to test the hypothesis that 

adults with dyslexia show impaired sequence learning, pair-wise t tests were performed for each 

group separately, comparing RT on random and sequenced trials. The typical adults showed no 

difference between conditions for Block 1 (t(28)=1.26, p>.05) or Block 2 (t(28)=1.19,p>.05), but 

showed significantly faster responses to sequenced than random trials for Blocks 3 

(t(28)=3.05,p<.01), 4 (t(28)=2.15,p<.05) and 5 (t(28)=2.04,p<.05). The adults with dyslexia showed 

significantly faster responses to sequenced than random trials for Block 1 (t(29)=2.47,p<.05) and 

Block 5 (t(29)=2.89,p<.01), but no significant difference between conditions for Blocks 2 
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(t(29)=1.56,p=.13), 3 (t(29)=1.88,p=.07), or 4 (t(29)=0.97,p=.34). Therefore, although adults with 

dyslexia showed a slightly more variable pattern over the training blocks, importantly, both groups 

produced faster responses to sequenced than random conditions by the final training block. 

Furthermore, when collapsing across Blocks, significantly faster responses were found for sequenced 

than random conditions for typical adults (mean difference 9.54ms, SD=20.45, 95% CI 1.76-17.32ms, 

t(28)=2.51, p<.05) and adults with dyslexia (mean difference 12.19ms, SD=19.13, 95% CI 5.05-

19.34ms, t(29)=3.49, p<.01). In sum, although the dyslexic group were slower than typical peers 

overall, there was no statistical support for a smaller sequential learning effect in dyslexia.   

To ascertain the evidence for accepting the null hypothesis (i.e., no difference in sequence 

learning between dyslexics and controls), the group difference in the size of the sequence learning 

effect in the final training block was examined using a Bayesian independent t test (Rouder, 

Speckman, Sun, Morey & Iverson, 2009; Wagenmakers, 2007), as implemented in the JASP software 

(https://jasp-stats.org/). The Bayes factor (BF01), reflecting the evidence in favor of the null hypothesis 

when tested against the one-tailed prediction that the difference scores for the dyslexic group would 

be smaller than the control group, revealed that the data were 4.91:1 in favor of the null hypothesis 

(error % 3.75; at Cauchy prior widths of 0.75, 1, and 1.5, the BF01 was 4.91, 6.67, and 9.26, 

respectively). Thus, the data were 4.91 times more likely to occur under a model without including an 

effect of dyslexia on sequence learning, versus a model with it. This represents moderate evidence in 

support of the null hypothesis. 

 Day 1 Accuracy. The mean number of correct trials for each participant were entered into a 2 

(Group: typical adults, adults with dyslexia) X 2 (Condition: sequenced, random) X 5 (Block: 1, 2, 3, 

4, 5) mixed-design ANOVA. Accuracy was higher for sequenced than random conditions (Condition, 

F (1, 57)=11.44, p= .001, ƾp
2 = .17). There was a significant main effect of Block (F (4, 57)= 4.69, p= 

.001, ƾp
2=.08): There was no significant difference between Block 1 and 2 (t<1), Block 2 and 3 

(t(58)=1.75,p>.05), and Block 3 and 4 (t(58)=1.84,p>.05); however, accuracy in Block 5 was 

https://jasp-stats.org/
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significantly higher than Block 4 (t(58)=2.71,p<.05). The main effect of Group was not significant, F 

(1, 57) = .25, p= .620, ƾp
2 = .00.  There was also a significant Condition x Block interaction, 

F(4,57)=2.54, p<.05, ƾp
2=.04: There was no significant difference in accuracy between random and 

sequenced conditions for Block 1 (t(58)=1.71,p>.05), Block 2 (t(58)=1.56,p>.05) or Block 3 

(t(58)=0.68,p>.05); however, accuracy was significantly higher for sequenced than random trials for 

Block 4 (t(58)=3.53,p<.01) and Block 5 (t(58)=3.26,p<.01). There were no other significant 

interactions (Condition X Block, Condition X Group, Condition X Block X Group, Fs<1). Pairwise t 

tests confirmed that neither group showed a significant difference between sequenced and random 

conditions for Block 1 (typical, t(28)=1.11,p>.05; dyslexia, t(29)=1.36,p>.05), Block 2 (typical, 

t(28)=1.61, p>.05; dyslexia, t(29)=0.68,p>.05), or Block 3 (typical, t(28)=0.74,p>.05; dyslexia, 

t(29)=.61,p>.05); however both groups showed higher accuracy for sequenced than random 

conditions in Block 4 (typical, t(28)=2.33,p<.05; dyslexic, t(29)=2.61,p<.01) and for Block 5 the 

effect was significant for typical adults (t(28)=2.85,p<.01) and non-significant but in the expected 

direction for dyslexic adults (t(29)=1.68,p>.05). Therefore, as for the RT analysis, adults with and 

without dyslexia showed evidence of sequential learning on the SRT task, as evidenced by significant 

higher accuracy for sequenced than random conditions, particularly in the final training blocks.  

 Consolidation (Day 1, 2 and 8) RT. To examine performance across the week of the 

experiment, the RT data were entered into a 2 (Group: typical adults, adults with dyslexia) X 2 

(Condition: sequenced, random) X 3 (Session: Day 1, Day 2, Day 8) mixed-design ANOVA. RT was 

faster for sequenced than random conditions (Condition, F(1, 57)=30.25, p<.001, ƾp
2=.35). RT was 

faster on Day 2 than Day 1 (t(58)=9.36,p<.001) but did not differ between Day 2 and Day 8 (t(58)<1) 

(Session, F (2,57)= 74.40, p< .001, ƾp
2=.57). The adults with dyslexia were slower overall than the 

typical adults (Group, F (1,57)= 4.83, p< .05, ƾp
2= .08). There was a significant Day X Group 

interaction (F(2,57)= 5.15, p=.007, ƾp
2= .08): On Day 1 and Day 2 the dyslexics were slower than the 

typical adults (t(57)=2.40,p<.05, and t(57)=2.10,p<.05, respectively) however this group difference 

did not reach significance on Day 8 (t(57)=1.82,p=.074). The Condition X Day interaction was also 
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significant (F (2,57)= 3.51, p= .033, ƾp
2= .06): RT was faster for sequenced than random conditions 

on each day; however this effect was weaker on Day 2 (Day 1, t(58)=4.15,p<.001, Day 2, 

t(58)=2.19,p<.05, Day 8, t(58)=6.07,p<.001): The typical adults showed significantly faster responses 

to sequenced than random conditions at the end of Day 1 (t(28)=2.04,p<.05), and on Day 8 

(t(28)=5.02, p<.001) but this effect was not significant on Day 2 (t(28)=0.82,p=.42), whereas the 

adults with dyslexia showed a significant sequence learning effect on all days (Day 1, 

t(29)=2.89,p<.01; Day 2, t(29)=2.19,p<.05; Day 8, t(29)=3.59,p<.001).  There were no other 

significant interactions: Condition X Group (F<1), Condition X Day X Group (F (2,57)= 1.22, p= 

.298, ƾp
2= .02). In sum, both groups showed a nonverbal sequential learning effect on the SRT task 

which became stronger by Day 8.  

Consolidation (Day 1, 2 and 8) Accuracy. The accuracy data were entered into a 2 (Group: 

typical adults, adults with dyslexia) X 2 (Condition: sequenced, random) X 3 (Day: Day 1, Day 2, 

Day 8) mixed-design ANOVA. Accuracy was higher for sequenced than random conditions overall 

(Condition, F (1,57)= 20.73, p< .001, ƾp
2= .27). There were no main effects of Day (F<1) or Group 

(F<1) and no significant interactions: Condition X Group, F<1, Day X Group, F(2,57)= 2.17, p>.05, 

ƾp
2=.04, Condition X Day, F<1, Condition X Day X Group, F<1.  

Is performance on the two sequential learning tasks associated?  

There were no significant correlations between the Hebb repetition effect (calculated from the 

second half of Day 1 trials) and SRT effect (calculated from the final block of training) for SRT 

accuracy (typical adults, r(29)=.11, p>.05, dyslexic adults, r(30)=-.14, p>.05) or SRT RT (typical 

adults, r(29)=-.24, p>.05, dyslexic adults, r(30)=.10, p>.05).  

Are markers of dyslexia associated with variance in sequential learning? 

Table 4 shows partial Pearson correlations between key markers of dyslexia (namely, word 

and nonword reading, spelling, phoneme elision) and Day 1 Hebb effect scores (= Hebb accuracy – 
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Filler accuracy, partialling out Filler accuracy), and SRT effect scores (= Random RT – Sequenced 

RT, partialling out Random RT). The Hebb effect scores were calculated from the second half of 

trials; SRT effect scores were calculated from Block 5 of training. For the adults with dyslexia, there 

was a significant positive correlation between spelling and the Day 1 Hebb effect (r=.41, p< .05). No 

other correlations were statistically significant. 

Discussion 

Sensitivity to sequential patterns in environment input has been argued to be crucial for language 

acquisition, and has been pinpointed as a potential core deficit of dyslexia. This study examined the 

learning and consolidation of sequential information in adults with dyslexia and typical peers matched 

on nonverbal ability and age. We examined whether two tasks previously argued to be measures of 

‘sequence learning’ (the Hebb repetition and SRT tasks) tap into a common capacity, and thus 

whether we would see deficits on both tasks in dyslexia and correlations between tasks. Finally, we 

examined whether variability in sequential learning is associated with individual differences in key 

markers of dyslexia.  

A Hebb repetition effect was demonstrated in typical adults, consistent with previous research 

(Couture, Lafond, & Tremblay, 2008; Hitch, Flude & Burgess, 2009; Mosse & Jarrold, 2008; Page & 

Norris, 2008, 2009). Namely, repeating lists of nonwords served to significantly improve serial recall, 

such that in the second half (but not the first half) of the training trials adults showed superior recall of 

repetitive Hebb lists than compared to non-repeating Filler lists.  

The dyslexic adults showed a greater number of serial recall errors overall (on both Filler and 

Hebb conditions, similar to Bogaerts et al., 2015a and Staels & Wim Van den Broeck, 2014, 2015), 

consistent with previous reports of verbal STM impairments in dyslexia (e.g., Douglas & Benezra, 

1990; Elbro & Jensen, 2005; Kinsbourne et al., 1991; Kramer, Knee, & Delis, 2000; McGee et al., 

1989; Michaels et al., 1997; Perez et al., 2012; Rudel & Helfgott, 1984; Vellutino et al., 1975). There 
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were also group differences in sequence learning across the trials on Day 1. Specifically, the adults 

with dyslexia demonstrated a small but significant Hebb effect over the first four trials but not over 

the second four trials. This falls in stark contrast to the typical adults, who showed the reverse, 

expected pattern: a significant Hebb effect in the second half of trials but not in the first half. A 

fatigue-based explanation for this group interaction is unlikely, given that the adults with dyslexia 

continued to show improvements in their recall of the Filler lists during the second half of trials (see 

Figure 1). One explanation is that ‘dual learning’ of both the correct responses and errors may occur 

in Hebb repetition tasks (Couture et al. (2008). Indeed, the dyslexic group were more error-prone 

(likely as a consequence of poor phonological encoding), and this may have had the detrimental effect 

of increasing interference as a consequence of learning these errors over the course of training, 

leading them to require an even greater number of sequence repetitions to recover from this 

interference. An alternative explanation could be that the adults with dyslexia showed an increased 

susceptibility to ‘proactive interference’ during the Hebb task (see also Bogaerts, Szmalec, 

Hachmann, Page, Woumans, & Duyck, 2015b). Proactive interference could have originated from the 

fact that the filler and Hebb lists were constructed from the same items, which means that 

participants’ memory traces for previous items may have interfered with their ability to learn new 

memory traces, with this effect accumulating across trials. A similar ‘proactive interference’ account 

of Hebb repetition deficits has been proposed in dyscalculia, which has a high co-occurrence rate with 

dyslexia (De Visscher, Szmalec, Van Der Linden, & Noel, 2015).  

Therefore, consistent with Szmalec et al (2011) and Bogaerts et al (2015a) and the SOLID 

hypothesis, there was evidence of a sequence learning difficulty in dyslexic adults. However, our data 

suggests that dyslexic adults are initially sensitive to sequential information (consistent with Staels & 

Van den Broeck, 2012), but that this sensitivity diminishes across exposures. The presence of an 

overall group difference in the Hebb effect here, in contrast to Staels & Van den Broeck (2015), is 

possibly a consequence of methodological differences in the demands placed on phonological STM. 

Whilst the present Hebb task involved recalling lists of six monosyllabic and bisyllabic nonsense 
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words (e.g., gleich, phleeb, subken, plexfort, twooge, knochsmeeve), in Staels and Van den Broeck 

(2015, following Szmalec et al., 2011), participants recalled strings of nine nonsense syllables (e.g., 

da-fi -ke-mo-pu-sa-ti-vo-zu). Thus, the phonological STM demands were arguably greater in the 

present study, leaving more room for interference from phonological errors over training trials.  

If word learning is errorful as a consequence of a phonological deficit in dyslexia then more 

exposures to orthographic or phonological forms of words may be required before a correct 

orthographic sequence is stored, permitting automatic retrieval from long-term memory. In line with 

this view we found a positive correlation between the Hebb repetition effect on Day 1 and spelling in 

the adults with dyslexia, such that adults with better spelling ability also showed larger sequence 

learning effects on the Hebb task. Thus, the effect of a phonological deficit on sequential learning 

could provide one explanation for spelling difficulties in dyslexia. Consistent with this idea, 

Warmington and Hitch (2014) found that errorful training procedures impaired the acquisition of 

novel words in typical adults, when compared to errorless methods. The errorless advantage was 

underpinned by a reduction in extra-experimental intrusion errors, and persisted for at least 4 days 

after training. In line with the present interpretation, it was argued that errorless learning procedures 

improve retrieval by initiating the formation of well-specified representations in long-term memory.  

Participants (both typical and dyslexic) showed improvements in serial recall for Hebb and 

Filler trials over the week of the experiment, suggesting that the nonwords (and the sequence) were 

consolidated in this study. This likely accounts for the non-significant difference between Hebb and 

Filler recall accuracy at the Day 2 and Day 8 tests and may have occurred as a consequence of using 

complex lists of nonwords.  Nonetheless, there was evidence of greater retention between Day 1 and 8 

for the recall of Hebb sequences than for the Filler sequences, this being the case for typical and 

dyslexic adults. This lends some support to a longer-lasting sequential learning effect, consistent with 

claims that the Hebb effect can persist for up to 3 months (Page & Norris, 2008, 2009). Importantly, 
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these data also suggest that although dyslexic adults may have difficulties with the initial acquisition 

of a sequence they can consolidate what they learn.   

For the SRT task, although the adults with dyslexia were slower and more variable in their 

responses overall and showed poorer performance on the motor control task (see also Kelly et al., 

2002), both groups showed faster and more accurate responses to sequenced than random trials and 

showed this sequence learning effect by the end of the training task. Furthermore, the SRT sequence 

learning effect was more robust across the week of the experiment for the dyslexic group than for the 

typical controls, suggesting that both learning and consolidation of sequential information from the 

SRT task is spared. Together, this suggests that sequence learning on the SRT task is intact in adults 

with dyslexia, in line with a growing set of studies (e.g., Deroost et al., 2010; Kelly et al., 2002; 

Russeler et al., 2006). Some studies have argued that sequence learning is intact in dyslexia when the 

sequence is more explicit (e.g., Howard et al., 2006; Jimenez-Fernandez et al., 2011; Vicari et al., 

2003); however, participants were largely unaware of the repeating sequence, ruling out this 

explanation. Another possibility is that some of the previous reports of deficits on the SRT task in 

dyslexia may have been due to the presence of co-occurring language learning impairment (Lum et 

al., 2010; Tomblin et al., 2007; Hedenius et al., 2011; Ullman, 2004) since the present study recruited 

verbally able individuals who did not have a documented history of language impairment.  

Despite the lack of an overall group difference in sequential learning on the SRT task, there were 

subtle group differences in the presence of the sequential learning effect during the first four training 

blocks on Day 1. Typical adults showed the expected pattern: no sequence effect in Blocks 1 and 2, 

but a significant effect in Blocks 3-5. For the dyslexic adults, however, the effect was present in 

Blocks 1 and 5 and absent in Blocks 2-4. Similar to the Hebb data, therefore, the adults with dyslexia 

showed an early sensitivity to the sequence (during Block 1) that was not present in typical adults. 

Without replication and further study it is difficult to speculate about why individuals with dyslexia 

would show an initial early sensitivity to sequential information. One possibility could be that slower 
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overall RTs allowed for an early difference to emerge between conditions in the dyslexic group. 

Regarding the late emergence of the sequence learning effect in Block 5, as for the Hebb task, it is 

possible that the adults with dyslexia were experiencing more interference from Filler items than 

typical adults, which resulted in them requiring a greater number of repetitions before the sequence 

learning effect re-emerged by Block 5.  

Given the statistically robust deficit on the phonologically demanding Hebb task, but not on the 

SRT task, it is tempting to conclude that sequence learning difficulties in dyslexia may be more likely 

when the task has greater verbal or phonological STM demands (see also Gould & Glencross, 1990). 

Whilst this is one likely explanation, there are other ways in which the two tasks differ beyond the 

nature of the material that could also account for the data (e.g., the use of two different dependent 

variables, namely recall accuracy versus motor response time; serial list recall versus a response to 

each item). Therefore, an important direction for future research will be to examine the precise 

conditions under which a sequence learning deficit emerges in dyslexia. 

There was no evidence of an association between sequence learning on the Hebb task and 

sequence learning on the SRT task. Thus, an individual’s ability to learn a sequence of nonwords bore 

no reflection on how well they learned a sequence of spatial locations. Moreover, whilst the Hebb 

repetition effect on Day 1 correlated with spelling in the adults with dyslexia, we did not see 

correlations between sequence learning on the SRT task and key markers of dyslexia. Therefore, these 

two tasks appearing to be measuring different capacities. Whilst the different task demands could 

have reduced the chances of observing a correlation, if the two tasks are tapping into a common 

unified mechanism then one would have expected an association. Recent data suggest a relative low 

reliability coefficient for the SRT task (Siegelman & Frost, 2015), which would reduce the chances of 

observing a correlation between the two tasks. Although the Hebb repetition effect has shown to 

correlate with reading both cross-sectionally and longitudinally (Bogaerts et al., 2016) as well as with 

spelling in the present study, the reliability of this effect remains to be systematically examined. 
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In conclusion, the results from this study suggest that sequence learning difficulties are not 

ubiquitous in dyslexia. Markers of dyslexia (i.e., spelling) were only correlated with sequence 

learning for the verbally demanding Hebb task and there was no association between the two 

sequential learning tasks for either group, questioning whether these tasks are tapping a single 

capacity. Together with an accumulation of previous studies (e.g., Deroost et al., 2010; Gould & 

Glencross, 1990; Kelly, Griffiths, & Frith, 2002; Russeler et al., 2006; Staels & Wim Van den Broeck, 

2014, 2015; Waber et al., 2003), this suggests that the pursuit for global group differences in sequence 

learning tasks in dyslexic versus non-dyslexic groups is unlikely to have substantial theoretical or 

practical importance. Rather, future studies should focus on identifying the precise conditions that 

influence the extent to which sequence learning can emerge over time, including the nature of the 

sequence to-be-learned and the influence of errorful learning.  
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Figure 1. Proportion of nonwords correctly recalled for each presentation of the Hebb sequence for 

typical adults (top) and adults with dyslexia (bottom) 
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Figure 2. RT and accuracy for Sequenced (light grey) and Random (dark grey) conditions on the SRT 

task, for typical adults (left) and adults with dyslexia (right) 
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Table 1. Mean (and SD) scores for adults with dyslexia and typical adults on all of the background variables.  

 Test Typical adults (n 29) Adults with dyslexia (n 30)  

  Mean (SD) Range Mean (SD) Range  F, p values (Cohen’s d) 

Age (years) - 20.31 (1.65) 17-24 21.13 (2.70) 17-27 1.98, p = .17 

Vocabulary  WASI 61.07 (5.15) 46-68 57.57 (7.52) 41-67 4.33, p = .04, d = 0.54 

Matrix Reasoning  WASI 55.55 (5.70) 39-65 54.60 (7.75) 35-67 0.29, p = .59 

Digit Span  AWMA 102.14 (14.40) 77-128 87.78 (12.82) 67-133 16.65, p<.001, d = 0.15 

Dot Matrix  AWMA 109.38 (12.93) 88-146 90.33 (11.56) 63-113 35.63, p<.001, d =1.58 

Listening Span  AWMA 106.38 (14.63) 80-139 93.00 (13.86) 70-115 13.01, p<.001, d = 0.89 

Spatial Recall  AWMA 107.30 (11.92) 94-142 95.87 (16.09) 72-132 9.58, p=.003, d = 0.80 

Reading  WRAT 117.24 (13.03) 94-142 99.00 (7.44) 81-118 43.99, p<.001, d = 1.70 

Spelling  WRAT 121.41 (12.06) 102-145 96.50 (12.35) 74-125 61.42, p<.001, d = 2.0 

Sight Word Reading  TOWRE 105.31 (10.68) 83-113 83.03 (12.23) 56-113 55.39, p<.001, d = 1.91 

Phonological Decoding Efficiency  TOWRE 115.14 (7.75) 93-120 86.63 (10.23) 70-112 144.80, p<.001, d =3.21 

Phoneme Elision  CToPP 8.97 (1.70) 4-11 7.27 (1.76) 3-11 121.13, p<.001, d = 1.0 

Note. T scores are expressed for Vocabulary and Matrix Reasoning, scaled scores are expressed for Phoneme Elision, and all other test scores are 
presented as standard scores (mean 100, average range 85-115). WASI, Weschler Abbreviated Scales of Intelligence (Wechsler, 1999); AWMA, 
Automated Working Memory Assessment (Alloway, 2007); WRAT-4 (Wilkinson & Robertson, 2006), Wide Range Achievement Test; TOWRE, 
Test of Word Reading Efficiency (Torgesen et al., 1999); CToPP, Comprehensive Test of Phonological Processing (Wagner, Torgesen & Rashotte, 
1999).
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Table 2. Mean (and SD) proportion of nonwords recalled in the correct serial position for Hebb and 

Filler trials for adults with dyslexia and typical adults. 

   Adults with dyslexia Typical adults 

 List Half Mean SD Mean SD 

Day 1 Hebb 1
st

 half .22 .13 .31 .18 

 Filler 1
st

 half .16 .08 .27 .12 

 Hebb 2
nd

 half .25 .13 .39 .22 

 Filler 2
nd

 half .22 .08 .30 .14 

Day 2 Hebb - .32 .25 .48 .24 

 Filler - .30 .16 .43 .16 

Day 8 Hebb - .39 .26 .50 .28 

 Filler - .37 .19 .46 .25 
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Table 3. Mean (and SD) RT and accuracy for the sequenced and random conditions in the SRT task 

for Day 1, 2 and 8, for adults with dyslexia and typical adults. 

  RT (ms) Accuracy (correct, out of 30) 

  Dyslexic  Typical  Dyslexic  Typical  

Day Condition Mean SD Mean SD Mean SD Mean SD 

1 Sequenced 441 136 375 51 28.67 1.67 29.28 0.84 

 Random 461 144 395 61 28.20 2.12 28.24 1.50 

2 Sequenced 378 103 339 45 28.93 1.01 28.83 1.17 

 Random 391 106 344 38 28.10 1.49 28.07 1.13 

8 Sequenced 368 85 332 36 28.97 1.06 28.76 1.09 

 Random 385 96 355 40 28.53 1.33 27.93 1.28 
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Table 4. Partial correlations between Hebb and SRT effects on Day 1 and markers of dyslexia for 

typical adults (and adults with dyslexia in parentheses), controlling for Filler slopes (for Hebb slope 

correlations), Filler accuracy (for Hebb Effect correlations), or random RT (for the SRT correlations). 

 Hebb Effect SRT RT effect  

Spelling
a
 .19 (.41*) .30 (-.07) 

Word Reading
b
 .26 (-.01) .22 (-.03) 

Nonword Reading
b
 .23 (.16) .13 (-.08) 

Phoneme Elision
c
 .10 (.14) .04 (-.05) 

Note. * p < .05. 
a 
Spelling subscales from the Wide Range Achievement Test; 

b 
Test of Word Reading 

Efficiency; 
c 
Comprehensive Test of Phonological Processing. 
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Supplementary Material 

Analysis of Hebb repetition effect following Szmalec et al (2011) 

Since there were more Filler lists than Hebb lists, the Filler trials were averaged (trials 1-3, 4-

5, 6-7, 8-9, 10-11, 12-13, 14-15, 16-18), so that there were eight data points for each gradient 

calculated (see Szmalec et al., 2011 for details on how gradient values are calculated). The gradient 

values were entered into a 2 (Group; typical adults, adults with dyslexia) x 2 (List; Hebb, Filler) x 2 

(Half; First, Second) mixed-design ANOVA. The main effects of List, F(1, 57)=2.07, p>.05, ƾp
2=.04, 

and Group, F(1, 57)=0.95, p>.05, ƾp
2=.02, were not significant. However, there was a List x Group 

interaction, F(1, 57)=7.16, p<.05, ƾp
2=.11. The typical adults showed a significantly steeper gradient 

for Hebb trials (mean gradient .03, SD=.04) than Filler trials (mean gradient .01, SD=.02) (95% CIs 

.004-.03, t(28)=2.73, p<.05); however, the adults with dyslexia showed no significant difference in the 

gradient of the slope for Hebb (mean gradient .01, SD=.03) and Filler (mean gradient .02, SD=.01) 

trials (95% CI -.02-.01, t(29)=-.94, p>.05). In a further exploratory analysis, the List x Group 

interaction remained significant when Filler accuracy was entered as a covariate, F(1, 57)=4.94, 

p<.05, ƾp
2=.08.  In summary, adults with dyslexia showed less evidence of sequential learning during 

the course of the training session than adults without dyslexia (see Figure 1 of main manuscript).  

 

 

 

 

 

 

 


